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Abstract

A Modified Quick Convergent Inflow Algorithm (MQCIA) for Solving Linear Programming problems, based on
variance of predicted response, is presented. The method adds a point of maximum variance to an initial design
thus leading to a maximizer of the response function in a maximization problem. Similarly, a point of minimum
variance is added to an initial design thus leading to a minimizer of the response function in a minimization
problem. Effectiveness of the method has been demonstrated and the results show that by improving an existing
experimental design, the optimizer of the response function is approached. Analytical justification for the MQCIA
has also been established.
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1. Introduction

Line search algorithms have been effectively used in solving Linear Programming (LP) problems. One of such
algorithms is the Quick Convergent Inflow Algorithm (QCIA) of Odiakosa and Iwundu (2013). The algorithm
relies on adding the point reached by the line equation, at each iteration, to an existing design. The addition
of such point(s) guarantees convergence of the algorithm to the required optimizer of the response or objective
function. The algorithm compares favourably well with other line search algorithms that utilize the principles of
experimental design such as the Maximum Norm Exchange Algorithm of Umoren (1999), the Quadratic Exchange
Algorithm of Umoren (2002) and the Modified Super Convergent Line Series Algorithm of Etukudo and Umoren
(2008). Iwundu and Hezekiah (2014) applied the QCIA to solving constrained linear programming problems on
segmented regions. However, problem arises when the point reached by the line equation does not satisfy the linear
inequality constraints and hence cannot be used as an admissible point of the experimental design. We propose in
this work that the addition of a point of maximum variance to an initial design will lead to the maximizer of the
response function in a maximization problem. Similarly, the addition of a point of minimum variance to an initial
design will lead to a minimizer of the response function in a minimization problem.

The motivation for the modified Quick Convergent Inflow algorithm stems from the fact that since Linear Pro-
gramming (LP) problems can be solved sequentially using experimental design principles, then by improving an
existing design the optimizer of the LP problem can be approached.

Many techniques exist for constructing a better design from an existing design. They include augmentation tech-
nique and variance exchange technique both of which could rely on variance of predicted response, Atkinson and
Donev (1992), Fedorov (1971). It has been established in Atkinson and Donev (1992, p. 117) that relationship often
exists between the experimental design and the variance of predicted response in optimal design construction. By
sequentially adding a trial at the point where the variance of prediction is a maximum, to an existing design, leads
to the construction of a near-optimum design. This was the idea behind the construction of D-optimum continuous
design of Wynn (1970) on an irregular geometric area and is also a fundamental principle in the construction of
D-optimal designs using variance exchange algorithms.

The fundamental idea used in this work is as in Odiakosa and Iwundu (2013) but the modification is that instead
of adding the point reached by the line equation, at each iteration, to an existing design, we add to an existing
design a point in the design region having a maximum (or minimum) variance of prediction in a maximization (or
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minimization) problem. At each iteration, the determinant value of information matrix of the associated design
and the value of the objective function of the optimizer are observed. The sequence terminates when no further
improvement is observed. Hence for given LP problem of the standard form, we seek to obtain an optimizer of the
linear objective function using the modification provided in this work.

2. Method

The method used in this work is similar to that of Odiakosa and Iwundu (2013) but draws its strength from the fact
that an initial or existing design can be improved by adding to it a point in the design region having maximum (or
minimum) varince of prediction in a maximization (or minimization) problem.

2.1 Algorithm

For given Linear Programming problem of the form:

minimize (maximize) f (x1, · · · , xn) = c′x =
∑n

i=1 cixi

subject to Ax ≤ b; x ≥ 0

 (1)

where x is the vector of variables sought for, A is a matrix of known coefficients, c and b are vectors of known
coefficients, the sequential steps that make up the Modified Quick Convergent Inflow Algorithm are;

(i) Obtain Ñ grid of points x(1), x(2), · · · x(Ñ) from the feasible region to make up the candidate set S = {x(1), x(2),
· · · x(Ñ)} from which design points will be selected into the design measure. The feasible region comprising of
a continuum of points is discretized into Ñ grid of points following the recommendation of Hebble and Mitchell
(1972).

