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Abstract

The coefficient of determinant, also known as the R2 statistic, is widely used as a measure of the proportion
of explained variation in the context of a linear regression model. In many real life events, interests may lie
on measuring the proportion of explained variation, ρ2, of a latent scale dependent variable U which follows a
multiple regression model. But in practice, U may not be observable and is represented by its binary proxy. In
such situations, use of logistic regression analysis is a popular choice. Many analogues to R2 type statistics have
been proposed to measure explained variation in the context of logistic regression. McFadden’s R2 measure stands
out from others because of its intuitive interpretation and its independence on the proportion of success in the
sample. It, however, severely underestimates the proportion of explained variation of the underlying linear model.
In this research we present a method for estimating the explained variation for the underlying linear model using
the McFadden’s R2 statistics. When used in a real life dataset, our method estimated ρ2 of the underlying model
within an acceptable margin of error.

Keywords: logistic regression, measures of explained variation, latent scale dependent variable, multilevel non-
linear model, Chapman-Richards model

1. Introduction

Logistic regression modeling is a popular and powerful tool to describe the relationship between a binary outcome
variable to several independent variables. Motivation to use the logistic formulation also follows if we consider
the dependent variable Y to be a binary proxy for a latent continuous variable U, that follows the multiple linear
regression model. This formulation of logistic model is explained below.

Many diseases, including several mental and health disorders, are progressive in nature. Health practitioners use
some predefined criteria to determine whether a person has a particular disease or some mental/health condition.
In many instances, researchers may have information on whether a subject has a particular health condition or not
but they may not have access to the actual measurements on the degree of progression of the condition. Under such
circumstances it is reasonable to assume the existence of a latent scale dependent variable, which is not observable
but is represented by its binary proxy. This situation can be modeled as follows.

Let U be a continuous random variable, such that

Y =

1 if U > c, for some c ∈ R
0 otherwise.

(1)

Let X′ = (X1, X2, · · · , Xp) be a vector of p predictors. We may assume that U is related to X through an ordinary
linear model

U = β0 + β
′X + ε, (2)
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where ε is a random error term such that ε ∼ N(0, σε). The usual coefficient of determinant ρ2 = 1 − E [Var(U |x)]
/Var(U) can be used to measure the extent to which the covariates of interest explain the underlying outcome
variable U. As mentioned above, measurements on U are not available, and consequently, the answer to the
question “How well the predictors (X1, X2, · · · , Xp) explain U?” has to be based on the proportion of explained
variation obtained from a logistic regression analysis of Y on X. In such situation it is desirable to compute an R2

analog from the logistic model and use it as an estimate of ρ2. There are, however, two main issues that need to be
addressed first.

First, unlike the ordinary least square (OLS ) regression analysis, where the R2 statistic is almost unanimously used
as measure of explained variation, there are many R2 analogs suggested for logistic regression models (Mittlböck
& Schemper, 1996; Menard, 2000; DeMaris, 2002; Liao & McGee, 2003; Sharma, 2006). Mittlböck & Schemper
(1996) reviewed 12 R2 analogs for logistic regression, Menard (2000) six, DeMaris (2002) seven, and Sharma
(2006) 14, with some overlap. Other authors have proposed adjusted R2 analogs (see Mittlböck & Schemper,
2002; Liao & McGee, 2003, for example). But there is no clear consensus on the “best” R2 measure for use
with logistic models. Second, almost all of the measures of explained variation for the logistic regression analysis
severely underestimate the explained variation in the underlying latent scale variable (Hosmer & Lemeshow, 2000),
if one exists.

A “good” R2 measure should i) have intuitively reasonable interpretation (interpretability); ii) be numerically
consistent with the R2 of an underlying model; and iii) be least dependent of the proportion of successes in the
sample (base rate sensitivity) (Sharma, 2006; Menard, 2000). The McFadden’s R2 (McFadden, 1974) has clear
advantages over others, because of its intuitively reasonable interpretation as a proportional reduction in error
measure, parallel to the R2 in linear regression analysis (Menard, 2000) and lowest base rate sensitivity (Menard,
2000; Sharma et al., 2011). The McFadden’s R2 measure is defined as

R2
L = 1 − log (LM)

log (L0)
, (3)

where, L0 and LM are the likelihood of the null and full logistic models, respectively. In spite of many of its
advantages over other R2 measures, R2

L can not be directly used as an estimator of ρ2, as it severely underestimates
the the parameter of interest (Hosmer & Lemeshow, 2000).

