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Abstract

Many chronic diseases put individuals at increased risk of several different types of adverse clinical events. Typi-

cally these events are combined to define composite events which are then used as the basis of treatment evaluation.

A potentially more efficient approach is to conduct separate marginal assessments of the effect of treatment on each

component and then to synthesize this information across each type of event. While there is considerable poten-

tial for more powerful tests of treatment effect in this setting, it is possible that dependent censoring can cause

problems. This happens when the occurrence of one type of event increases the risk of withdrawal from a study

and hence alters the probability of observing events of other types. The purpose of this article is to formulate a

model which reflects this type of mechanism, to evaluate the effect on the asymptotic and finite sample properties

of marginal estimates, and to examine the performance of estimators obtained using flexible inverse probability

weighted marginal estimating equations. Data from a motivating study are used for illustration.
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1. Introduction

Many chronic disease processes put individuals at risk for several types of events and it is often of interest to

examine the effect of treatment on the risk of occurrence for each type (Dabrowska, 2006; Hougaard, 2000).

In settings involving life history processes, multiple events can occur during a particular period of observation

and composite endpoints are also routinely used as a basis for treatment assessment (Freemantle, Calvert, Wood,

Eastaugh, & Griffin, 2003). In time to event data, a composite endpoint uses the time of the first event as the

response, regardless of the type, and is appealing since it permits the use of standard methods for survival analysis

(Kalbfleisch & Prentice, 2002; Lawless, 2003). It does not, however, lead to treatment comparisons based on

a full characterization of the disease process. For this reason, in clinical trials investigators have increasingly

turned to use of multiple endpoints and regulatory agencies are increasingly requiring demonstration of efficacy

new interventions based on such analyses (Buzney & Kimball, 2008; Fleming & Lin, 2000; Freemantle & Calvert,

2007; Wei & Glidden, 1997).

There are three common frameworks for the analysis of multivariate failure time data including frailty-based mod-

els (Therneau & Grambsch, 2000), copula models (Liang, Self, Bandeen-Roche, & Zeger, 1995; Nelsen, 2006),

and marginal methods (Wei, Lin, & Weissfeld, 1989). While frailty models and copula models yield multivariate

distributions, they require assumptions regarding the frailty distribution or the copula function respectively. Such

fully specified models are appealing if interest lies in estimating the degree of association between two or more

event times or for prediction, but when assessing treatment effects in clinical trials it is generally desirable to

make minimal assumptions and maintain robustness. The marginal approach of Wei et al. (1989) requires only
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specification of a Cox regression model for each type of event but no dependence structure is specified for distinct

failure times do not have a specific dependence structure. Simultaneous inference regarding the estimates of the

marginal regression coefficients is carried out through use of a robust sandwich type variance estimator. This

method is easily implemented in most major statistical software packages such as R/S-PLUS and SAS (Therneau

& Grambsch, 2000) and is widely used in clinical trials (Lin, 1994).

The marginal approach of Wei et al. (1989) is based on a working independence assumption and the robust

covariance matrix and hence has similarities with the generalized estimating equations approach of Liang and

Zeger (1986) for dealing with clustered categorical data. A number of methodological advances have been made

in the field of multivariate failure time data analysis which are based on a similar framework (Cai, Fan, Jiang, &

Zhou, 2007; Cai, Fan, H. Zhou, & Y. Zhou, 2007; Cai & Prentice, 1995, 1997; Cai & Schaubel, 2004; Clegg,

Cai, & Sen, 1999; Clegg, Cai, Sen, & Kupper, 2000; Kang & Cai, 2009; Lee, Wei, & Amato, 1992; Liang, Self,

& Chang, 1993; Spiekerman & Lin, 1998; Greene & Cai, 2004; Yin & Cai, 2004, 2005). Since the marginal

approach of Wei et al. (1989) is based on a partially specified model, however, it is only valid if censoring is

completely independent of the failure time process. In studies of life history processes, when individuals are to

be followed after the occurrence of events, it is common for censoring to be associated with occurrence of one or

more particular types of events, yielding event-dependent censoring. For example, if the occurrence of the first

event alerts a physician to the fact that the current treatment “failed” for a patient, it may increase the risk that they

will be withdrawn from the study. In general, when marginal regression models are applied to multivariate failure

times under such a dependent censoring scheme, biased (martingale) estimating equations are specified and the

resulting estimators are inconsistent (Cook, Lawless, & Lee, 2007; Cook, Lawless, Lakhal-Chaieb, & Lee, 2009).