(ii) From the Ñ grid of points, select an N-point (N ≤ Ñ), n-variate non-singular initial design, ξN .

Without loss of generality we write

ξN =


x(1)

x(2)

...
x(N)

 , XN =


x11 . . . x1n

x12 . . . x2n
...

xN1 . . . xNn


XN is the design matrix associated with the N-point design and the corresponding information matrix is MN =

X′N XN .

(iii) Obtain the starting point of search as the average of the initial design points

xN =

(∑
xi1

N
,

∑
xi2

N
, . . .

∑
xin

N

)
≡ (x1N , x2N , . . . xnN)

Since the region of search is convex, the starting point of search is a feasible point of the problem and consequently
satisfies the constraints in (1).

(iv) Obtain the direction vector, d. The direction of search is ∇ f which is c ≡ g, the function being linear in the
variables.

Here g =


c1
c2
...

cn

 is the vector of coefficients of the objective function.

The normalized direction vector, d∗k , at the kth iteration is such that d∗
′

k d∗k = 1. Here k = 0.

(v) Evaluate the step-length of search. The step-length is taken as ρ(0) where

ρ(0) = min


∣∣∣∣∣∣
∑n

j=1 ai jx jN − bi

ui

∣∣∣∣∣∣ ; |ui | , 0

 ; i = 1, 2, . . .m; ui =

n∑
j=1

ai j d j; d j =
ci

∥c∥

(vi) Make a move to the next point of search
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x(1)
= xN - ρ(0)c′ for minimization problem

and

x(1)
= xN + ρ

(0)c′ for maximization problem.

The objective function has the value f (x(1)) at this point.

(vii) At each grid point in the candidate set S = {x(1), x(2), · · · , x(Ñ)} evaluate the variance of predicted response,

namely, v(N)
j = x( j) M−1

N

(
x( j)

)T
; j = 1, 2, . . . , Ñ.

At this point we add x(N+1) additional design point to ξN and thus form the design measure

ξN+1 =



x(1)

x(2)

...
x(N)

x(N+1)


and compute xN+1 = [

∑
xi1

N+1 ,
∑

xi2
N+1 , . . .

∑
xin

N+1 ] ≡ (
x1,N+1, x2,N+1, . . . xn,N+1

)
.

In a minimization problem x(N+1) is such that

x(N+1)M−1
N

(
x(N+1)

)T
= min{x( j)M−1

N

(
x( j)

)T }; j = 1, 2, . . . Ñ.

Similarly, in a maximization problem x(N+1) is such that

x(N+1)M−1
N

(
x(N+1)

)T
= max{x( j)M−1

N

(
x( j)

)T }; j = 1, 2, . . . Ñ.

(viii) At the (k+1)st iteration, make a move to the next point of search

x(k+1)
= xN+k - ρ(k)c′ for minimization problem

and

x(k+1)
= xN+k + ρ

(k)c′ for maximization problem.

The objective function has the value f ( x(k+1)) at this point.

(ix) Stop at (k+1)st iteration if

f(x(k+1)) > f(x(k)) in minimization problem

or if

f(x(k+1)) < f(x(k)) in maximization problem.

(x) The required optimizer is x(k)
= x∗g.

2.2 Stopping Rule

The algorithm stops if the sequence converges as proposed by Odiakosa and Iwundu (2013) or when an addition
of a point to an existing design does not improve the design as measured by the value of the objective function
of the optimizer at the current iteration. However, if there is no justification to terminate the search at the current
iteration, the process continues.

2.3 Notation

For the purpose of comparing numerical illustrations of the MQCIA with the QCIA of Odiakosa and Iwundu
(2012), the notations used in the QCIA shall be employed in section 3 as;

ξK
N = N-point design at the kth iteration;

Mk =M(ξK
N ) = Information matrix associated with ξK

N ;

x∗k = Starting point of search at the kth iteration;

d0 = Direction vector;
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d∗0 = Normalized direction vector;

ρk j = Step-length evaluated at the kth iteration using the jth constraint;

ρ∗0 = Optimal step-length;

x∗k = The point located at the kth iteration;

vi = The ith predictive variance.