In this paper we propose a computational method for estimating the proportion of explained variation ρ2 for the
underlying linear model using R2

L obtained from the logistic regression analysis. In section 2 we explain the two-
level nonlinear model used for estimating ρ2. The simulation study, results of model fit and model validation are
discussed in Section 2. An application to a real data is presented in Section 4 and some concluding remarks are
given in Section 5.

2. Method

Consider n observations on a binary response variable Y as defined in Eq. (1) and a covariate vector X′ =
(X1, . . . , Xp). The relationship between Y and X is modeled by the logistic model

Pr(Y = 1|x) ≡ π(x) =
eβ0+β

′x

1 + eβ0+β′ x
, (4)

with the unconditional mean

Pr(Y = 1) ≡ ȳ =

n∑
i=1

yi

n
, (5)

where β′ is a vector of p regression parameters. For a logistic model with binary y, it can be shown that the mean of
conditional probability of success over all possible combinations of the covariate values (ȳ) equals the probability
of success in the population π̄.

2.1 Two Level Nonlinear Model

We propose a two-level nonlinear model to estimate the explained variation ρ2 of the underlying linear model
using R2

L obtained from logistic regression analysis. Results of a preliminary simulation study suggests a nonlinear
relationship between ρ2 and R2

L. In addition, the dependent variable is a measure of explained variation and needs
to be constrained in [0,1]. Therefore, we proposed the following Chapman-Richards function for level-I model.
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Level-I Model:
ρ2 = θ0

(
1 − θ1e(−θ2R2

L)
)(1/(1−θ3))

, (6)

In the above model, θ0 is the maximum attainable value of ρ2 and hence is set to 1. θ1 is related to the initial
value of the response variable. θ2 is the parameter governing the rate at which the response variable approaches
its potential maximum, and θ3 affects near which asymptote maximum growth occurs and determines curve shape
and the location of the inflection point.

The level-II models assumes θi, i = 1, 2 and 3 to be some linear functions of the probability of success π̄ and the
sample size n.

Level-II Model:

θi = βi0 + βi1π̄ + βi2n + ϵi, i = 1, 2, 3 (7)

where βi j are regression coefficients and εi is the random error term of ith level-II model.

2.2 Parameter Estimation

Parameter estimation for the proposed model involves the following steps:

Step 1 - Simulating Datasets:

A Monte Carlo study was designed to simulate datasets of various sample sizes from populations with different
levels of π̄. For a Binary dependent variable Y (Eq. 1), representing an unobservable latent scale continuous
random variable U (Eq. 2), the probability of success π̄ is given by

π̄ ≡ Pr(Y = 1) = Pr(U > c) = Pr
(
Z >

c − µ
σ

)
, (8)

where µ and σ respectively are the mean and standard deviation of U and Z ∼ N(0, 1). Therefore, π̄ can be
expressed as a function of three key parameters: the cutoff value c, and the mean and the standard deviation of U
as below.

π̄ = 1 − Pr
(
Z ≤ c − µ

σ

)
= 1 − Φ

(c − µ
σ

)
, (9)

where Φ is the standard normal cumulative distribution function (CDF). It is, therefor, possible to simulate two
populations with different proportion of successes by varying any combination of these three parameters. However,
in many practical situations the cutoff value is usually held fixed. It is also reasonable to assume that the underlying
latent scale variable U has the same mean but different spread in two subgroups of a population. For example, in a
study of determinants of diabetes in male and female populations, the same cutoff value of fasting plasma glucose
(FPG) level is used for classifying diabetes status for both populations. However, studies have shown that while
the mean FPG level among men is usually higher than female, the standard deviation mostly remains the same (for
example see Faerch et al., 2010). Therefore, in order to generate datasets with different proportion of successes,
we first simulated Us with different means but same standard deviations and then generated binary Ys using Eq. 1
with fixed c.

