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Abstract

Using a test statistic constructed on wavelets-based estimation of canonical coefficients of nonlinear canonical

analysis, we introduce a new class for bivariate normality test. The limit distribution of the new test statistic is

established. We also give some critical values of the distribution. The finite sample performance of the proposed

test, with comparison to that of an existing method, is evaluated through Monte Carlo power study.
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1. Introduction

Multivariate statistical methods for data analysis often require the assumption of normality of the underlying popu-

lation. A severe departure from normality could result in unreliable statistical conclusions for models based on the

normality assumption. In the univariate case, a departure from normality can usually be attributed to the skewness

or kurtosis of the data being analyzed. In the multivariate case, the situation becomes much more complicated :

a departure from multivariate normality could come from any direction in a multidimensional Euclidean space.

Because of this fact, an existing statistic for testing multinormality can only provide partial information on the

assumption. No statistic can outperform others in all aspects. Therefore, to get a relatively complete understand-

ing of the nature and extent of violations of normality assumption with multivariate data, it is wise to use several

testing statistics at the same time. This is why interest in developing normal test statistics has been continuing (see,

e.g., Mardia, 1980; Csörgo, 1986; Zhu et al., 1995; Yang et al., 1996; Henze & Wagner, 1997; Liang et al., 2000;

Kim & Bickel, 2003; Von Eye & Bogat, 2004; Székely & Rizzo, 2005). In this paper, we propose a new class of

test for bivariate normality based on wavelets estimation of canonical coefficients of nonlinear canonical analysis

(NLCA) of two random variables. The paper is organized as follows. The next section sets up the notation and

some preliminary results. Section 3 is devoted to the construction of the new test statistic. In Section 4, we give

the limit distribution of the test statistic defined in Section 3. Section 5 presents some power comparisons to others

statistics.

2. Notations and Preliminary Results

We consider a probability space (Ω,A, P) and denote by L2(P) the Hilbert space of random variables with finite

second-order moment. Let X and Y be random variables defined on (Ω,A, P), with values in measurable spaces

(EX ,TX) et (EY ,TY ) respectively, and with probability distribution measures denoted by PX and PY . We denote by

L2(PX) the space of measurable real functions ϕ defined on EX and such that E(ϕ2(X)) < +∞, and by L2(PY ) the

analogous of L2(PX) with respect to Y . Nonlinear canonical analysis (NLCA) of X and Y is defined by Dauxois and

Pousse (1975) as the search of orthonormal bases (ϕi)i≥1 and (ψi)i≥1 of L2(PX) and L2(PY ) respectively, satisfying:
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E (ϕi (X)ψi (Y)) = max
(ϕ,ψ)∈W (i)

X ×W (i)
Y

E (ϕ (X)ψ (Y)) (1.1)

where E denotes the mathematical expectation, and

W (1)
X = {ϕ ∈ L2 (PX) /E

(
ϕ2 (X)

)
= 1}, W (1)

Y = {ψ ∈ L2 (PY ) /E
(
ψ2 (Y)

)
= 1} (1.2)

and for i ≥ 2:

W (i)
X = {ϕ ∈ W (1)

X /E (ϕ (X)ϕ1 (X)) = · · · = E (ϕ (X)ϕi−1 (X)) = 0}, (1.3)

W (i)
Y = {ψ ∈ W (1)

Y /E (ψ (Y)ψ1 (Y)) = · · · = E (ψ (Y)ψi−1 (Y)) = 0}. (1.4)

2.1 Nonlinear Canonical Analysis (NLCA) of Random Variables

Considering the subspaces

HX = {ϕ(X) , ϕ ∈ L2(PX)} and HY = {ψ(Y) , ψ ∈ L2(PY )}

of L2(P), it is known (see Dauxois & Pousse, 1975) that the solution for the NLCA problem is obtained from the

spectral analysis of the self-adjoint operator T = E
X
E

Y
|HX

, that is the restriction of T = E
X
E

Y at HX , where E
X and

E
Y are the conditional expectations relative to X and Y , respectively. If T is a compact operator, NLCA exists and

is characterized by a triple:

{(ρi)i=0,··· ,N , (ϕi(X))i=0,··· ,N1
, (ψi(Y))i=0,··· ,N2

},

where N, N1, N2 are elements of N ∪ {+∞}. In this triple, the ρi’s, called canonical coefficients, are real numbers

contained in ]0, 1], the systems (ϕi)i=0,··· ,N1
and (ψi)i=0,··· ,N2

are orthonormal bases of L2(PX) and L2(PY ), respec-

tively, satisfying

∀i = 0, · · · ,N, T (ϕi(X)) = ρ2
i ϕi(X) and ψi(Y) = ρ−1

i E
Y (ϕi(X)).