3. Results

We consider the problem of maximizing Z = 5x1 + 4x2 subject to

6x1 + 4x2 = 24

x1 + 2x2 = 6

−x1 + x2 = 1

x2 = 2

x1, x2 ≥ 0.

Following the sequential steps of the algorithm we obtain the candidate set as

S = {(0,0), (1,1), (1,2), (0,1), (2,2), (4,0), (3.2,1), (3,1.5), (1,0), (2,0), (2,1), (3,0), (3,1)}

With a 2-point initial design ξ02 =
(
(1, 2)
(3, 0)

)
; det M(ξ02) = 9.0000, the starting point is x∗0 =

(
2
1

)
.

Using the model and the initial design, the design matrix is X0 =

(
1 2
3 0

)
and the information matrix is M0 =(

10 2
2 4

)
.

The vector of coefficient of the objective function is g =
(
5
4

)
.

The direction vector is d0 =

(
5
4

)
.

The normalized direction vector is d∗0 =
(
0.7808688094
0.6246950476

)
.

The computation of the step-length is as follows;

Using the first constraint,

ρ01 =

(
6 4

) (
2
1

)
− 24

(
6 4

) (0.7808688094
0.6246950476

) = −1.113586824

Using the second constraint,

ρ02 =

(
1 2

) (2
1

)
− 6

(
1 2

) (0.7808688094
0.6246950476

) = −0.9850960363

Using the third constraint,

ρ03 =

(
−1 1

) (2
1

)
− 1

(
−1 1

) (0.7808688094
0.6246950476

) = 12.80624848
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Using the fourth constraint,

ρ04 =

(
0 1

) (2
1

)
− 2

(
0 1

) (0.7808688094
0.6246950476

) = −1.600781059

The optimal step-length is ρ∗0 = 0.9850960363

With x∗0, d∗0 and ρ∗0 a move is made to x∗1 = x∗0 + ρ
∗
0 d∗0 =

(
2.769230769
1.615384615

)
�

(
2.7692
1.6154

)
.

The variance of predicted response at the point x∗1 is 2.1598 and the value of the objective function at x∗1 is 20.3076.

We observe that x∗1 satisfies the constraints.

The variances of predicted response at the Ñ grid points

S = {(0,0), (1,1), (1,2), (0,1), (2,2), (4,0), (3.2,1), (3,1.5), (1,0), (2,0), (2,1), (3,0), (3,1)}
are respectively;

v1 = 0.0000

v2 = 0.5555

v3 = 2.0000

v4 = 0.5555

v5 = 2.2222

v6 = 3.5555

v7 = 2.1200

v8 = 2.2500

v9 = 0.2222

v10 = 0.8888

v11 = 1.0000

v12 = 2.0000

v13 = 1.8888.

We add to the initial design, the point in S having maximun variance of predicted response and hence form a new
design

ξ13 =

1 2
3 0
4 0


detM(ξ13) = 11.1111.

The starting point of search at this iteration is

x∗1 =
(
2.6667
0.6667

)
.

Using the model and the new design, the design matrix is X1 =

1 2
3 0
4 0

 and the information matrix is M1 =

(
26 2
2 4

)
.

The vector of coefficients of the objective function is g =
(
5
4

)
.

The direction vector is d1 =

(
5
4

)
.
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The normalized direction vector is d∗1 =
(
0.7809
0.6247

)
.

The computation of the step-length is as follows;

Using the first constraint,

ρ11 =

(
6 4

) (2.6667
0.6667

)
− 24

(
6 4

) (0.7808688094
0.6246950476

) = −0.7423448165

Using the second constraint,

ρ12 =

(
1 2

) (2.6667
0.6667

)
− 6

(
1 2

) (0.7808688094
0.6246950476

) = −0.9850467815

Using the third constraint,

ρ13 =

(
−1 1

) (2.6667
0.6667

)
− 1

(
−1 1

) (0.7808688094
0.6246950476

) = 19.20937272

Using the fourth constraint,

ρ14 =

(
0 1

) (2.6667
0.6667

)
− 2

(
0 1

) (0.7808688094
0.6246950476

) = −2.134321386

The optimal step-length is ρ∗1 = 0.7423448165.

