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Abstract

Improved density approximations are obtained by applying certain moment based polynomial adjustments to the
saddlepoint approximation. The proposed technique relies on the saddlepoint approximation to the distribution
function of a continuous random variable as well. Additionally, a hybrid density estimate is being introduced.
Rational functions are also utilized as adjustments. Several numerical examples reveal that, overall, the method-
ologies that are advocated in this paper consistently produce more accurate distributional approximations.

1. Introduction

The saddlepoint approximation of a density function was introduced by Daniels(1954). A comprehensive review of
this approximating technique as well as related results are available from Reid (1988). Countless applications have
been discussed in the statistical and econometric literature over the past few decades. For instance, Kuonen (1999)
utilized this technique for approximating the distribution of quadratic forms. The saddlepoint approximation is still
finding a variety of new statistical applications, as can been seen for example from the recently published papers
of Hyrien et al. (2010), Kolassa and Li (2010), Demaso et al. (2011), Kolassa and Robinson (2011) and Marsh
(2011).

The original saddlepoint approximation formulae for the density and distribution functions of a continuous random
variable are included in Section 2 where a certain polynomial adjustment to the initial density approximant is de-
rived. A criteria for selecting the degree of the adjustment is also introduced. Seven numerical examples involving
single densities and mixture of densities are presented in Section 3; plots and tables of percentiles of the exact as
well as the original and adjusted saddlepoint density approximations are also provided for comparison purposes.
Adjustments consisting of ratios of polynomial adjustments are discussed in Section 4.

2. Adjusted Saddlepoint Approximants

2.1 The PDF Saddlepoint Approximation

Daniels (1954) introduced the following saddlepoint approximation of the density function of a continuous random
variable Y:

p(y) =
(

1
2πK′′(ζ̂)

)1/2

exp[K(ζ̂) − ζ̂ y] (1)

where K(ζ) denotes the cumulant generating function of the random variable of Y , K′′(), its second derivative, and
the saddlepoint ζ̂ is the single real solution to the equation K′(ζ) = y.

2.2 The CDF Saddlepoint Approximation

The Lugannani-Rice approximation (Lugannani and Rice, 1980) to the cumulative distribution function of a con-
tinuous random variable Y is given by

Pr(Y 6 y) ≈ Φ(ŵ) − ϕ(ŵ)
{

1
v̂
− 1

ŵ

}
, (2)
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where Φ and ϕ are respectivley the CDF and PDF of the standard normal distribution,

ŵ = {2[ζ̂y − K(ζ̂)]}1/2sgn(ζ̂),

sgn(·) denoting the sign function, and
v̂ = ζ̂ (K′′(ζ̂))1/2.

2.3 Polynomially-Adjusted Saddlepoint Approximation

Given the moments of a continuous random variables, a polynomially adjusted PDF saddlepoint approximation
can be obtained as follows.

Let Y be a continuous random variable defined on the interval (a, b), whose raw moments E(Yh) are denoted by
µY (h), h = 0, 1, . . . If the moment generating function is known, the moments can be determined by differentiation
and the cumulant generating function K(t) can be obtained by taking logarithm of the moment generating function.

First, the CDF saddlepoint approximation is ultilized to determine an interval that serves as initial support of the
approximate distribution. For example, in the case of a continuous random variable having a semi-infinite support,
one would initially choose the upper end point u such that the saddlepoint cdf evaluated at u is greater than 1−10−15.
Similarly, when the lower bound of the support of the distribution is unknown, one would initially select the lower
end point of the support of the approximate distribution denoted by l to be such that the saddlepoint CDF evaluated
at l is less than 10−15. If the support is infinite, as in the case of the normal distribution, both end points l and u
are determined in this manner. Saddlepoint density approximations are then evaluated at multiple points within
the interval (l, u) and a second order interpolating spline is fitted to these points. The points of intersection of
this spline with the abscissa delimits the support (l⋆, u⋆) of the proposed approximation. The interpolant is then
normalized so that it integrates to one over (l⋆, u⋆) and the resulting approximate density curve is denoted by ψ(y).