The sequence of canonical coefficients is non increasing and unique and, when T is a compact operator, one has

limi→+∞ ρi = 0. In this paper, we suppose that T is compact and that the aforementioned sequence is strictly

decreasing, that is: ρi > ρi+1 for any i ≥ 1. These hypotheses are satisfied when (X,Y) has a bivariate normal

distribution (see Dauxois & Pousse, 1975) but also for other families of bivariate distributions (see Buja, 1990).

When (X,Y) has the bivariate standard normal distribution with correlation ρ, then (see, e.g., Dauxois & Pousse,

1975) the NLCA of X and Y is given by

ρi = ρ
i, ϕi = ψi =

Hi√
i!
, (2.1)

where Hi are the Hermite polynomials.

2.2 Estimation of Nonlinear Canonical Analysis

Let {(Xi,Yi)}1≤i≤n be an i.i.d. sample of size n, where each pair (Xi,Yi) has the same distribution as (X,Y). The

aim of this section is to remind the principle of estimation by wavelets of NLCA. Let {V (1)
j } j∈Z and {V (2)

j } j∈Z be

two multiresolution analysis(see, e.g., Meyer (1990) for a definition) with fathers wavelets respective φ1 and φ2.

Given a nondecreasing sequence ( jn)n∈N in Z such that lim
n→+∞

jn = +∞, we consider the estimator f̂n of f defined

(in Vidakovic (1999) for example) by

f̂n (x, y) =
1

n

n∑
i=1

K( jn)[(Xi,Yi) ; (x, y)], (2.2)

where,

K( j)[(x1, x2) ; (t1, t2)] = K1· j (x1, t1) K2· j (x2, t2) ,

with, for all (�, j) ∈ {1, 2} × Z and all (x, y) ∈ R2

K�· j (x, y) = 2 jK�
(
2 j x, 2 jy

)
and K� (x, y) =

∑
k∈Z
φ� (x − k) φ� (y − k) .
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We consider the estimation by wavelets of NLCA defined in Niang et al. (2012) by the family
(
ρ̂(n)

i , ϕ̂
(n)
i , ψ̂

(n)
i

)
i≥1

such that, putting

〈ϕ, ψ〉n :=

∫
R2

ϕ (x)ψ (y) f̂n (x, y) dxdy,

f̂n,X (x) :=

∫
R

f̂n (x, y) dy, f̂n,Y (y) :=

∫
R

f̂n (x, y) dx,

and

〈ϕ, ψ〉n,X :=

∫
R

ϕ (x)ψ (x) f̂n,X (x) dx, 〈ϕ, ψ〉n,Y :=

∫
R

ϕ (y)ψ (y) f̂n,Y (y) dy,

one has 〈ϕ̂(n)
i , ψ̂

(n)
i 〉n = max

(ϕ,ψ)∈Ŵ (i)
n,X×Ŵ (i)

n,Y

〈ϕ, ψ〉n = ρ̂(n)
i , with

Ŵ (1)
n,X = {ϕ/〈ϕ, ϕ〉n,X = 1}, Ŵ (1)

n,Y = {ψ/〈ψ, ψ〉n,Y = 1}

and for i ≥ 2:

Ŵ (i)
n,X = {ϕ ∈ Ŵ (1)

n,X/〈ϕ, ϕ̂
(n)
1
〉n,X = · · · = 〈ϕ, ϕ̂(n)

i−1
〉n,X = 0}, (1)

Ŵ (i)
n,Y = {ψ ∈ Ŵ (1)

n,Y/〈ψ, ψ̂
(n)
1
〉n,Y = · · · = 〈ψ, ψ̂(n)

i−1
〉n,Y = 0}. (2)

Remark 1 For practical computation of the above introduced estimators, see Niang et al. (2012). Under some

conditions, asymptotic properties for these estimators are established by Niang et al. (2012). Let us word in the

following lemma the result that allows to obtain a limiting distribution for ρ̂(n)
i . Note that we consider, without loss

of generality, the squared canonical coefficients λi = ρ
2
i and their estimators λ̂(n)

i =
(
ρ̂(n)

i

)2
.