With x∗1, d∗1 and ρ∗1 a move is made to x∗2 = x∗1 + ρ
∗
1 d∗1 �

(
3.2464
1.1304

)
.

The variance of predicted response at the point x∗2 is 1.8210 and the value of the objective function at x∗2 is 20.7536.

We again observe that x∗2 satisfies the constraints.

The variances of predicted response at the Ñ grid points

S = {(0,0), (1,1), (1,2), (0,1), (2,2), (4,0), (3.2,1), (3,1.5), (1,0), (2,0), (2,1), (3,0), (3,1)}
are respectively;

v1 = 0.0000

v2 = 0.7800

v3 = 3.0000

v4 = 0.7800

v5 = 3.1200

v6 = 1.9200

v7 = 1.6248

v8 = 2.2950

v9 = 0.1200

v10 = 0.4800

v11 = 1.0200

v12 = 1.0800
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v13 = 1.5000.

In a similar way, we form a new design

ξ14 =


1 2
3 0
4 0
2 2


detM(ξ13) = 12.75.

The starting point of search at this iteration is x∗2 =
(
2.5000
1.0000

)
.

Using the model and the new design, the design matrix is X2 =


1 2
3 0
4 0
2 2

 and the information matrix is M2 =

(
30 6
6 8

)
.

The vector of coefficient of the objective function is g =
(
5
4

)
.

The direction vector is d2 =

(
5
4

)
.

The normalized direction vector is d∗2 =
(
0.7808688094
0.6246950476

)
.

The computation of the step-length is as follows;

Using the first constraint,

ρ21 =

(
6 4

) (2.5000
1.0000

)
− 24

(
6 4

) (0.7808688094
0.6246950476

) = −0.6959917649

Using the second constraint,

ρ22 =

(
1 2

) (2.5000
1.0000

)
− 6

(
1 2

) (0.7808688094
0.6246950476

) = −0.7388220272

Using the third constraint,

ρ23 =

(
−1 1

) (2.5000
1.0000

)
− 1

(
−1 1

) (0.7808688094
0.6246950476

) = 16.0078106

Using the fourth constraint,

ρ24 =

(
0 1

) (2.5000
1.0000

)
− 2

(
0 1

) (0.7808688094
0.6246950476

) = −1.600781059

The optimal step-length is ρ∗2 = 0.6959917649.

With x∗2, d∗2 and ρ∗2 a move is made to x∗3 = x∗2 + ρ
∗
2 d∗2 =

(
3.043478261
1.434782609

)
�

(
3.0435
1.4348

)
. The variance of predicted

response at the point x∗3 is 1.6365 and the value of the objective function at x∗3 is 20.9567.

We again observe that x∗3 satisfies the constraints.

The variances of predicted response at the Ñ grid points
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S = {(0,0), (1,1), (1,2), (0,1), (2,2), (4,0), (3.2,1), (3,1.5), (1,0), (2,0), (2,1), (3,0), (3,1)}
are respectively;

v1 = 0.0000

v2 = 0.5098

v3 = 2.0392

v4 = 0.5882

v5 = 2.0392

v6 = 2.5098

v7 = 1.4415

v8 = 1.6764

v9 = 0.1568

v10 = 0.6274

v11 = 0.7450

v12 = 1.4117

v13 = 1.2941.

Again, we form a new design

ξ15 =


1 2
3 0
4 0
2 2
4 0


detM(ξ15) = 13.28.

The starting point of search at this iteration is x∗3 =
(
2.8000
0.8000

)
.

Using the model and the new design, the design matrix is X3 =


1 2
3 0
4 0
2 2
4 0

 and the information matrix is M3 =

(
46 6
6 8

)
.

The vector of coefficient of the objective function is g =
(
5
4

)
.

The direction vector is d3 =

(
5
3

)
.