We manipulated three variable in our simulation: ρ2 of the underlying linear model (Eq. 2), proportion of success
(π̄), and sample size (n). We used 19 configurations of ρ2 varying by 0.05 from 0.05 to 0.95, 10 configurations
of π̄ varying by 0.05 from 0.05 to 0.5 and five sample sizes: 50, 100, 250, 500, 1000. Simulation variables were
completely crossed creating a total of 950 simulation conditions. Each simulation condition was replicated 10,000
times, resulting a total of 9,500,000 logistic models.

Step 2 - Estimating Level-I Model Parameters

We used PROC NLIN of SASr to fit level-I model to the simulated data and estimate the parameters. The Mar-
quardt (1963) iterative method was used as it represents a compromise between the linearization (Gauss-Newton)
method and the steepest descent method and appears to combine the best features of both while avoiding their
most serious limitations. The Marquardt iterative method, however, requires that an initial value for each model
parameter be specified first. There are four parameters to be estimated in the level-I model. The methods used to
determine the starting values of these parameters are described below.

θ0 is the maximum possible value of the dependent variable, which in our case is ρ2, and therefore was set to 1. θ2
parameter is the rate constant at which the response variable approaches its maximum possible value of 1. On the
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Table 1. Model fit summery and parameter estimates for Level-2 model. P-values are given in parenthesis with
respective parameter estimates.

Level-1 Model Fit Summary Parameter Estimates
Parameter F-Stat R2 β0 j β1 j β2 j

θ1 2595.8 0.8303 0.903457 -0.1274 0.00001136
(0.000) (0.000) (0.000) (0.016)

θ2 1011.94 0.6561 3.84093 0.085962 0.000000702
(0.000) (0.000) (0.000) (0.901)

θ3 6631.79 0.9259 0.490623 0.087287 -0.000009741
(0.000) (0.000) (0.000) (0.000)

basis of this definition we used the expression (u2−u1)/(v2−v1) to estimate the starting value of θ2. Here u1 and u2
are values of ρ2 corresponding to some large R2

L values in the range (v1, v2). For the classical Chapman-Richards
model θ3 is between zero and one (0 < θ3 < 1). θ1 depends on the initial value of the response variable, ρ2, and can
be thought as the “intercept” on Y-axis for R2

L=0. Its starting value can be specified by evaluating ρ2 when R2
L = 0.

From equation (6) we get ρ2(0) = (1 − θ1)(1/1−θ3), where ρ2(0) is ideally zero, but one should choose a relatively
small positive number close to zero.

Step 3 - Estimating Level-II Model Parameters

Estimates of θi’s obtained in step 2) are regressed on corresponding sample sizes (n) and probability of successes
(π̄) to obtain estimates of βi j, i = 1, 2, 3, j = 0, 1, 2 for the level-II models in Eq. 7.

3. Results and Model Validation

Scatter plots for level-II model suggest a nonlinear effect of π̄ on θi. An inverse square-root transformation of π̄
appeared to address the problem of nonlinearity. Accordingly, we fit the following system of linear equations to
obtain the least square estimates of the level-II model parameters.

θi = βi0 + βi1(π̄)−1/2 + βi2n + ϵi, i = 1, 2, 3 (10)

Model fit summary statistics and estimated level-II model parameters along with the respective p-values are pre-
sented in Table 1. The relationship between level-I model parameters and the proportion of success, π̄, is statisti-
cally significant (p < 0.000 for all βi, i = 1, 2, 3). Though the coefficients for n are very small, they are statistically
significant for estimating θ1 and θ3. The results presented in Table 1 clearly indicate that the proportion of success
in a data set and the sample size are good predictors of the level-I model parameters which are used to estimate ρ2

of the underlying linear model.