The purpose of this article is to study the asymptotic bias that may result from a dependent censoring scheme of

this sort under a working independence assumption. We also explore the utility of inverse probability of censoring

weighted estimating equations developed by Rotnitzky and Robins (1995) and Robins and Finkelstein (2000). for

marginal analysis of multivariate failure time data as a means of correcting for event-dependent censoring.

The remainder of this article is organized as follows. In Section 2 we provide the notation and formulate the models

for the multivariate failure times and censoring processes. In Section 3 we investigate the asymptotic and empirical

biases arising from a naive marginal approach. The inverse probability of censoring weighted marginal estimating

equations are developed in Section 4, where we investigate the large sample properties of resulting estimators of

treatment effect and the baseline hazard functions. Sections 5 and 6 contain simulation studies and an illustrative

example respectively, and concluding remarks are made in Section 7.

2. Notation and Model Specification

2.1 Model Formulation for Multivariate Failure Times

Let Tk denote the time of the type k event and {Nk(s), 0 < s} denote the corresponding right-continuous counting

process, where Nk(t) = I(Tk ≤ t) indicates that the type k event has occured at or before time t, dNk(t) = 1 if a type

k event occurs at time t, and dNk(t) = 0 otherwise. We further let N(t) = (N1(t), . . . ,NK(t))′ and remark that the

multivariate counting process {N(s), 0 < s} is specified when interest lies in jointly modeling the occurrence of all

event types. Suppose Z(t) is a vector of fixed, exogeneous or endogenous covariates and let {Z(s), 0 < s} denote

the covariate process. The full history at t contains information on the number and times of events over [0, t) and

covariate data over [0, t] and is denoted H(t) = {N(s), 0 ≤ s < t,Z(s), 0 ≤ s ≤ t}.
The intensity function for type k events is

λk(t|H(t)) = lim
Δt→0

P(ΔNk(t) = 1|H(t))
Δt

,

where ΔNk(t) = Nk(t+Δt−)−Nk(t−) is the number of the events occurring over the interval [t, t+Δt). The inclusion

of a dependence on the history for process � in the intensity for type k events accommodates the association

between processes. For continuous time processes where at most one event can occur at any time, these intensity

functions fully define the multivariate counting processes (Gill, Keiding, & Andersen, 1993).

While this formulation completely specifies the multivariate process, in the context of clinical trials it is undesirable

to assess treatment effects conditional on endogeneous variables (Kalbfleisch & Prentice, 2002) and hence intensity

functions do not offer an appealing framework for analyses. Instead treatment effects are more naturally expressed

in terms of marginal proportional hazards regression models of the form

λk(t|Z) = λ0k(t) exp(βkZ) (1)

112



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

where λ0k(t) is an unspecified positive function, βk is a regression parameter and Z is a fixed covariate which

equals 1 for individuals receiving the experimental treatment and zero for those receiving a control therapy. The

marginal hazard ratio reflecting the effect of treatment on type k events is then simply exp(βk). The cumula-

tive baseline hazard function is Λ0k(t) =
∫ t

0
λ0k(u)du and the marginal survivor function is Fk(t|Z; θk) = P(Tk ≥

t|Z; θk) = exp(−Λ0k(t)eβkZ), where θk contains the regression coefficient βk and the parameters indexing λ0k(·).
When marginal models of this type are specified it is necessary to address the association in the failure times dif-

ferently than is done for intensity-based analyses. This is conveniently achieved using copula functions (Nelsen,

2006).

A copula function Cφ(u1, . . . , uK) in K dimensions defines a multivariate distribution on the unit hypercube [0, 1]K

with uniform margins. Parametric copula functions are indexed by a parameter denoted by φ, which characterizes

the association between the components of the marginal quantities. Such functions offer a convenient way of

constructing multivariate distributions with marginal distributions of a specified form. Specifically, the marginal

probability integral transformation of each random variable can be applied to create a K dimensional vector of

uniform random variables. These in turn are then viewed as the components of a multivariate uniform random

variable with their joint distribution governed by a given copula. Thus the joint survival function F12(t1, t2|z) =

P(T1 ≥ t1,T2 ≥ t2|z) can be specified by linking the two marginal survival functions via a copula function

F12(t1, t2|z;Ω) = Cφ(F1(t1|z; θ1),F2(t2|z; θ2)) ,

where Ω = (θ′, φ)′ with θ = (θ′1, θ
′
2)′. The Clayton copula is widely used in survival analysis and yields a joint

survival distribution of the form

Cφ(F1(t1|z; θ1),F2(t2|z; θ2)) =
(
[F1(t1|z; θ1)]−φ + [F2(t2|z; θ2)]−φ − 1

)−1/φ
.