The normalized direction vector is d∗3 =
(
0.7808688094
0.6246950476

)
.

The computation of the step-length is as follows;

Using the first constraint,

ρ31 =

(
6 4

) (2.8000
0.8000

)
− 24

(
6 4

) (0.7808688094
0.6246950476

) = −0.5567934119
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Using the second constraint,

ρ32 =

(
1 2

) (2.8000
0.8000

)
− 6

(
1 2

) (0.7808688094
0.6246950476

) = −0.788076829

Using the third constraint,

ρ33 =

(
−1 1

) (2.8000
0.8000

)
− 1

(
−1 1

) (0.7808688094
0.6246950476

) = 19.20937272

Using the fourth constraint,

ρ34 =

(
0 1

) (2.8000
0.8000

)
− 2

(
0 1

) (0.7808688094
0.6246950476

) = −1.920937271

The optimal step-length is ρ∗3 = 0.5567934119

With x∗3, d∗3 and ρ∗3 a move is made to x∗4 = x∗3 + ρ
∗
3 d∗3 =

(
3.2348
1.1478

)
.

The variance of predicted response at the point x∗4 is 1.5024 and the value of the objective function at x∗4 is 20.7652.
This value is less then the 20.9567, the value of the objective function obtained at the previous iteration, thus

indicating that the search has moved away from the region of optimality. Hence, the optimizer is x∗g =
(
3.0435
1.4348

)
and the optimal value of objective function is 20.9567.

Table 1 gives the summary statistics of the maximization problem using the Modified Quick Convergent Inflow
Algorithm.

Table 1. Summary statistics of the iterative steps

Iterative
step k

Design
size N

Determinant of
information ma-
trix Det{M(ξkN)}

Optimizer x∗k Prediction vari-
ance of the opti-
mizer d(x∗k; ξkN)

Value of objective
function of the
optimizer f( x∗k)

0 2 9.0000
(

2.7692
1.6154

)
2.1598 20.3076

1 3 11.1111
(

3.2464
1.1304

)
1.8210 20.7536

2 4 12.7500
(

3.0435
1.4348

)
1.6365 20.9567

3 5 13.2800
(

3.2348
1.1478

)
1.5024 20.7652
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4. Discussion

The maximizer of the objective function for the maximization problem considered in section 3 has been reported
in Taha (2011) as x1 = 3.0000 and x2 = 1.5000. The corresponding value of objective function is 21.0000. The
Modified Quick Convergent Inflow Algorithm locates x1 = 3.0435 and x2 = 1.4348 as the maximizer of the
objective function with 20.9565 as the value of objective function. The norm of the difference between the exact

vector of optimizer
(
3.0000
1.5000

)
and the approximate vector of optimizer

(
3.0435
1.4348

)
is 0.07837914263. The relative

error of the difference is 0.02336814546 which is approximately 2.34%. These results indicate that the approximate
solution obtained using the Modified Quick Convergent Inflow Algorithm is close to the exact value. The same
algorithm can be used for minimization problems. For example, the algorithm when applied to the minimization
of the objective function f (x1, x2) = −x1 + x2 subject to {−x1 + 3x2 ≤ 10; x1 + x2 ≤ 6; x1 − x2 ≤ 2; x1, x2 ≥ 0}
located x∗g =

(
1.9999634
−0.0000266

)
as the minimizer of the objective function, when the search commenced with an initial

design ξ2 =
(
2 4
2 0

)
. Obviously, the value -0.0000266 is due to round up error and can be taken as zero. Hence

the optimizer is approximately x∗g =
(
1.9999634
0.0000000

)
and the associted value of the objective function is f(x∗g) = -

2.0000166. This solution is very close to the exact solution namely, x1 = 2.0 and x2 = 0 with the value of objective

function as -2.0. The norm of the difference between the exact vector of optimizer
(
2.0
0

)
and the approximate vector

of optimizer
(
1.9999634
0.0000000

)
is 3.66 ×10−5 and the relative error is 1.83 ×10−5 which is approximately 0.00183%.