Lemma 1 For all i ≥ 1, we have the convergence in distribution, as n→ +∞, of the random variable
√

n
(
λ̂(n)

i − λi

)
to a random variable with normal distribution N(0, σ2

i ), where

σ2
i = Var (2λiϕi (X)ψi (Y)) .

We can find the proof of Lemma 1 in Niang et al. (2012). This lemma will be useful for establishing the asymptotic

normality for our proposal test statistic.

3. Constructing the Test Statistic

When (X,Y) have a standard normal distribution with correlation ρ and a null expectation, then

∞∑
i=1

λi =

∞∑
i=1

ρ2i =
ρ2

1 − ρ2
.

Thus, for all m ∈ N
∗, putting Φ(m) =

∑m
i=1 λi, one can test the fact that (X,Y) follows the normal distribution

described above considering the null hypothesis test

H0 : “Φ(m) = ρ2 1 − ρ2m+2

1 − ρ2
”

versus the alternative hypothesis

H1 : “Φ(m) � ρ2 1 − ρ2m+2

1 − ρ2
”.

In order to do that, wa can take as test statistic the random variable Φ̂
(m)
n =

∑m
i=1 λ̂

(n)
i , where λ̂(n)

i are the wavelets

estimators of λi = ρ
2i (see section 2.2). We are now going to describe the asymptotic properties of Φ̂

(m)
n .

4. Limiting Distribution of the Test Statistic

UnderH0, the limiting distribution of the previously defined test statistic, is given in the following theorem.
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Theorem 1 Under hypothesis H0, the random variable
√

n
(
Φ̂

(m)
n − Φ(m)

)
converges in distribution, as n → +∞,

to a random variable with normal distribution N(0, σ(m)2), where σ(m)2 = Var(gm(X,Y)), with gm(x, y) =∑m
i=1

2ρi

i! Hi (x) Hi (y).

Proof. This result is a consequence of Lemma 1. In fact, we have

√
n
(
Φ̂(m)

n − Φ(m)
)
=

m∑
i=1

√
n(λ̂(n)

i − λi).

But (see Lemma 1),
√

n(λ̂(n)
i − λi) =

√
n
∫
R2

gi(x, y)( f̂n(x, y) − f (x, y)) dx dy + Rn,i,

with gi(x, y) = 2λ
1
2

i ϕi(x)ψi(y) and Rn,i = op(1), for i = 1, · · · ,m so,

√
n
(
Φ̂(m)

n − Φ(m)
)
=
√

n
∫
R2

m∑
i=1

gi(x, y)( f̂n(x, y) − f (x, y)) dx dy +
m∑

i=1

Rn,i,

√
n
(
Φ̂(m)

n − Φ(m)
)
=
√

n
∫
R2

gm(x, y)( f̂n(x, y) − f (x, y)) dx dy + R(m)
n ,

where gm(x, y) =
m∑

i=1
gi(x, y) and R(m)

n =
m∑

i=1
Rn,i. The relation (2.1) allows to write

gm(x, y) =

m∑
i=1

gi(x, y) =

m∑
i=1

2ρi

i!
Hi (x) Hi (y) .

Since, for i = 1, · · · ,m, Rn,i = op(1) so R(m)
n = op(1), as n → +∞. It comes from Niang et al. (2012) that the

random variable
√

n
∫
R2

gm(x, y)( f̂n(x, y) − f (x, y))dxdy

converges in distribution, as n → +∞, to a random variable with normal distribution N(0, σ(m)2), where σ(m)2 =

Var(gm(X,Y)), this yields the proof. �
5. Simulations

In this section, we illustrate the previous procedure for testing bivariate normality by applying it to various data

sets. In order to assess performance on finite samples, the procedure is applied to simulated data from bivariate

random variables (X,Y) with known distributions. The objective is to estimate the powers of some tests of our

class and to compare these powers to those of the below three affine invariant tests for bivariate normality.