The degree of association between two failure times is often expressed in terms of Kendall’s τ which is given by

τ = φ/(φ + 2) (0 ≤ τ ≤ 1) for the Clayton copula where τ = 0 and τ = 1 correspond to the cases of independence

and perfect association respectively.

2.2 A Model for Event-Dependent Censoring

When multiple clinical events arise investigators often withdraw patients from trials if there is a perception that

the randomized treatment is no longer appropriate. If subjects are censored at the time of study withdrawal,

this creates a type of event-dependent censoring which leads to inconsistent parameter estimates under partially

specified models. Consider a setting in which the intention is to follow individuals over the interval [0,C†) where

C† is a time of administrative censoring. Let C denote a random time of withdrawal where 0 < C ≤ C†. Let

NC(t) = I(C ≤ t) and {NC(s), 0 < s} be the counting process for the random censoring time where dNC(t) = 1

if random withdrawal occurs at time t and dNC(t) = 0 otherwise. Let Y†(s) = I(s ≤ C†), Y(s) = I(s ≤ C),

Ȳ(s) = Y(s)Y†(s) and Ȳk(s) = Ȳ(s)I(s ≤ Tk) indicate whether an individual is under observation and at risk

of a type k event. Let dN̄k(t) = Ȳk(t)dNk(t), N̄k(t) =
∫ t

0
dN̄k(s), and N̄(t) = (N̄1(t), . . . , N̄K(t))′. We observe

{(N̄(s),NC(s)), 0 < s ≤ C†,Z} and let H̄(t) = {(N̄(s),NC(s)), 0 < s < t,Z} denote the observed history for the event

and censoring processes.

The intensity for the random censoring time C is

λc(t|H̄(t)) = lim
Δt→0

P(ΔNC(t) = 1|H̄(t))
Δt

, (2)

which accommodates a dependence between the censoring, event times, and possibly the treatment assignment.

When the analysis of the failure times adopted for multivariate failure time data (Wei et al., 1989) is often based

on a working independence assumption, it is the dependence on the event times that is particularly problematic.

The dependence on the event history can take many forms, but in what follows we consider a particular model with

the censoring intensity

λc(t|H̄(t)) = λc
0(t) exp(α1N1(t) + α2N2(t)) , (3)

where λc
0
(t) is a baseline intensity for censoring and (α1, α2)′ are regression coefficients which reflect how the risk

of withdrawal changes upon the occurrence of type 1 and type 2 events; we write dΛc
0
(t) = λc

0
(t)dt. Thus exp(αk)

is the multiplicative factor by which the intensity of censoring increases upon the occurrence of a type k event,

k = 1, 2, and if α1 = α2 = 0, min(C,C†) is an independent right-censoring time.
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3. Asymptotic Biases of Marginal Estimators

In this section, we investigate the asymptotic bias caused by event-dependent censoring when marginal estimating

equations are specified based on a working independence assumption, as is done for the multivariate approach of

Wei et al. (1989). We first present the general framework and then study the one-sample estimates in detail. The

data for a sample of n independent individuals are denoted by {(N̄i(s),NC
i (s)), 0 < s ≤ C†, Zi, i = 1, . . . , n} where

we introduce the subscript i to index individuals. We assume that the marginal distribution of Tik |zi is exponential

with λk(t|zi) = λik(t) = λk exp(βkzi) and the joint distribution of (Ti1,Ti2)|Zi is defined through a Clayton copula.

The naive marginal estimating equations are

Uk1(t) =
n∑

i=1

Ȳik(t) (dNik(t) − dΛik(t)) (4)

Uk2(β) =

n∑
i=1

∫ ∞
0

Ȳik(u) (dNik(u) − dΛik(u))zi) (5)

where dΛik(t) = exp(βkzi)λ0k(t)dt, k = 1, 2. The profile estimate of the cumulative baseline hazard for type k events

is then

Λ̃0k(t; βk) =

∫ t

0

dΛ̂0k(u; βk) =

∫ t

0

∑n
i=1 Ȳik(u)dNik(u)∑n

i=1 Ȳik(u) exp(βkzi)
. (6)

The estimate β̂k is obtained as the solution to

n∑
i=1

∫ ∞
0

Ȳik(u)(dNik(u) − dΛ̃0k(u; βk) exp(βkzi))zi = 0 , (7)

and upon substitution of β̂k into (6) the Breslow estimate Λ̂0k(t) = Λ̃0k(t; β̂k) is obtained.