In order to validate our model, we simulated a validation dataset using the same 19 levels of ρ2 ranging from .05
to .95 and three sample sizes, n: 50, 100 and 500 and four levels of π̄: 0.05, 0.2, 0.35 and 0.5. Use of a sample size
smaller than 50 (e.g. n=30) caused numerical problems including no variation in the dependent variable, complete
severation and quasi complete severation. These numerical problems were more frequent for low values of π̄,
especially when π̄ = 0.05. Simulation is implemented using the statistical software S AS c⃝ 8.1. Proc logit is used
to fit the logistic models. The simulation algorithm is outlined below:

For each level combination of ρ2, and n

1. Simulate the underlying linear model U = β0 + β
′X + ε by generating X ∼ N(µx, σ

2
x) and ε ∼ N(0, σ2

ε).

2. Generate U such that the coefficient of determination for the linear model is ρ2.

3. Generate the binary dependent variable Y such the proportion of success in the dataset is π̄ (π̄ = 0.05, 0.2,
0.35 and 0.5).

4. For each dataset thus generated fit a logistic model and then compute R2
L

5. For each combination of π̄ and n, estimates of θi’s using equation (10) and estimates of βi j’s using the
regression coefficients from Table 1.
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Figure 1. R2
L and ρ̂2 plotted against ρ2. Departure from the 45 ◦ line indicates bias.

6. Obtain ρ̂2 using Eq. 6.

7. Repeat steps 1) to 3) 1000 times and calculate mean and SE of ρ̂2.

The graphs in Fig. 1 compare ρ̂2 and R2
L as estimators of ρ2, proportion explained variation of the underlying linear

model, for selected simulation conditions. Graphs for n = 50 so the similar patterns and are not presented here.
The 45 ◦ angle solid line was obtained by plotting ρ2 against itself. The distance of a point from this ideal 45 ◦

angle line indicates how well or how poorly the prediction performed. As can be seen in Fig. 1, our model clearly
out performs R2

L in estimating ρ2 for all eight simulation conditions.

In order to evaluate the quality of our estimate we computed relative root mean square error (RRMSE) of ρ̂2.
RRMSE is a relative measure of prediction accuracy and is calculate as

RRMSE =

√√√√√ R∑
i=1

(θ̂i − θ)2

θ2
, (11)
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Table 2. Relative Root Mean Square Errors (RRMSE) of ρ̂2 for selected sample sizes and levels of π̄. RRMSE
values are presented as percentage points.

n = 50 n = 100 n = 500
ρ2 π̄=0.05 π̄=0.2 π̄=0.35 π̄=0.5 π̄=0.05 π̄=0.2 π̄=0.35 π̄=0.5 π̄=0.05 π̄=0.2 π̄=0.35 π̄=0.5

0.05 13.422 13.059 13.533 13.057 12.102 11.945 10.533 9.385 10.140 10.140 10.055 7.995
0.10 4.571 4.530 2.501 3.596 3.745 3.745 0.828 4.129 4.113 3.053 1.247 1.248
0.15 2.103 2.100 1.500 1.490 1.126 1.133 1.149 1.126 1.126 1.126 1.149 0.580
0.20 1.571 1.339 1.325 1.127 1.127 1.127 1.150 1.150 1.127 1.107 1.127 0.750
0.25 1.601 1.081 1.105 1.151 1.128 1.111 1.105 1.151 1.128 1.128 1.105 0.800
0.30 1.400 1.049 1.284 1.526 1.500 1.511 1.470 1.470 1.500 1.518 1.500 0.870
0.35 0.891 0.828 1.154 1.144 1.126 1.308 1.720 1.694 1.126 1.449 1.804 1.804
0.40 0.836 0.842 0.468 1.127 1.127 0.778 1.071 1.127 1.127 0.903 1.232 1.250
0.45 1.265 1.265 0.242 1.128 1.128 0.567 0.665 1.115 1.128 0.470 0.738 0.738
0.50 1.570 1.570 0.489 1.496 1.500 0.780 0.159 1.503 1.500 0.594 0.367 0.364
0.55 1.476 1.476 0.735 1.065 1.065 0.935 0.254 1.161 1.160 0.796 0.148 0.053
0.60 1.336 1.336 0.697 0.608 0.940 0.948 0.431 0.789 0.828 0.812 0.313 0.138
0.65 1.239 1.239 0.763 0.569 0.825 0.833 0.403 0.484 0.760 0.760 0.333 0.166
0.70 1.143 1.137 0.580 0.541 0.732 0.736 0.366 0.417 0.583 0.591 0.291 0.156
0.75 0.822 0.822 0.484 0.320 0.477 0.477 0.174 0.395 0.395 0.370 0.094 0.032
0.80 0.445 0.445 0.145 0.416 0.417 0.149 0.181 0.549 0.553 0.120 0.200 0.198
0.85 0.770 0.251 0.317 0.710 0.704 0.397 0.448 0.783 0.774 0.444 0.473 0.482
0.90 1.271 0.617 0.699 0.992 0.977 0.763 0.832 1.019 1.036 0.775 0.811 0.826
0.95 1.770 1.083 1.116 1.319 1.341 1.143 1.155 1.327 1.327 1.164 1.167 1.167

