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Abstract

To assess validity of a low-intensity measure of fitness (X) in a population of older adults as a proxy measure for

the original, high-intensity measure (Y), we used ordinary least square regression with the new, potential proxy

measure (X) as the sole explanatory variable for Y . A perfect proxy measure would be unbiased (i.e., result in a

regression line with a y-intercept of zero and a slope of one) with no error (variance equal to zero). We evaluated

the properties of potential biases of proxy measures. A two degree-of-freedom approach using a contrast matrix

in the setting of simple linear ordinary least squares regression was compared to a one degree-of-freedom paired

t test alternative approach. We found that substantial improvements in power could be gained through use of the

two degree-of-freedom approach in many settings, while scenarios where no linear bias was present there could be

modest gains from the paired t test approach. In general, the advantages of the two degree-of-freedom approach

outweighed the benefits of the one degree-of-freedom approach. Using the two degree-of-freedom approach, we

assessed the data from our motivating example and found that the low-intensity fitness measure was biased, and

thus was not a good proxy for the original, high-intensity measure of fitness in older adults.
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1. Introduction

Proxy measures evaluation has been presented in the context where a true, underlying measure may be unobserv-

able, so this measure may be replaced by an observable proxy (e.g., Kotz & Johnson, 1986, p. 323; Trenkler &

Stahlecker, 1996; Hawkins, 2002). It is often of interest of scientific investigators to develop a new measure to

serve as a proxy for another in the setting where the original is observable. Proxy measures can be of great impor-

tance, particularly when costs, broadly defined, are substantially less for measuring the new proxy compared to the

original measure. A systematic review by Dickinson, Hrisos, Eccles, Francis and Johnston (2010), however, found

problems with methods frequently used to evaluate proxy measures.

The focus of this work was on the evaluation of whether a new measure, X, served as a good proxy for the original

measure Y . We evaluated the proxy for the setting where Y |X was (at least approximately) a continuous measure.

In the Methods section that follows, we first defined our criteria for assessing whether a measure serves as a valid

proxy. We used simple linear regression of Y onto X to provide a formal means to assess for validity as a proxy,

and compared this approach to a simpler strategy of taking the difference between measures for each subject, and

testing the null hypothesis that the mean of these differences is zero using a paired t test.
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The motivating example was the assessment of a lower-impact, self-paced, submaximal step test (the Step Test

Exercise Prescription, or STEP test; Petrella, Koval, Cunningham & Paterson, 1998; Petrella Koval, Cunningham

& Paterson, 2001; Petrella & Wight, 2000) as a proxy for the rigorous, maximal, high-intensity peak oxygen

consumption (VO2 peak) test to measure fitness levels. More specifically, we were interested in the validity of this

potential proxy in an older population than had been previously examined that included subjects with Alzheimer’s

Disease (Vidoni et al., 2013). A major research focus of The University of Kansas Alzheimer’s Disease Center (KU

ADC), which is funded by the National Institute on Aging, is on modifiable lifestyle risk factors and Alzheimer’s

Disease prevention. Thus, a submaximal fitness assessment could serve as a key measure of interest for research at

the KU ADC. Discussions compared and contrasted these two approaches for assessing proxy measures in general

settings, and conclusions from our motivating example were presented.

2. Methods

For a variable, X, to serve as a valid proxy measure for another (the original) variable, Y , the relationship between

these two variables would be approximately Y = X. In a simple linear regression framework, this relationship

would ideally be (Y | X = x) = x + E, where E represents the random error and most of the distribution of E
falls at or near zero (Kotz & Johnson, 1986, p. 323). A normal distribution for E with a mean of zero and small

variance parameter meets these criteria; and is also advantageous given the wealth of literature on the theory and

practice of ordinary least squares regression that fit under this simple linear regression paradigm (e.g., Draper &

Smith, 1998, Chap. 1; Kleinbaum, Kupper, Muller & Nizam, 1998, Chap. 5; Kutner, Nachtsheim & Neter, 2004,

Chap. 1), though as noted by Lin (1989), settings where the variance of E is large may be problematic for this

approach. Bell-shaped distributed errors seem plausible for the difference between two measures—regardless of

the underlying distributions of the individual random variables X and Y—if Y indeed is a valid proxy for X. It

is noteworthy that the assumptions of this model did not require both Y and X to be continuous, so long as the

conditional distribution of Y |X is approximately normally distributed.