With completely independent censoring the above estimating equations yield consistent estimators of the cumula-

tive baseline hazard function Λ0k(t) =
∫ t

0
λ0k(u)du, as well as the regression coefficient βk, k = 1, 2. If censoring is

governed by an intensity featuring a dependence on the event history, (4) and (5) may yield inconsistent estimators

(Robins & Finkelstein, 2000; Datta & Satten, 2001). The limiting value of the estimator of the cumulative baseline

hazard function under a general censoring scheme is∫ t

0

dΛ∗0k(u; β∗k) =

∫ t

0

E(Ȳik(u)dNik(u))

E(Ȳik(u) exp(β∗kzi))
, (8)

where β∗k is the limiting value of β̂k obtained as the implicit solution to

∫ ∞
0

E
[
Ȳik(t)zidNik(t)

]
−

E
[
Ȳik(t) exp(βkzi)zi

]
E
[
Ȳik(t) exp(βkzi)

] E
[
Ȳik(t)dNik(t)

]
. (9)

The expectation E(·) in (8) and (9) is taken with respect to the true process defined here in terms of the marginal dis-

tributions, the Clayton copula, and the event-dependent censoring intensity (3). Some details on these derivations

are given in Appendix A.

To illustrate the bias of the naive marginal approach in estimation of the cumulative hazard function, we consider

a separate analysis of two treatment groups and hence focus on the one-sample problem; in this case we restrict

attention to (4) with zi = 1 for the treatment group and zi = 0 for the control group. The Nelsen-Aalen estimator

of Λ0k(t) is

Λ̂0k(t|Z = z) =

∫ t

0

∑n
i=1 Ȳik(t)I(Zi = z)dNik(t)∑n

i=1 Ȳik(t)I(Zi = z)
. (10)

The bias of this estimator is investigated empirically by simulating a data set of n = 2000 individuals having an

equal risk of events with λk = 2, k = 1, 2 and C† chosen to give 14% administrative censoring. A Clayton copula

model was used to induce an association between the failure times with τ = 0.2 and τ = 0.6. The censoring

intensity was based on (3) with α1 = log 1.3 and α2 = log 3.5, and λc
0
(t) = λc

0
was chosen to give 50% net

censoring for type 1 events. Figure 1 displays the true cumulative hazard function and naive estimates based on
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the Nelson-Aalen estimator when τ = 0.2 and τ = 0.6; the left panel contains the results for type 1 events and

the right panel for type 2 events. The plots demonstrate that the naive method yields a conservative estimate of

the cumulative hazard function with the magnitude of this bias increasing with time. The stronger the association

between the failure times, the greater the empirical bias. It is interesting to note that the bias is greater for the

estimated cumulative hazard for type 1 events since the strength of the dependence between type 2 event times and

censoring is greatest.
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Figure 1. Plots of the true cumulative hazard function for type 1 (left panel) and type 2 (right panel) events with

corresponding limiting values of naive (unweighted) Nelson-Aalen estimates when τ = 0.2 and τ = 0.6; bivariate

failure time model defined by a Clayton copula with exponential margins (λ1 = λ2 = 2); C† chosen to give 10%

administrative censoring; censoring intensity had α1 = log 1.3 and α2 = log 3.5 with λc
0

chosen to given 50% net

censoring rate

4. IPCW Weighted Marginal Regression

4.1 IPCW Weighted Estimating Equations

The estimating Equations (4) and (5) can be modified to yield consistent estimators by introducing inverse proba-

bility of censoring weights (Robins, 1993). If, as in (3), the censoring intensity for individual i at time t depends on

the history H̄i(t), then let Gi(t) = P(Ci ≥ t|H̄i(t)) which by the product integration (Gill et al., 1993) can be written

as Gi(t) =
∏

u<t[1 − dΛc(u|H̄i(u))]. Furthermore let G(t) be survival function of the random right censoring time

under the scenario of independent random censoring, in which case the censoring intensity is a hazard function

with λc(t)dt = dΛc(t); note we drop the subscript 0 here since it is no longer a baseline censoring intensity. Then

again by product integration we obtain G(t) =
∏

u<t[1 − dΛc(u)].

The marginal estimating functions corresponding to (4) and (5) are then defined as

Uk1(t) =
n∑

i=1

G(t)Ȳi(t)
Gi(t)

[dNik(t) − dΛik(t)] (11)

Uk2(βk) =

n∑
i=1

∫ ∞
0

G(u)Ȳi(u)

Gi(u)
(dNik(u) − dΛik(u)) zi , (12)

respectively. The weights are introduced to ensure that the resulting marginal estimating equations are unbiased

and hence that consistent estimators are obtained. We show E(Uk1(t)) = 0 by taking the expectation in stages. First

we note that

EYi(t)(Uk1(t)|Hi(t), dNi(t)) = G(t)Yi(t)(dNik(t) − dΛik(t))
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and then EdNi(t)[G(t)Yi(t)(dNik(t) − dΛik(t))|Hi(t)] is given by

G(t) [Yi(t)E(dNik(t)|Hi(t)) − dΛik(t))]

and taking the expectation of this with respect to the process history gives zero. By similar arguments it can be

shown that the expectation of (12) is also zero.