On the basis of the first d moments of Y , a polynomially adjusted density approximation of the following form is
assumed:

gd(y) = ψ(y)
d∑

j=0

ξ j y j, (3)

where
∑d

j=0 ξ j x j is a polynomial adjustment of degree d. The coefficients ξ j are determined by equating the hth

moment of Y to the hth moment of the approximate distribution specified by gd(y). That is,

µY (h) =

∫ u⋆

l⋆
yhψ(y)

d∑
j=0

ξ jy jdy

=

d∑
j=0

ξ j

∫ u⋆

l⋆
yh+ jψ(y) dy

≡
d∑

j=0

ξ j m(h + j), h = 0, 1, . . . , d, (4)

where m(h) denotes the hth moment associated with ψ(y). This yields a system of linear equations whose solution
is 

ξ0
ξ1
...
ξd

 =


m(0) m(1) · · · m(d − 1) m(d)
m(1) m(2) · · · m(d) m(d + 1)
...

...
. . .

...
...

m(d) m(d + 1) · · · m(2d − 1) m(2d)


−1 

1
µY (1)
...

µY (d)

 . (5)

The integrated squared difference between approximations of degrees δ and δ + 2, denoted ISD(δ), is proposed as
a means of selecting a suitable value for the degree of the polynomial adjustment. Thus,

ISD(δ) =
∫ u⋆

l⋆
( fδ(y) − fδ+2(y))2 dy (6)
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where l⋆ is the lower bound and u⋆ is the upper bound of the support of the approximate distribution, is calculated
for each value of δ between 3 and 20. We select the degree d = δ+2 for which the ISD(δ) attains a minimum value
or reaches a predetermined tolerance level.

2.4 A Hybrid Approximate Density

A hybrid density τ(y) is constructed from the saddlepoint density ψ(y) and its polynomially adjusted form gd(y).
Two points, denoted by ra and rb, where ψ(y) and ξ(y) intersect, which are for instance located in the neighborhoods
of the first and the third quartiles, are determined. Then, the hybrid approximating probability density function is
given by

τ(y) =


ψ(y) if y ∈ [0, ra) or [rb, 1],

gd(y) if y ∈ [ra, rb]
(7)

when the support of the distribution is the interval [0, 1].

3. Examples

Seven density functions are considered in this section, five of which are mixtures. Percentiles of the unadjusted
and adjusted approximations are tabulated at various cdf values of the distributions for comparison purposes.

3.1 A Triangular Density

Consider the triangular distribution on the interval (0, 2), whose density function is f (x) = xI(0,1)(x) + (2 −
x)I(1,2)(x), where I(·)(x) denotes the indicator function. Plots of the exact density and the adjusted and unadjusted
saddlepoint approximations are shown in Figure 1. Several percentiles of interest are recorded in Table 1. The
bolded values appearing in the tables represent the most accurate percentiles. The integrated squared differences
(ISD) between the approximate and exact densities are provided for comparison purposes. The proposed density
approximant adjusted by means of a polynomial of degree 16 has the smallest integrated squared difference.

Table 1. Percentiles of the triangular distribution

Exact Saddlepoint (SP) Adj. SP (d = 8) Adj. SP (d = 16)
0.0001 0.01414 0.01454 0.01470 0.01404
0.001 0.04472 0.04599 0.04594 0.04437
0.005 0.10000 0.10285 0.10126 0.09917
0.01 0.14142 0.14542 0.14225 0.14032
0.05 0.31623 0.32369 0.31609 0.31583
0.10 0.44721 0.45314 0.44769 0.44794
0.20 0.63246 0.63114 0.63267 0.63316
0.30 0.77460 0.76846 0.77312 0.77384
0.40 0.89443 0.88912 0.89304 0.89344
0.50 1.00000 1.00000 1.00087 1.00042
0.60 1.10557 1.11088 1.10813 1.10676
0.70 1.22540 1.23154 1.22626 1.22510
0.80 1.36754 1.36886 1.36514 1.36663
0.90 1.55279 1.54685 1.55238 1.55378
0.95 1.68377 1.67631 1.68639 1.68310
0.99 1.85858 1.85457 1.85730 1.85960
0.995 1.90000 1.89715 1.89693 1.90086
0.999 1.95528 1.95399 1.95146 1.95425
0.9999 1.98586 1.98541 1.98407 1.98480
ISD 0.00090 0.00019 0.00008
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Figure 1. Saddlepoint approximation (dark line) and polynomially adjusted saddlepoint approximation of degree
16 (dashed line) superimposed on the triangular density (grey line)