We formally defined the model using the simple linear regression paradigm for assessment of X as a proxy measure

for Y as

(Y |X = x) = β0 + β1x + E (1)

where E ∼ N(0, σ2). As noted above, one of our properties of a valid proxy was a small variance; however,

the property of unbiasedness in and of itself may be important, for example in some clinical settings, where there

is motivation to report a proxy without adjustment. Hence, the focus of this work was on the property of the

unbiasedness of the proxy measure; specifically, that β0 = 0 ∩ β1 = 1 in (1). To formally test the null hypothesis

that H0: β0 = 0 ∩ β1 = 1, we used a contrast matrix to perform the simultaneous, two degree-of-freedom test.

2.1 Linear Transformation

To facilitate the two approaches investigated, we first re-parameterized this two degree-of-freedom approach using

a linear transformation. From (1), we subtracted the observed value of X (i.e., x) to define the random variable

Z1|X, or

(Z1|X = x) = (Y − X|X = x) = β0 + β1x − x + E

(Z1|X = x) = β0 + (β1 − 1)x + E. (2a)

Re-labeling the parameters yielded

(Z1|X = x) = γ0 + γ1x + E. (2b)

From (2b), assessment for unbiasedness of the proxy measure as β0 = 0 ∩ β1 = 1 in (1) was equivalent to testing

γ0 = γ1 = 0. Under the assumptions defined above regarding the error, E ∼ N(0, σ2), testing for unbiasedness can

be done by comparing

F =

(̂
γ − γ

)T (̂
γ − γ

)
/2

(
z1 − Xγ̂

)T (
z1 − Xγ̂

)
/(n − 2)

, (3a)

where γ, which represented the true, unknown parameters (γ0, γ1)T , to a central F-distribution with two and n − 2

degrees of freedom in the numerator and denominator, respectively (e.g., using Rencher, 2000, pp. 184-190). In

(3a), z1 represented the observed vector of differences between the n original (Y) and proxy (X) measures, and γ̂
the ordinary least squares maximum likelihood estimates (MLEs) for γ. In the Appendix we demonstrated that this

analogous transformed approach produced equivalent inferences as γ̂0 = β̂0 and γ̂1 = β̂1 − 1.
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To test for unbiasedness we defined the null hypothesis as H0: γ = 0, which yielded

F =
γ̂T γ̂/2

(
z1 − Xγ̂

)T (
z1 − Xγ̂

)
/(n − 2)

. (3b)

Under the alternative hypothesis, γ � 0 (i.e., the proxy was not valid as the proxy was a biased measure of the

original), the distribution of F (3b) followed a non-central F-distribution with non-centrality parameter

λ = γT XT Xγ/2σ2 = (nγ2
0 + 2nxγ0γ1 + γ

2
1 xT x)/2σ2 (4a)

(Rencher, 2000, p. 185). This followed from the fact that the contrast matrix was the identity matrix for testing

this null hypothesis. We further refined (4a) by substituting for xT x using the formula for the sample variance of

the proxy measure (X),

xT x = (n − 1) s2 + nx2,

which yielded

λ =
{
nγ2

0 + 2nxγ0γ1 + γ
2
1

[
(n − 1) s2

x + nx2
]}
/2σ2. (4b)

[The subscript was added to s2
x in (4b) to more clearly indicate it as the sample variance from the proxy measure,

X, which represented the explanatory variable in underlying models of (1) and (2b).]

2.2 Paired t Test Approach

We evaluated an alternative approach for assessing whether the proxy measure was biased (and therefore not a valid

proxy) by conducting the one-sample paired t-test on (Z2|X = x), which from (2a) was defined as (Y − X | X = x).