From the derivations above it is clear that G(t) is not necessary to guarantee unbiasedness of the estimating equa-

tions. In fact it will have no role in estimation of the baseline hazard function since it cancels in the numerator and

denominator of Breslow’s estimator given in (11). Robins (1993) showed, however, that inclusion of G(t) in (12)

yields estimators of βk which are more efficient than those obtained when G(t) = 1. When G(t) is set to 1 we refer

to these as regular IPCW weights and when G(t) is defined more generally we refer to these as stabilized weights.

In practise, of course, to use (11) and (12) the functions G(t) and Gi(t) must be consistently estimated. Let Λc(t) =∫ t
0

dΛc(u)du where dΛc(u) = λc(u)du is the crude censoring hazard under the working independence assumption

between the censoring and event processes. In this case Λc(u) is estimated simply as

Λ̂c(t) =
∫ t

0

∑n
i=1 Ȳi(u)dNC

i (u)∑n
i=1 Ȳi(u)

which gives

Ĝ(t) =
∏
u<t

[
1 − dΛ̂c(u)

]
,

the usual Kaplan-Meier estimate of the survival function for the censoring distribution.

Correct specification of the model for Gi(t) is more crucial since it is what renders the inverse weighted estimating

functions unbiased. If one believes the censoring intensity function (3) is correct, one can adopt it in the following.

Alternatively, we prefer to relax the proportionality assumptions in (3) and consider a more robust stratified model

for the censoring intensity with dΛc(t|Hi(t)) = dΛc(t|Ni1(t) = l,Ni2(t) = m) = dΛc
lm(t), where l,m = 0, 1. The

corresponding nonparametric estimate is then

dΛ̂c(t|H̄i(t)) =
∑n

i=1 I(Ci = t,Ni1(t−) = l,Ni2(t−) = m)∑n
i=1 I(Ci ≥ t,Ni1(t−) = l,Ni2(t−) = m)

, (13)

if Ni(t−) = (l,m)′. Then again by product integration we have

Ĝi(t) =
∏
u<t

[
1 − dΛ̂c(u|H̄i(u))

]
.

Upon substituting these estimates into (11), we obtain the weighted Breslow estimator of the cumulative baseline

hazard function for type k events

∫ t

0

dΛ̂w
0k(u) =

∫ t

0

∑n
i=1 Ȳik(u)dNik(u)/Ĝi(u)∑n

i=1 Ȳik(u) exp(̂βkzi)/Ĝi(u)
,

where β̂k is the estimate obtained from the weighted score function for the kth type of event:

n∑
i=1

∫ ∞
0

Ĝ(t)Ȳik(t)

Ĝi(t)

⎡⎢⎢⎢⎢⎢⎣zi −
∑n

i=1 Ȳik(t) exp(βkzi)zi/Ĝi(t)∑n
i=1 Ȳik(t) exp(βkzi)/Ĝi(t)

⎤⎥⎥⎥⎥⎥⎦ dNik(t) . (14)

The limiting distribution of estimated regression coefficients are given by the following theorem.

Theorem 4.1 Under regularity conditions, if Ĝ(t)/Ĝi(t) is a consistent nonparameteric estimate of G(t)/Gi(t), then√
n(̂βk − βk) converges in distribution to a vector of zero-mean normal random variable with a variance that can

be consistently estimated by Î−1
k Σ̂k Î−1

k , where Îk = −n−1∂Uk (̂βk)/∂βk and Σ̂k = n−1∑n
i=1 U2

ik (̂βk).

Remark 4.1 By the multivariate central limit theorem (
√

n(̂β1 − β1),
√

n(̂β2 − β2), . . . ,
√

n(̂βK − βK)) converges in

distribution to a vector of zero-mean multivariate normal random variable with a covariance matrix that can be

consistently estimated by Σ̂ where the (l,m) element is n−1∑n
i=1 Î−1

l Uil (̂βl)Uim (̂βm)Î−1
m , l,m = 1, . . . ,K.
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Remark 4.2 The variance estimator is the usual robust sandwich estimator that can be directly obtained from

R/S-PLUS or SAS using a suitably constructed dataframe in the counting process format.