3.2 A Weibull Density

Several exact and approximate percentiles of a Weibull distribution having shape parameter 5 and scale parameter
1 are included in Table 2. The smallest integrated squared difference corresponds to the saddlepoint approximation
adjusted with a polynomial of degree 14.

Table 2. Percentiles of a Weibull distribution

Exact Saddlepoint (SP) Adj. SP (d = 6) Adj. SP (d = 14)
0.0001 0.15849 0.15317 0.14311 0.15627
0.001 0.25121 0.25456 0.24908 0.25342
0.005 0.34675 0.34968 0.34859 0.34728
0.01 0.39851 0.40031 0.40055 0.39842
0.05 0.55209 0.54970 0.55236 0.55190
0.10 0.63758 0.63300 0.63700 0.63767
0.20 0.74083 0.73428 0.74012 0.74093
0.30 0.81368 0.80645 0.81345 0.81374
0.40 0.87429 0.86688 0.87443 0.87419
0.50 0.92932 0.92222 0.92984 0.92927
0.60 0.98267 0.97610 0.98329 0.98263
0.70 1.03782 1.03202 1.03831 1.03783
0.80 1.09985 1.09522 1.09989 1.09988
0.90 1.18153 1.17886 1.18095 1.18170
0.95 1.24538 1.24421 1.24416 1.24527
0.99 1.35722 1.35955 1.35690 1.35681
0.995 1.39581 1.40005 1.39711 1.39553
0.999 1.47186 1.47792 1.47742 1.47103
0.9999 1.55903 1.56944 1.57589 1.56137
ISD 0.001060 0.000064 0.000013
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Figure 2. Saddlepoint approximation (dark line) and polynomially adjusted saddlepoint approximation of degree
8 (dashed line) superimposed on the Weibull density (grey line)

3.3 Mixtures of Beta Densities

Consider the following mixture of beta density functions: fm(x) = x(1−x)5/(2 B(2,6))I(0,1)(x)+x6(1−x)2/(2 B(7,3))
I(0,1)(x), where B(a, b) = Γ(a+b)

Γ(a)Γ(b) , whose density and distribution functions are plotted in Figures 3 and 4. As can be
seen from Table 3, the saddlepoint approximation provides in most cases more accurate percentiles than an initial
beta approximation, both being adjusted with a polynomial of degree 4.

The saddlepoint approximation, its counterpart adjusted with a 4th degree polynomial as well as the corresponding
hybrid density approximation are determined for the mixture of beta density functions given by fm(x) = x(1 −
x)8/(2 B(2,9))I(0,1)(x)+ x6(1− x)2/(2 B(7,3))I(0,1)(x), and some of the resulting percentiles are tabulated in Table
4. It is seen that, the percentiles obtained from the hybrid density function are the most accurate.
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Figure 3. Saddlepoint approximation (line) and polynomially adjusted saddlepoint approximation of degree 16
(dashed line) superimposed on a mixture of beta densities (grey line)
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Table 3. Percentiles of a mixture of beta densities