In contrast to the model used by (2a), this alternative approach excluded the linear term (γ1) altogether. The test

for unbiasedness to assess the validity of the proxy measure was similarly constructed as in (3a-b). However, the

design matrix on the right hand side of the equation, X∗ (say), was equal to the n × 1 vector 1; thus, the MLE γ̂∗

(say) for this alternative approach was the scalar
(
1T 1
)−1

1T z2 = z2. The true, unknown mean parameter vector was

also a scalar, so

γ∗ = γ∗ = γ0 + γ1x

where γ0 and γ1 were the same parameters from the model of (2b) (Rencher, 2000, p 154). This resulted in

F∗ =

(̂
γ∗ − γ∗

)T (̂
γ∗ − γ∗

)
/1

(
z2 − Xγ̂∗

)T (
z2 − Xγ̂∗

)
/(n − 1)

=
(n − 1)(z2 − γ0 − γ1x)2

(
z2 − z21

)T (
z2 − z21

) , (5a)

which was compared to a central F-distribution with one and n − 1 degrees of freedom in the numerator and

denominator, respectively. To test for unbiasedness under this paired one-sample t test approach we defined the

null hypothesis as

H0 : γ∗ = 0⇐⇒ γ0 + γ1x = 0⇐⇒ γ0 = −γ1x,

which yielded

F∗ =
(n − 1)z2

2(
z2 − z21

)T (
z2 − z21

) . (5b)

Under the alternative hypothesis, γ∗ � 0 (i.e., the proxy was not valid as it was a biased measure of the original),

the distribution of F∗ (5b) followed a non-central F-distribution with non-centrality parameter

λ∗ = n(γ0 + γ1x)2/2σ2 (6)

(Rencher, 2000, p. 185). This followed from the fact that the contrast matrix was the scalar value of one for this

null hypothesis. Of note, the null hypothesis for this paired t test approach, H0: γ0 = −γ1x, indicated it would

be unable, in some settings, to reject the null hypothesis of a biased proxy even when it was truly biased (i.e.,

γ0 � 0 ∪ γ1 � 0). This represented a potential shortcoming of the paired t test approach.
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2.3 Power of the Two Approaches

From (3b), (4b), (5b), and (6), power functions were derived based on a given design matrix. Specifically, the

probability of rejecting the null hypothesis (that X was a valid proxy for Y because it was unbiased) when in fact

it was not unbiased followed a non-central F2, n−2, λ distribution, and for the alternative approach it followed a

non-central F1, n−1, λ∗ distribution. The non-centrality parameters (λ and λ∗) were functions of the true parameters

γ0, γ1, [or analogously β0 and β1 using the form of (1)], σ2, n, and x. For the initial proposed approach (with two

degrees of freedom in the numerator), λ was also a function of s2
x. Expanding the polynomial term in λ∗ and using

substitution, we wrote λ as

λ = λ∗ + (n − 1) s2
xγ

2
1/2σ

2.

Writing the non-centrality parameter, λ, in this way implied power advantages in the proposed two degree-of-

freedom approach to detect linear deviations from unbiasedness, particularly: 1) when there was more variation

in the proxy measure collected (X) as quantified by s2
x; or 2) when the absolute value of γ1 was large (assuming

a sample size of n > 1). However, when these values were small relative to σ2 (the variance in the differences

given X), the non-centrality parameter λ approached that of λ∗, which gave potential advantage to the paired t test

approach based on the differences in the degrees of freedom for the respective F tests.

To facilitate our comparison of the theoretical results for these two approaches, a receiver operating characteristics

(ROC) curve approach was used similar to that done in Mahnken, Wick, Gajewski and Mayo (2010). Specifically,

we plotted the type I error along the horizontal axis and the power on the vertical axis. Notably, in the setting of

the valid proxy actually being unbiased (i.e., when the null H0: γ0 = γ1 = 0 was true) the power was expected to

equal to the type I error, and so both approaches were anticipated to produce identical curves in this setting where

the power equaled the type I error.