Remark 4.3 The global estimate of treatment is simply a linear combination of all component-specific estimates of

treatment effect β̂k, k = 1, . . . ,K,

β̂c = c(̂β)′β̂ , (15)

where β̂ = (̂β1, . . . , β̂K), the weight c(̂β) = Σ̂(̂β)−1Ĵ[̂J′Σ̂(̂β)−1J]−1 is chosen to estimate the weight matrix to min-

imize the variance in the class of all linear estimators; Σ̂(̂β) is the estimate for the variance-covariance matrix of

β̂ given in Remark 4.1, and J = (1, . . . , 1)′. An asymptotically equivalent combined estimate can be obtained by

fitting a single Cox model by stratifying on event type and constraining the coefficients to be the same for the

different types of events (Therneau & Grambsch, 2000).

5. Empirical Investigation

Simulation studies were conducted to assess the finite-sample performance of the estimators obtained through

the IPCW marginal estimating equations. The failure times T1 and T2 were generated using a Clayton copula

with exponential margins given the treatment assignment. Without loss of generality we set C† = 1. For a

given value of the association parameter φ, λ1 and λ2 were determined to give a particular stochastic ordering

q = P(T1 < T2|z = 0) and rate of administrative censoring p for T = min(T1,T2) (i.e. P(T < C†) = p).

We define the intensity for the random censoring time according to (3) with λc
0
(t) = λc

0
. For given (α1, α2)′, λc

0
is

specified to ensure a prescribed probability of observing the first event in the control arm P(T1 < C|z = 0) = π is

satisfied. We set β1 = β2 = log 0.80, τ = 0.4 and varied q = P(T1 < T2|z = 0) over 0.25, 0.50 and 0.75. We set

α1 = log 1.3 and α2 = log 3.5 and set λc
0

so that P(T1 < C|z = 0) = 0.4. The regression coefficients were obtained

by solving (4) and (5) to obtain unweighted estimates, and (11) and (12) to obtain weighted estimates with G(t) = 1

or more generally. The estimate β̂c of (15) is a pooled estimate of β̂1 and β̂2.

Table 1. Empirical results from simulation studies examining the frequency properties of estimators of the marginal

regression coefficients (Type 1 and Type 2) and global estimates (Global) under dependent censoring

P(T1 < T2|z = 0)

0.25 0.50 0.75

Event Weight BIAS ESE ASE BIAS ESE ASE BIAS ESE ASE

Type 1 None 0.015 0.145 0.146 0.006 0.141 0.140 0.000 0.136 0.134

IPCW 0.001 0.172 0.172 -0.003 0.184 0.173 -0.004 0.168 0.159

Stabilized IPCW 0.003 0.152 0.153 0.000 0.151 0.147 -0.000 0.142 0.138

Type 2 None 0.008 0.114 0.113 0.004 0.130 0.129 0.000 0.151 0.154

IPCW 0.009 0.116 0.117 0.005 0.144 0.143 0.001 0.180 0.179

Stabilized IPCW 0.009 0.113 0.113 0.004 0.130 0.129 -0.000 0.151 0.153

Global None 0.011 0.109 0.110 0.005 0.116 0.117 0.001 0.122 0.122

IPCW 0.006 0.120 0.121 0.002 0.140 0.143 -0.001 0.146 0.141

Stabilized IPCW 0.007 0.112 0.113 0.003 0.122 0.120 -0.000 0.126 0.125

Note: Weighted estimates are obtained by inverse probability weighted estimating equations with weights 1/Gi(t)
and stabilized weights G(t)/Gi(t).

The summary statistics of the estimated regression coefficients are reported in Table 1 including the empirical bias

(Bias), the empirical standard error (ESE), and the average robust standard error (ASE) based on the large sample

results. The simulations were conducted with 2000 samples each of n = 500 individuals. There is generally very

good agreement between the empirical and average asymptotic standard errors in all settings. While the biases are

generally quite small in the unweighted analyses, it is apparent that the impact of dependent censoring is different

for the two marginal parameters and the magnitude of bias is influenced by both the stochastic ordering of the

events as well as the (α1, α2)′ parameters. That is, the bias is greater for type 1 events since the dependence

between the time of the type 2 event and censoring is greatest (this is what induces the dependent censoring

from marginal analyses of type 1 events). The empirical biases of the weighted estimators are generally smaller
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indicating the advantages of inverse weighting. The estimates obtained using the weight 1/Gi(t) have considerably

larger standard errors than the estimates obtain using the stabilized weight G(t)/Gi(t), which are in turn much

closer to the standard errors of the unweighted analyses. Thus the weight function G(t)/Gi(t) leads to estimator

with the best performance in that it provides protection against bias induced by dependent censoring at the price

of a relatively small increase in the standard error.