Without loss of generality, the Modified Quick Convergent Inflow Algorithm offers approximate solutions to max-
imization as well as minimization problems in Linear Programming. In a maximization problem the function
increases monotonically until it reaches the optimum value after which it changes direction. Similarly, in a mini-
mization problem the function decreases monotonically until it reaches the optimum value after which it changes
direction.

4.1 Analytical Justification for Modified Quick Convergent Inflow Algorithm (MQCIA)

In this section we present the problem and design considered, the reason for choosing added design points and the
convergence of the Modified Quick Convergent Inflow Algorithm.

4.1.1 Problem and Design

Consider the problem

Optimize f(x1, · · · xn) = c′x =
∑n

i=1 cixi

subject to Ax ≤ b; x ≥ 0.

Let S = {x(1), x(2), · · · x(Ñ)} be grid points in the feasible region of the problem and let

ξN =


x(1)

...
x(N)


be an N-point design measure. Then

XN =


x(1)

...
x(N)


is an (Nxn) design matrix obtained using ξN and the objective function and whose row, x(i); i = 1, 2, . . .N is a
(1xn) vector of support points spanned by the model parameters. The matrix Mn = X′N XN is called the information
matrix.

At the initial iteration, the predictive variance is defined by

v(N)
j = x( j)M−1

N

(
x( j)

)T
; j = 1, 2, . . . N
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The notation (.)T represents transpose.

4.1.2 Reason for Choosing Added Design Points

Now xN =
(∑

xi1
N ,

∑
xi2

N , . . .
∑

xin
N

)
; i = 1, 2, . . .N, the average of the design points, is also a feasible point of the

problem since the feasible set is convex. By increasing the design points at the next iteration by one, adding say
x(N+1), we have the design measure

ξN+1 =


x(1)

...
x(N+1)

 .
The predictive variance of the jth design point in the expanded design measure is defined by

v(N+1)
j = x( j)M−1

N+1

(
x( j)

)T
; j = 1, 2, . . . , N + 1

where the corresponding information matrix MN+1 is given by

MN+1 =

(
XN

x(N+1)

)T (
XN

x(N+1)

)
= XT

N XN +
(
x(N+1)

)T (
x(N+1)

)
= Mn +

(
x(N+1)

)T (
x(N+1)

)
M−1

N+1 = M−1
N − M−1

N

(
x(N+1)

)T
(
I + x(N+1)M−1

N

(
x(N+1)

)T
)−1

x(N+1)M−1
N

= M−1
N −

M−1
N (x(N+1))T x(N+1) M−1

N

I+x(N+1) M−1
N (x(N+1))T

∴ v(N+1)
j = x( j)M−1

N+1

(
x( j)

)T
= x( j)M−1

N

(
x( j)

)T − x( j) M−1
N (x(N+1))T x(N+1) M−1

N (x( j))T

I+x(N+1) M−1
N (x(N+1))T

= x( j)M−1
N

(
x( j)

)T −
{
x( j) M−1

N (x(N+1))T }2

I+x(N+1) M−1
N (x(N+1))T ; j = 1, 2, · · ·N + 1

If j = N + 1, then

v(N+1)
N+1 =

x(N+1) M−1
N

(
x(N+1)

)T

1 + x(N+1)M−1
N

(
x(N+1)

)T

In general v(N+1)
j ≤ x( j) M−1

N

(
x( j)

)T
for all j = 1, 2, · · · , N+1.

Using Cauchy Schwarz inequality we see that{
x( j) M−1

N

(
x(N+1)

)T
}2
≤

{
x( j) M−1

N

(
x( j)

)T
} {

x(N+1)M−1
N

(
x(N+1)

)T
}
.

Consequently,

v(N+1)
j ≥ x( j) M−1

N

(
x( j)

)T −

{
x( j) M−1

N

(
x( j)

)T
} {

x(N+1)M−1
N

(
x(N+1)

)T
}

1 + x(N+1)M−1
N

(
x(N+1)

)T

i.e v(N+1)
j ≥ x( j) M−1

N (x( j))T

1+x(N+1) M−1
N (x(N+1))T for all j.