3. Motivating Example

A cohort of 102 adult research participants was recruited through the KU ADC Registry cohort and a concurrent

study in the Research in Exercise and Cardiovascular Health (REACH) Laboratory (Billinger, van Swearingen,

McClain, Lentz, & Good, 2012). The protocols for obtaining the original (Y , VO2 peak) and proxy (X, STEP)

measures were described in Vidoni et al. (2013). While differences in the KU ADC Registry and REACH Labora-

tory measure collections differed slightly as described by Vidoni et al., these data provide a useful example for the

statistical discussions presented here. Further, we treated all subjects from the two study sources as homogeneous

for our motivating example sections below. Approval was provided for both parent studies that obtained the source

data measures by The University of Kansas Medical Center Human Subjects Committee (#11132 and #12460).

Simple linear regression was used to assess the STEP test (X) as an unbiased proxy for VO2 peak (Y). The GLM

procedure in SAS version 9.3 (SAS Institute Inc., Cary, NC, 2002-2010) was used for this analysis. To test for

unbiasedness of our proxy measure, we used the form γ0 = γ1 = 0 for our null hypothesis corresponding to (2b).

This enabled the use of the CONTRAST statement within the GLM procedure, which limited hypothesis testing

to be subject to the constraint

Lβ
0
= 0.

For our hypothesis, this was only the case using the linear transformation approach [i.e., the model of (2b)]. As

stated above and demonstrated in the Appendix, this linear transformation approach produced identical inferences

for corresponding hypothesis tests. Model assessment by residual analysis was not further described nor their

results presented as this was not the focus of the work presented here. More formal presentation of the motivating

example results, including subgroup-specific assessments, was presented previously in Vidoni et al. (2013). The

alternative, paired t test approach was also performed for comparison.

4. Results

Plots were generated to compare the power curves using an ROC curve approach. This enabled comparisons of

power across varying levels of type I error. While presented over the entire range of [0, 1], the focus of the results

will often be around those portions of the plots with lower type I error. Curves were generated with varying

values of β0 and β1 of -0.25(0.25)0.25 and 0.75(0.25)1.25, respectively such that they spanned null and alternative

hypotheses–including non-null cases where the paired t test approach fit for testing the true, underlying model.

The effect of the variance, σ2, of the original model (1) was held fixed at one across all models.

4.1 Power as a Function of x

Sample mean (x) values for the proxy measures (X) varied within each plot in Figure 1 from -1(1)1. In each
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case where the slope parameter was not equal to one (i.e., where the alternative approach under-fit the relationship

between the original and its proxy) the proposed (two degree-of-freedom) approach outperformed or did no worse

than the alternative paired t test (one degree-of-freedom) approach. This was demonstrated by the dashed curves

being closer to the point coordinate (0, 1) on the plots than the correspondingly-colored solid curves, or the two

corresponding curves overlaying one another. In the cases where there was no linear bias in the proxy measure

(i.e., where β1 = 1), the one degree-of-freedom paired t test approach outperformed the two degree-of-freedom

approach except in the case where the proxy was completely unbiased. In this latter case (i.e., where β0 = 0 and

β1 = 1) the non-centrality parameters λ and λ∗ where both equal to zero, so the power had a 1:1 relationship with

the type I error in that case.

Figure 1. Comparison of the two degree-of-freedom (dashed) versus one degree-of-freedom, paired t test (solid)

approach over x = −1, 0, and 1 (light to dark)

Note. Underlying model yi = β0+β1xi+εi where εi ∼ N(0, σ2); power and type I error correspond to the test of the

null hypothesis that the proxy is not biased, which for the two degree-of-freedom approach is H0: β0 = 0 ∩ β1 = 1

and is H0: β0 = −(β1 − 1)x for the one degree-of-freedom, paired t test approach.

4.2 Power as a Function of s2
x

Sample variance (s2
x) values for the proxy measures (X) varied within each plot in Figure 2, using values of 0.1, 1,

and 2. In these plots, the power curves for the paired t test (one degree-of-freedom) approach completely overlaid

one another. This followed from the fact that the non-centrality parameters for these models, λ∗, were not functions

of s2
x [see (6)]. We again saw a slight power advantage with the paired t test (one degree-of-freedom) approach over

that of the proposed method for the cases where no linear bias was present, and both power functions reverting

to the type I error rate when the new measure was an unbiased proxy for the original. A slight advantage of

the paired t test approach was seen in other scenarios when the sample variance of the proxy measure was close

to zero; but this advantage was lost as the sample variance increased. For the case where the bias of the proxy
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was only in the linear term the proposed (two degree-of-freedom) approach always outperformed the paired t test

(one degree-of-freedom) approach, with the greater advantage observed as the sample variance of the proxy (X)

increased.