6. Application

Here we consider data from a trial of 380 breast cancer patients with skeletal metastases (Hortobagyi et al., 1998).

The experimental treatment is a bisphosphonate which is studied for its palliative effect of reducing the incidence

of fractures and the need for radiotherapy for the treatment of bone pain. Following randomization patients were

followed for up to 24 months for the occurrence of these types of events and interest lies in the marginal analysis of

the time to first fracture and the time to first round of radiotherapy, as well as a global assessment of the treatment

effect using a Wei-Lin-Weissfeld analysis. To address the issue of the competing risks of death we adapt the

marginal analyses to be based on fracture-free survival and radiation-free survival.

Figure 2 gives plots of the cumulative intensity for censoring by fracture status (left panel) and radiotherapy status

(right panel). The slope of the cumulative intensity for censoring following the occurrence of the first fracture is

considerably steeper than it is for fracture-free individuals, revealing a dependence between fracture status and

censoring. The same pattern is seen in the right panel in that the rate of censoring for patients who have had one

round of radiotherapy is higher (reflected by the steeper slope) than those who have not required radiotherapy.

These plots are suggestive of a need to deal with dependent censoring for marginal analyses.
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Figure 2. Plot of cumulative intensity function for censoring (13) by fracture status (left panel) and radiotherapy

status (right panel) for placebo arm patients

The estimates of the cumulative baseline hazard for the analysis based on fracture-free survival and radiotherapy-

free survival are given in Figure 3. There is empirical evidence of a greater effect of dependent censoring in the

fracture-free survival analysis in that there is a bigger difference between the unweighted and weighted estimates

than is seen for the radiotherapy-free survival analysis. This is compatible with the simulation results in that the

larger difference between the cumulative intensities for censoring by radiotherapy status in Figure 2 (in comparison

to the estimates of the censoring intensity by fracture status), suggests the dependence between censoring and

radiotherapy is greater. This in turn will have a greater effect on the estimates related to the fracture-free survival

endpoint. While the effects are not large, there is a suggestion that the unweighted analysis yields a conservative

estimate of the event rates since the naive estimate is lower than either of the weighted estimates.
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Figure 3. Plot of estimated cumulative baseline hazard function
∫ ∞

0
dΛ̂w

0k(u; β̂k)

Table 2 contains the results of the marginal and global regression analyses. Here we see the estimates of the

treatment effect from the use of stabilized weights are slightly larger than those obtained from an unweighted

analysis. The relative risk reduction for fracture-free survival was 22.6% for the unweighted analysis compared

to a 24.9% relative risk reduction from analysis using stabilized weights. Moreover, in contrast to the unweighted

analysis, the results based on the stabilized weights give statistically significant evidence of a treatment benefit

for fracture-free survival (p= 0.0465). Very similar estimates are seen for the radiotherapy-free survival endpoint

for unweighted and weighted analyses using stabilized weights. Finally, the use of stabilized weights incurs a

relatively small penalty in terms of efficiency as the standard errors are very close to those of the unweighted

analyses. For the global analysis, there is a 32.3% relative risk reduction from the unweighted analysis and a

33.2% reduction from the weighted analysis using stabilized weights.

Table 2. Estimates obtained by fitting separate marginal Cox models and using the global Wei-Lin-Weissfeld

analysis (Global) in the analysis of data from the trial of breast cancer patients with skeletal metastases; unweighted

and weighted analyses

Endpoint Weight EST SE HR 95% CI p−value

Fracture None -0.256 0.142 0.774 (0.586, 1.023) 0.0714

IPCW -0.483 0.188 0.617 (0.427, 0.891) 0.0100

Stabilized IPCW -0.286 0.144 0.751 (0.567, 0.996) 0.0465

Radiation None -0.547 0.152 0.579 (0.430, 0.780) 0.0003

IPCW -0.505 0.158 0.604 (0.442, 0.823) 0.0014

Stabilized IPCW -0.550 0.154 0.577 (0.426, 0.781) 0.0004

Global None -0.393 0.104 0.675 (0.551, 0.827) 0.0002

IPCW -0.493 0.144 0.611 (0.461, 0.810) 0.0006

Stabilized IPCW -0.404 0.125 0.668 (0.523, 0.853) 0.0012

Note: Weighted estimates are obtained by inverse probability weighted estimating equations with weights 1/Gi(t)
and stabilized weights G(t)/Gi(t).