5.1 Mardia’s Multivariate Kurtosis and Skewness Test

Mardia (1980) proposed a test of multivariate normality based on skewness and kurtosis. The multivariate skewness

test proposed by Mardia (MARD) is based on the sample skewness statistic defined

m1,d =
1

n2

n∑
i=1

n∑
j=1

((
Xi − X̄

)t
Σ̂−1
(
Xj − X̄

))3
, (3)

where Σ̂ = n−1∑n
j=1

(
Xj − X̄

) (
Xj − X̄

)t
denotes the maximum likelihood estimator of population covariance and At

is the transpose of A. Normality is rejected for large values of m1,d.

5.2 Test of Malkovich and Afifi

The test of normality proposed by Malkovich and Afifi (1973) is a generalization of an univariate Shapiro-Wilk’s

test. For comparison, we also put the power of Malkovich and Afifi’s (MA) generalized Shapiro-Wilk’s W statistic.

The Shapiro-Wilk’s W statistic for testing univariate normality is

W(Z1, · · · , Zn) =
[
∑

a j(Z( j) − Z̄)]2∑
(Z( j) − Z̄)2

(4)
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where Z( j)’s are the univariate order statistics of Z1, · · · ,Zn, Z̄ = n−1∑Zj, and a j’s are the coefficients tabulated in

Shapiro and Wilk (1965). The test of Malkovich and Afifi accepts the hypothesis of multivariate normality if

min
c

W(ctX1, · · · , ctXn) ≥ Kω,

where kω is a constant.

5.3 Test of Székely and Rizzo

Recently Székely and Rizzo (2005) (SR) proposed a test of multivariate normality based on Euclidean distance

between sample elements. Let X1, · · · , Xn is a random sample from a d-variate population with distribution F, and

x1, · · · , xn are the observed values of the random sample. The statistic test proposed by Székely and Rizzo for

testing H0: F = F0 vs. H1: F � F0 is

En,d = n

⎛⎜⎜⎜⎜⎜⎜⎝2n
n∑

j=1

E‖x j − X‖ − E‖X − X′‖ −
1

n2

n∑
j=1

n∑
k=1

‖x j − xk‖

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where X and X′ are independent and identically distributed with the distribution F0. If the hypothesized distribution

is d-variate normal with mean vector μ and nonsingular covariance matrix Σ, denoted Nd (μ,Σ), consider the

transformed sample y j = Σ
−1
2

(
x j − μ

)
, j = 1, · · · , n. The test statistic for d-variate normality is

En,d = n

⎛⎜⎜⎜⎜⎜⎜⎝2n
n∑

j=1

E‖y j − Z‖ − E‖Z − Z′‖ −
1

n2

n∑
j=1

n∑
k=1

‖y j − yk‖

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where Z and Z′ denote iid Nd (0, I) random variables, and I is the d × d identity matrix. A test of the simple

hypothesis d-variate normality, d ≥ 1, rejects the null hypothesis for large values of En,d.

In the following section, we consider the above three test statistics in the bivariate case.

5.4 Simulation Results

A Monte Carlo experiment was performed to study the power of the test based on Φ̂
(m)
n . The critical values are

given in Table 1 and Table 2 for sample sizes n = 20, 30, 50, 100, the usual significance levels α = 0.01, 0.05 and

0.10 and for correlation ρ = 0.5, ρ = 0.8. Each empirical percentage is based on 1000 realizations of Φ̂
(m)
n .