Figure 2. Comparison of the two degree-of-freedom (dashed) versus one degree-of-freedom, paired t test (solid)

approach over n = 10, 20, and 50 (light to dark)

Note. Underlying model yi = β0+β1xi+εi where εi ∼ N(0, σ2); power and type I error correspond to the test of the

null hypothesis that the proxy is not biased, which for the two degree-of-freedom approach is H0: β0 = 0 ∩ β1 = 1

and is H0: β0 = −(β1 − 1)x for the one degree-of-freedom, paired t test approach.

4.3 Power as a Function of n

For the comparison of these approaches over increasing sample sizes (n; Figure 3), the proposed approached had

greater power in each scenario where a linear bias was present, compared to slight advantages with the pair t test

(one degree-of-freedom) approach under the settings where there was no linear bias (i.e., β1 = 1). Also, for the

paired t test approach the power did not improve as a function of sample size when the bias was only in the linear

term (i.e., when β0 = 0, but β1 � 1). As with the evaluations of power as functions of other parameters, when the

proxy (X) truly was an unbiased measure of the original (Y), the type I error was preserved under either approach.
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Figure 3. Comparison of the two degree-of-freedom (dashed) versus one degree-of-freedom, paired t tested

(solid) approach over s2
x = 0.1, 1, and 2 (light to dark)

Note. Underlying model yi = β0+β1xi+εi where εi ∼ N(0, σ2); power and type I error correspond to the test of the

null hypothesis that the proxy is not biased, which for the two degree-of-freedom approach is H0: β0 = 0 ∩ β1 = 1

and is H0: β0 = −(β1 − 1)x for the one degree-of-freedom, paired t test approach.

4.4 Assessment of the STEP Test as a Proxy for VO2 Peak Fitness Measures

A scatter plot of the STEP test versus the VO2 peak test was presented in Figure 4. The ordinary least squares

regression line estimated from these data [of the (1) form] was plotted (solid), as was a y = x reference line

(dashed). This figure indicated a general bias toward the STEP test overestimating the fitness level of the VO2

peak testing. The maximum likelihood estimates for the original scale (1) were

β̂0 = −5.37 and β̂1 = 1.04;

or equivalently on the linear transformed scale

γ̂0 = −5.37 and γ̂1 = 0.04.

The F test of the null hypothesis that the STEP measure was an unbiased proxy for VO2 peak was rejected (p <
0.0001). In this example, the alternative, paired t test approach also rejected this null hypothesis (H0: γ∗ = 0; p <
0.0001).
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Figure 4. Scatter plot of the potential proxy STEP test measure by the true fitness measure VO2 peak

5. Discussion

Proxy measures are important tools. Less costly alternative means to assess important measures have substantial

importance in scientific research, clinical practice, business, and sociology, among other areas of application. A

simple approach to evaluating a measure as a proxy is to test for differences in central tendency by applying the

one sample paired t test to the observed differences. However, this approach can overlook important systematic

forms of bias that, when left uncheck, could lead to poorly capturing of the underlying construct of interest by

use of a proxy. Previous studies of methods for evaluating proxy measures has also been described by Bland and

Altman (1999) and Dickenson et al. (2010).

Our investigations demonstrated that when linear biases were present the power to detect that a measure was a poor

proxy was greatly reduced with the paired t test approach. Especially notable was the fact that when the bias was

entirely on the slope parameter, increases in sample size did not correspondingly increase the power of the paired

t test (one degree-of-freedom) approach for detecting that the proxy was invalid due to bias (see Figure 2 plots

where β0 = 0). While the cases where there was no linear bias in the proxy indicated slight increases in power,

the magnitudes were much greater for changes when the bias did, in fact, include linear effects. This advantage

followed from estimating only one mean parameter for the intercept rather than two–one for the intercept and one

for the slope. We were unable to find an analytic solution to the probability that the alternative, one degree-of-

freedom approach would have greater power than the two degree-of-freedom approach when no linear term was

needed (i.e., β1 = 1).