Exact Beta Adj. B. (d = 4) SP Adj. SP (d = 4)
0.0001 0.00310 0.00036 0.00086 0.00337 0.00356
0.001 0.00992 0.00246 0.00542 0.01076 0.01116
0.005 0.02267 0.00937 0.01748 0.02452 0.02470
0.01 0.03259 0.01669 0.02783 0.03522 0.03481
0.05 0.07882 0.06406 0.07712 0.08539 0.07914
0.10 0.11954 0.11490 0.11985 0.13191 0.11727
0.20 0.19150 0.20761 0.19369 0.22135 0.18982
0.30 0.26763 0.29542 0.27004 0.30807 0.27065
0.40 0.36210 0.38149 0.36248 0.39054 0.36658
0.50 0.48313 0.46755 0.47900 0.47893 0.48175
0.60 0.59389 0.55501 0.59058 0.55068 0.58891
0.70 0.67806 0.64548 0.67827 0.63241 0.67820
0.80 0.75024 0.74141 0.75318 0.71846 0.75461
0.90 0.82432 0.84811 0.82800 0.80993 0.82666
0.95 0.87052 0.91034 0.87237 0.86201 0.86845
0.99 0.93116 0.97343 0.92439 0.92855 0.92479
0.995 0.94665 0.98424 0.93519 0.94646 0.94082
0.999 0.96989 0.99531 0.94694 0.97347 0.96688
0.9999 0.98637 0.99917 0.95046 0.99091 0.98672
ISD 0.07633 0.00223 0.06155 0.00005

Table 4. Percentiles of the distribution of another mixture of beta densities

Exact Saddlepoint (SP) Adj. SP (d = 4) Hybrid (d = 4)
0.0001 0.00212 0.00237 0.00238 0.00237
0.001 0.00679 0.00756 0.00751 0.00750
0.005 0.01554 0.01722 0.01676 0.01676
0.01 0.02238 0.02473 0.02372 0.02372
0.05 0.05453 0.05989 0.05438 0.05438
0.10 0.08326 0.09295 0.08102 0.08102
0.20 0.13513 0.16345 0.13126 0.13126
0.30 0.19207 0.24713 0.19514 0.19514
0.40 0.26987 0.33340 0.28071 0.28071
0.50 0.42224 0.42095 0.40766 0.40766
0.60 0.58368 0.52400 0.57535 0.57535
0.70 0.67594 0.61059 0.67857 0.67857
0.80 0.74977 0.71115 0.75760 0.75760
0.90 0.82425 0.80910 0.82704 0.82703
0.95 0.87050 0.86159 0.86638 0.86637
0.99 0.93116 0.92827 0.91965 0.91695
0.995 0.94665 0.94622 0.93475 0.93383
0.999 0.96989 0.97332 0.95947 0.94996
0.9999 0.98637 0.99086 0.97893 0.99084
ISD 0.11743 0.01265 0.01237
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Figure 4. Saddlepoint approximation (dark line) and polynomially adjusted saddlepoint approximation of degree
16 (dashed line) superimposed on the mixture of beta densities (grey line)

3.5 Mixtures of Normal Densities

We now consider an equal mixture of two normal densities with parameters (µ1 = −4, σ1 = 4) and (µ2 = 4,
σ2 = 3), which is plotted in Figure 5 along with the adjusted and unadjusted saddlepoint approximations. As seen
from Table 5, the saddlepoint approximation adjusted with a polynomial of degree 12 turns out to be very accurate
throughout the support of the distribution.

Table 5. Percentiles of an equal mixture of normal densities

Exact Saddlepoint (SP) Adj. SP (d = 6) Adj. SP (d = 12)
0.0001 −18.1603 −18.0819 −19.2254 −18.1916
0.001 −15.5126 −15.4435 −15.4579 −15.4531
0.005 −13.3054 −13.2200 −13.0624 −13.3352
0.01 −12.2150 −12.1137 −12.0682 −12.2421
0.05 −9.12634 −8.91917 −9.18863 −9.11072
0.10 −7.36756 −7.05859 −7.45214 −7.36514
0.20 −5.02696 −4.64578 −5.01122 −5.03920
0.30 −3.08087 −2.83466 −2.98508 −3.07608
0.40 −1.19586 −1.27672 −1.15275 −1.18179
0.50 0.57143 0.15959 0.50925 0.56546
0.60 2.10265 1.55117 2.02421 2.09041
0.70 3.47695 2.96440 3.45498 3.47694
0.80 4.86414 4.49106 4.90744 4.87495
0.90 6.56926 6.36664 6.62495 6.56966
0.95 7.87045 7.74451 7.87823 7.85705
0.99 10.1735 10.1031 10.0668 10.1844
0.995 10.9891 10.9275 10.8695 11.0147
0.999 12.6420 12.5921 12.6487 12.6521
0.9999 14.6266 14.5869 15.1917 14.5186
ISD 0.00098 0.00009 3.91113×10−6
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Figure 5. Saddlepoint approximation (dark line) and polynomially adjusted saddlepoint approximation of degree
12 (dashed line) superimposed on the mixture of normal densities (grey line)