Table 1. Simulated critical values tα of statistic Φ̂
(m)
n : PH0

(|Φ̂(m)
n − Φ(m)| ≥ tα) = α for ρ = 0.5

n α=0.10 α=0.05 α=0.01

20 0.634 0.733 0.859

30 0.532 0.590 0.784

50 0.419 0.543 0.668

100 0.321 0.356 0.532

Table 2. Simulated critical values tα of statistic Φ̂
(m)
n : PH0

(|Φ̂(m)
n − Φ(m)| ≥ tα) = α for ρ = 0.8

n α=0.10 α=0.05 α=0.01

20 2.947 3.059 3.929

30 2.054 3.293 3.200

50 2.984 2.068 2.928

100 2.001 3.427 3.379

Our Monte Carlo Power study for bivariate normality compared Φ̂
(m)
n with the three bivariate tests described above

for n = 25, 50, 100, at significance level α = 0.05. A thousand Monte Carlo samples were generated from each

of various alternative bivariate distributions. The following notations are used. N(0, 1), U(0, 1), exp(1) denote

the standard normal, uniform and exponential distributions; χ2
k is the Chi-square distribution with k degrees of

freedom; Γ(a, b) is the Gamma distribution with density b−aΓ(a)−1xa−1exp(−x
b ), x > 0; B(a, b) stands for the beta
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distribution with density 1
B(a,b)

xa−1(1 − x)b−1, 0 < x < 1. The product of two independent copies of F1 is denoted

by F2
1. NMIX2(a, δ, ρ1, ρ2) is the bivariate normal mixture:

aBVN(0, 0, 1, 1, ρ1) + (1 − a)BVN(δ, δ, 1, 1, ρ2).

Table 3. Percentage of reject of bivariate normality hypothesis by the test based on Φ̂
(m)
n , MA, MARD and S R, with

α = 0.05, based on sample size n and 1000 replications

Alternative n Φ̂
(m)
n MA MARD SR

N(0, 1)2 25 7 10 1 6

U(0, 1)2 25 100 05 12 14

Γ(5, 1)2 25 91 44 14 23

(χ2
5
)2 25 77 57 39 61

B(1, 1)2 25 100 4 16 33

B(1, 2)2 25 100 22 07 45

exp(1)2 25 79 66 90 98

N(0, 1)2 50 5 9 8 6

U(0, 1)2 50 100 11 57 81

Γ(5, 1)2 50 91 65 60 61

(χ2
5
)2 50 90 81 88 88

B(1, 1)2 50 100 8 83 89

B(1, 2)2 50 100 45 30 81

exp(1)2 50 85 78 93 100

N(0, 1)2 100 05 6 6 5

U(0, 1)2 100 100 35 94 97

Γ(5, 1)2 100 95 90 83 91

(χ2
5
)2 100 100 100 97 100

B(1, 1)2 100 100 10 100 100

B(1, 2)2 100 100 54 92 98

exp(1)2 100 98 94 100 100

NMIX2(0.5, 2, 0, 0) 25 91 13 1 4

NMIX2(0.5, 4, 0, 0) 25 100 18 4 5

NMIX2(0.79, 3, 0, 0) 25 16 13 1 35

NMIX2(0.5, 3, 0, 0) 25 100 10 2 34

NMIX2(0.5, 0.5, 0.9,−0.9) 25 1 16 3 8

NMIX2(0.5, 2, 0, 0) 50 79 15 5 3

NMIX2(0.5, 4, 0, 0) 50 100 11 4 4

NMIX2(0.79, 3, 0, 0) 50 42 11 4 50

NMIX2(0.5, 3, 0, 0) 50 100 17 4 55

NMIX2(0.5, 0.5, 0.9,−0.9) 50 1 11 4 3

NMIX2(0.5, 2, 0, 0) 100 67 14 5 1

NMIX2(0.5, 4, 0, 0) 100 100 4 4 1

NMIX2(0.79, 3, 0, 0) 100 61 6 3 73

NMIX2(0.5, 3, 0, 0) 100 100 27 11 44

NMIX2(0.5, 0.5, 0.9,−0.9) 100 1 9 7 5

According to Table 3 we immediately note that MA, MARD and SR are generally inferior to the Φ̂
(m)
n statistic,

specially against alternatives with shorter tailed marginal like B(1, 1)2, B(1, 2)2. However SR is superior to Φ̂
(m)
n

against alternatives exp(1)2. The conclusion that can be drawn from the power study in Table 3 is that the Φ̂
(m)
n test

is more powerful than MARD’s, MA’s and SR’s tests. The test statistic SR is very sensitive against exponential

alternatives.
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