This minimum value is attained by adding x(N+1).

Remark

(1) We have seen that

x( j)M−1
N

(
x( j)

)T

1 + x(N+1)M−1
N

(
x(N+1)

)T ≤ v(N+1)
j ≤ x( j)M−1

N

(
x( j)

)T
for all j = 1, 2, · · ·N + 1.

The predictive variance v(N+1)
N+1 has this minimun value. That is, additional design point will have the smaller

predictive variance from the set of design points considered.
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(2) v(N+1)
j can be made as large (small) as possible by making x(N+1)M−1

N

(
x(N+1)

)T
as large (small) as possible.

Consequently for a maximization (minimization) problem we will choose the additional design point x(N+1) from
the set of Ñ design points that has maximum (minimum) predictive variance.

4.1.3 Convergence

We conclude this section by showing that the algorithm converges in the feasible region. To show that the algorithm
converges we observe that from

x(k+1)
= xN+k + d ρ(k), f

(
x(k+1)

)
> f

(
x(k)

)
implies

f
(
xN+k

)
+ ρ(k)d > f

(
xN+k−1

)
+ ρ(k−1)d

i.e.
f
(
xN+k

)
+ ρ(k) f (d) > f

(
xN+k−1

)
+ ρ(k−1) f (d)

which implies
f
(
xN+k

)
− f

(
xN+k−1

)
> f (d)

(
ρ(k−1) − ρ(k)

)
> 0

if ρ(k) is decreasing.

Similarly for minimization problem
f
(
x(k+1)

)
< f

(
x(k)

)
implies

f
(
xN+k

)
− ρ(k)d < f

(
xN+k−1

)
− ρ(k−1)d

i.e.
f
(
xN+k

)
− ρ(k) f (d) < f

(
xN+k−1

)
− ρ(k−1) f (d)

which implies
f
(
xN+k

)
− f

(
xN+k−1

)
< − f (d)

(
ρ(k−1) − ρ(k)

)
< 0

if ρ(k) is decreasing.

So the problem of convergence of the algorithm reduces to the proof that ρ(k) is a decreasing function in the feasible
region of the problem.

Theorem Let e(N)
i =

∑n
j=1 ai j x j,N − bi, 1 ≤i ≤ m. Then

∣∣∣e(N+1)
i

∣∣∣ ≤ ∣∣∣e(N)
i

∣∣∣ for all i = 1, 2, · · · m in the feasible region.

Proof. Let a(i) be the ith row of A. Since xN =
1
N

∑N
j=1 x( j) = 1

N 1′N XN .

We see that

e(N)
i =

n∑
j=1

ai jx j,N − bi =
1
N

a(i)X′N1N .

Here 1N is a column vector of all ones.

e(N+1)
i = 1

N+1 a(i)X′N+1 1N+1 − bi

= 1
N+1 a(i)X′N 1N +

1
N+1 a(i)x(N+1)′ − bi

= N
N+1

{
a(i)

N X′N 1N − bi

}
+ 1

N+1 a(i)x(N+1)′ −
(
1 − N

N+1

)
bi

= N
N+1

{
a(i)

N X′N 1N − bi

}
+ 1

N+1

(
a(i)x(N+1)′ − bi

)
= N

N+1 e(N)
i +

1
N+1

(
a(i)x(N+1)′ − bi

)
where

X′N+1 =
(
X′N x(N+1)′

)
Since xN+1 is in the feasible region, it satisfies a(i)x(N+1)′ ≤ bi, the constraints of the problem.

∴
∣∣∣e(N+1)

i

∣∣∣ ≤ N
N + 1

∣∣∣e(N)
i

∣∣∣ ≤ ∣∣∣e(N)
i

∣∣∣
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The following corollary is immediate. �
Corollary

ρ(k) = min
1≤i≤m

∣∣∣e (N+1)
i

∣∣∣∣∣∣a(i)d
∣∣∣ ;

∣∣∣a(i)d
∣∣∣ , 0

is a non-increasing function of k in the feasible region.
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