As noted above, for our motivating example the conclusions did not change with the differing approaches. How-

ever, the null hypothesis of the one degree-of-freedom paired t test approach was

H0 : γ∗ = 0⇐⇒ γ0 + γ1x = 0⇐⇒ γ0 = −γ1x.

This implied that even in the presence of strong linear bias, the null hypothesis using the one degree-of-freedom

approach would not be rejected when the sample mean for the proxy (X) is nearly centered. This was highlighted

by the results of Figure 1, where the one degree-of-freedom approach had power equal to the type I error for the

scenarios: where x = −1 for the plots where β0 = −0.25 ∩ β1 = 0.75 and β0 = 0.25 ∩ β1= 1.25 (light blue solid

lines); where x = 0 for the plots where β0 = 0 ∩ β1 = 0.75 and β0 = 0 ∩ β1 = 1.25 (blue solid lines); and where

x = 1 for the plots where β0 = 0.25 ∩ β1 = 0.75 and β0 = −0.25 ∩ β1 = 1.25 (dark blue solid lines). In our

motivating example x ≈ 38, so there are an infinite number of possible (β0, β1) pairs that could produce values

with little power to reject the null hypothesis even in cases of highly biased, poor proxy measures. These pairs

would be all those that fall along the line

γ0 = −γ1x⇐⇒ β0 = − (β1 − 1) 38⇐⇒ β0 = −38β1 + 38.

Although there are an infinite number of pairs that fall on this line, these solutions would still represent a restricted

subset of the entire two-dimensional space of all possible (β0, β1) pairs. We further note that samples with centered

proxy measures (i.e., x = 0) also suffer from a power disadvantage for detecting systematic linear biases. Thus,
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overall, we believe these findings support the use of the two degree-of-freedom approach advocated here over the

risk of a slight loss of power due to using an F2,n−2 distribution as opposed to an F1,n−1 distribution (paired t test

approach) for inference about whether a proxy is a biased measure of the original.
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Appendix

Proof of Equivalence of Inferences for γ̂0 = β̂0 and γ̂1 = β̂1 − 1.

Let Yi|Xi = xi ∼ N(β0 + β1xi, σ
2), so xi is treated as a constant and yi = β0 + β1xi + εi, where εi ∼ N

(
0, σ2

)
. The

maximum likelihood estimators for β0 and β1 are

β̂0 =

∑n
i yi

n
− β1

∑n
i xi

n
= y − β1x

and

β̂1 =

∑n
i xiyi∑n
i x2

i

− βo∑n
i xi
.

For the transformed Zi|Xi, (Yi − Xi|Xi = xi) ∼ N(β0 + [β1 − 1] xi, σ
2), so

yi − xi = β0 +
[
β1 − 1

]
xi + εi,

where εi ∼ N
(
0, σ2

)
. Let γ0 = β0 and γ1 = β1 − 1, then

yi − xi = γ0 + γ1xi + εi.

Now to show that γ̂0 = β̂0,

γ̂0 =

∑n
i (yi − xi)

n
− γ1

∑n
i xi

n

γ̂0 =

∑n
i yi −∑n

i xi

n
− (β1 − 1)

∑n
i xi

n
γ̂0 = y − x − (β1x − x)

γ̂0 = y − β1x;

so γ̂0 = β̂0. Finally, to show that γ̂1 = β̂1 − 1,

γ̂1 =

∑n
i xi(yi − xi)∑n

i x2
i

− γo∑n
i xi

γ̂1 =

∑n
i xiyi −∑n

i x2
i∑n

i x2
i

− γo∑n
i xi

γ̂1 =

∑n
i xiyi∑n
i x2

i

− 1 − βo∑n
i xi

γ̂1 =

∑n
i xiyi∑n
i x2

i

− βo∑n
i xi
− 1,

so γ̂1 = β̂1 − 1.
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