where θ and θ̂ are respectively the desired and the estimated value of the parameter of interest and R represents
the number of simulation. The RRMSE has a minimum value of 0.0 for a perfect prediction. Values closer to 0.0
indicate better prediction. RRMSEs of the estimates for all twelve simulation conditions are presented in Table 2.
Except for very small value of ρ2, the RRMSEs are acceptably small (less than 5%). When ρ2 = .05 the RRMSEs
range from 8% to 13.5%. However, it should be noted that a model with ρ2 = .05 is not very useful and thus may
not be used in practice.

4. Application to a Real Life Dataset

The dataset used in our example comes from Exam 3 of Framingham Offspring Study (Feinleib et al., 1975).
We used Exam 3 data mainly because information about fasting blood glucose (FBG), which was used as the
unobserved latent scale variable in our model, was collected starting at this point of the offspring study. The
dataset consists of 3371 men and women who were not taking any diabetes medicine at the time of the exam and
were not previously identified as diabetic. For the purpose of this example we selected five potential predictors
of FBG. They were gender (SEX), age at the time of Exam 3 (AGE3), hypertension (HYP: 1 if hypertensive, 0
otherwise), smoking (SMOKE: 1 if currently smoking, 0 otherwise) and body mass index (BMI). In the standard
model formulae syntax, our model is

FBG = CONS T + AGE3 + BMI + S EX + HYP + S MOKE (12)

A multiple linear regression analysis of the above model resulted an R2 = 0.1861 with all of the predictors being
statistically significant. A 95% bootstrap confidence interval, based on 1000 bootstrap samples, for ρ2 was (0.1629,
0.2092).

According to the American Diabetes Association criteria, a person is classified as having impaired fasting glucose
(IFG), a type of prediabetes, if the FBG level is between 100 mg/dL and 125 mg/dL, inclusive. We used this criteria
to create a binary variable IFG, a proxy of the continuous dependent variable FBG to be explained by the above
mentioned predictors, such that IFG=1 if 100 ≤ FBG ≤ 125 and IFG=0 if FBG < 100. In our dataset 17.83% of
the subjects were identified with IFG (i.e. π̄ = 0.1783). A logistic regression analysis between IFG and the five
predictors resulted a model with R2

L = 0.1080, which, as expected, is considerably smaller than R2, the proportion
of variation in FBG explained by the underlying linear model (12). The predicted value of ρ2, using our proposed
method is 0.16403, which is well within the 95% bootstrap confidence interval of ρ2.
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5. Conclusion

Researchers often are interested in estimating how well a set of predictors explains the outcome of a dependent
continuous variable. If the relationship is modeled using a linear regression model then the coefficient of deter-
minant can be used to estimate the proportion of variation in the dependent variable explained by the predictors.
But in practice, the dependent variable of interest may not be observable and is represented by its binary proxy. In
such situation, interests may lies on estimating the proportion of explained variation by use of a logistic regression
analysis. In this paper, we have proposed a computational method for this purpose. We used McFadden’s R2 mea-
sure mainly because of its intuitive interpretation and base rate invariant property. In addition, it is easy to compute
using standard logistic regression output of most of the statistical analysis softwares. When applied to a real life
dataset, our method estimated the proportion of explained variation of the underlying model within an acceptable
margin of error.
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