Another example, this time taken from Huzurbazar (1999), involves a mixture of two normal densities with pa-
rameters (µ1 = 4.5, σ1 =

√
1.2) and (µ2 = −2.5 and σ2 =

√
0.8) and weights 0.2 and 0.8. Table 6 contains certain

approximate percentiles obtained from unadjusted and adjusted normal and saddlepoint base densities as well as
the hybrid approach. We note that the most accurate values are all related to the saddlepoint approximation.

Table 6. Percentiles of Huzurbazar’s mixture of normal densities

Exact Nor. (N) Adj. N. (d = 4) SP Adj. SP (d = 4) Hybrid
0.0001 −5.77562 −9.28504 −5.77204 −5.74094 −4.46130 −5.73766
0.001 −5.20416 −9.01292 −5.75231 −5.16654 −4.41613 −5.16277
0.005 −4.73402 −8.25815 −5.66905 −4.69485 −4.28120 −4.69047
0.01 −4.50477 −7.70420 −5.57349 −4.46211 −4.17287 −4.45740
0.05 −3.87216 −5.88554 −4.99656 −3.81854 −3.77280 −3.85106
0.10 −3.52890 −4.84403 −4.48566 −3.46517 −3.52112 −3.56573
0.20 −3.10328 −3.56268 −3.71237 −3.01288 −3.19283 −3.21821
0.30 −2.78500 −2.63259 −3.06824 −2.59344 −2.93516 −2.95454
0.40 −2.50000 −1.83581 −2.46363 −2.03984 −2.66872 −2.68735
0.50 −2.21500 −1.09006 −1.84666 −1.32671 −2.33552 −2.35466
0.60 −1.89672 −0.34367 −1.16052 −0.45885 −1.88838 −1.90778
0.70 −1.47110 0.45537 −0.29674 0.59507 −1.22315 −1.24319
0.80 0.82673 1.39093 1.08361 1.93005 0.68960 0.61710
0.90 4.50000 2.68887 3.62995 3.78623 4.60662 4.61359
0.95 5.23887 3.76098 5.22115 5.01381 5.43299 5.44979
0.99 6.30185 5.77234 7.55897 6.23948 6.27260 6.33616
0.995 6.64703 6.50860 8.32931 6.59101 6.50442 6.61845
0.999 7.32168 8.02562 9.84422 7.27602 6.86480 7.27115
0.9999 8.10459 9.86658 11.5192 8.06049 7.05006 8.05876
ISD 0.04773 0.11059 0.06533 0.01534 0.01511

3.6 A Mixture of Gamma Densities

We now considers an equal mixture obtained from a gamma(13, 2) density and a gamma(4, 3) density, as plotted
in Figure 6. In this case, we made use of both a gamma density and a saddlepoint approximation as base densities.
More often than not, the saddlepoint and its adjusted version provide more accurate percentiles than the gamma
approximation or its adjusted version.

8
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Table 7. Percentiles of a mixture of gamma densities
Exact Gamma Adj. G. (d = 4) SP Adj. SP (d = 4)

0.0001 0.83461 1.03219 0.79842 0.84701 0.77090
0.001 1.55629 1.93950 1.51501 1.56805 1.40402
0.005 2.46975 3.07633 2.43589 2.54813 2.29709
0.01 3.04871 3.78566 3.02550 3.16452 2.87388
0.05 5.23423 6.35401 5.28251 5.39828 5.00178
0.10 6.88940 8.15484 7.01175 7.17026 6.72564
0.20 9.61455 10.7920 9.82919 10.1256 9.78231
0.30 12.3505 13.0296 12.4985 12.7860 12.6991
0.40 15.3442 15.1793 15.2124 15.3195 15.5198
0.50 18.4065 17.3957 17.9990 17.8366 18.2900
0.60 21.3437 19.8199 20.8933 20.4474 21.0917
0.70 24.2761 22.6514 24.0165 23.2962 24.0559
0.80 27.5426 26.2880 27.6574 26.6770 27.4766
0.90 31.9837 31.9276 32.6363 31.4234 32.1176
0.95 35.6901 37.1252 36.6161 35.4081 35.9260
0.99 42.9329 48.2426 43.2128 43.2200 43.2344
0.995 45.7104 52.7711 45.0766 45.0321 45.6510
0.999 51.6870 62.9046 47.4860 51.0321 50.4813
0.9999 59.4901 76.7787 48.3247 56.1367 55.6806
ISD 0.00185 4.1818×10−7 0.00045 2.3074×10−6

20 40 60 80 100

0.01
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0.04

Figure 6. Saddlepoint approximation (dark line) and polynomially adjusted saddlepoint approximation of degree
16 (dashed line) superimposed on the mixture of gamma densities (grey line)

4. The Use of Rational Functions as Adjustments

Denoting by b(y) the base density approximating the density function of a continuous random variable Y whose
support is (α, β), it is assumed that the approximate density has the following form

fν,δ(y) = b(y)
∑ν

i=0 aiyi∑δ
k=0 ckyk

, (8)

where a ratio of polynomials of orders ν and δ is utilized as an adjustment to b(y).

On multiplying both sides of Equation (8) by the denominator of the rational function times yh and integrating over
the support of the distribution, one has

δ∑
k=0

ck

∫ β

α

yk+h fν,δ(y) dy =
ν∑

i=0

ai

∫ β

α

yi+hb(y) dy , (9)

9
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which is equivalent to
δ∑

k=0

ckµk+h =

ν∑
i=0

aimi+h, h = 0, 1, 2, . . . , ν + δ, (10)

where the µi’s are taken to be the moments of Y and the m j’s, the moments associated with the base density. Letting
cδ = 1 without any loss of generality, one has

µδ+h +

δ−1∑
k=0

ckµk+h =

ν∑
i=0

aimi+h . (11)

On rearranging the terms, one obtains

δ−1∑
k=0

ckµk+h +

ν∑
i=0

ai(−mi+h) = −µδ+h , h = 0, 1, 2, . . . , ν + δ. (12)

Thus, the required coefficients can be determined from the following equation:

c0
...

cδ−1
a0
...

aν


=


µ0 · · · µδ−1 −m0 · · · −mν

µ1 · · · µδ −m1 · · · −mν+1
...

. . .
...

...
. . .

...
µδ+ν · · · µ2δ−1+ν −mδ+ν · · · −mδ+2ν


−1 

−µδ
−µδ+1
...

−µ2δ+ν

 . (13)

4.1 Examples

First, consider the Weibull distribution as specified in Section 3.2. As shown in Figure 7, the ratio of polynomials
adjustment can also produce accurate approximations to its cumulative distribution function.

As can be seen from Figure 8, this is also the case for the mixture of beta(2, 6) and beta(7, 3) density functions,
which was adjusted by means of a single polynomial in Section 3.3. The cdf resulting from applying a ratio of
polynomials as an adjustment to the saddlepoint base density turns out to closely approximate the exact CDF.

0.5 1.0 1.5 2.0
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0.4

0.6

0.8

1.0

Figure 7. CDF of the saddlepoint approximation adjusted by a ratio of polynomials of degrees 3 and 2 (dashed
line) superimposed on the CDF of a Weibull distribution (grey line)

5. Discussion

The proposed adjustments to the saddlepoint approximation were shown generally to produce more accurate per-
centiles throughout the supports of the various distribution that were considered. The improvement is more notice-
able in the case of multimodal distributions. The coefficients of the polynomial adjustments are easily determined
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by solving a linear system. All the calculations were carried out with the symbolic computational software Math-
ematica.

0.2 0.4 0.6 0.8 1.0
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Figure 8. CDF of the saddlepoint approximation adjusted by a ratio of polynomials of degrees 14 and 2 (dashed
line) superimposed on the CDF of a mixture of beta densities (grey line)
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