7. Discussion

Multivariate failure time data are frequently encountered in clinical trials and observational studies. Frailty models

are a popular choice for the analysis of multivariate failure time data, but they do not yield estimates of treatment
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effect which have a simple marginal interpretation. Such models can be formulated using copula functions, but it is

undesirable to base inferences on a particular parametric model and for this reason the marginal methods proposed

by Wei et al. (1989) are preferred. Inference regarding regression coefficients in this framework are carried out by

use of a robust sandwich-type variance estimate easily computed in SAS or R/S-PLUS (Therneau & Grambsch,

2000).

With multivariate failure time data, studies are usually designed to follow individuals for the occurrence of all

types of events up until some administrative censoring time. In this setting however, event occurrence may cause

investigators to withdraw patients from a trial if it is thought that following the protocol is no longer in the patients’

best interests. This can occur, for example, when one or more clinical endpoints are observed. The simplicity of

the marginal analysis of Wei et al. (1989) arises from the working independence assumption. This enables the use

of standard software for point estimation, but the validity of this hinges on the censoring being independent of the

event processes. When this is not satisfied inconsistent estimates are obtained for all marginal parameters including

the cumulative baseline hazard functions and the regression coefficients from the marginal Cox models. Use of

inverse probability of censoring weights are known to address this problem (Robins, 1993) and we have shown

that this strategy can be put to good use in the context of multivariate failure time data. In this study, we proposed

a marginal IPCW approach to analyze multivariate failure times with event-dependent censoring and demonstrated

the effectiveness of the proposed approach using simulation studies. It offers a viable approach to correcting for

event-dependent censoring when data from each type of event are to be used for analyses. An alternative, less

efficient approach to this problem would be to artificially censor individuals after the occurrence of the first event.

This creates a competing risk problem for which one could use standard cause-specific Cox regression models.

Alternatively models based on the cumulative incidence function could be employed as developed by Fine and

Gray (1999).

A. The Limiting Value of Unweighted Estimators

The numerator of (8), E(Ȳik(t)dNik(t)), is calculated by noting

E(Ȳik(t)dNik(t)) = EZi {[EȲik(t)|Zi
E(dNik(t)|Ȳik(t),Zi)]}

= EZi {P(Ȳik(t)) = 1|Zi)Pr(dNik(t) = 1|Ȳik(t) = 1,Zi)}
This gives

1∑
z=0

P(Zi = z)P(dNik(t) = 1, Ȳik(t) = 1|Zi = z)

In the same way, the denominator E(Ȳik(t) exp{βzi}) can be obtained as

1∑
z=0

exp(βkz)P(Zi = z)P(dNik(t) = 1, Ȳik(t) = 1|Zi = z) .

The probabilities P(Ȳik(t) = 1|zi = z) can be obtained analytically under the marginal models, Clayton copula (2)

and event-dependent censoring mechanism (3). Hence the limiting value of the estimator of the baseline cumulative

hazard function dΛ∗
0k(t) can be obtained. The limiting value of estimators of the regression coefficients are obtained

following these calculations from (9).

B. Proof of Theorem 4.1

The following derivations are provided in the context of a more general marginal Cox model with a vector of time-

varying covariates, and we suppress the dependence on the type of event, k. For a random sample of n subjects, the

observed data consist of {N̄i(·), Ȳi(·),Zi(·), i = 1, . . . , n). We let S (k)(β, t) = n−1∑n
i=1 Ȳi(t)Zi(t)⊗k exp{Z′i (t)β}/Gi(t)

and s(k)(β, t) = E(S (k)(β, t)), where k = 0, 1, 2 and a⊗0 = 1, a⊗1 = a, and a⊗2 = aa′. We also let Z̄(β, t) =
S (1)(β, t)/S (0)(β, t), z̄(β, t) = s(1)(β, t)/s(0)(β, t) and

In =
1

n

n∑
i=1

∫ C†

0

{Zi(t) − Z̄(β0, t)}⊗2Ȳi(t)wi(t)/(nS (0)(β, t))dNi(t) .

Here we assume administrative censoring at C† and impose the following regularity conditions:

1) P(Ci ≥ C†) > 0, i = 1, . . . , n;
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2) Ni(C†), i = 1, . . . , n are bounded by a constant;

3) |Zji(0)| + ∫ C†

0
|dZji(t)| ≤ K for all j = 1, . . . , p and i = 1, . . . , n, where Zji(t) is the jth component of Zi(t) and

K is a constant.

4) I = E
[∫ C†

0
{Zi(t) − z̄(β0, t)}⊗2Yi(t)wi(t) exp{Z′i (t)β0}dΛ0(t)

]
is positive definite.

5) In = I + op(1).

Proof. We first establish the asymptotic normality of
√

n(̂β− β0) using the true weight function wi(t) = G(t)/Gi(t),
and then prove that the effect of using a nonparametric estimation of wi(t) can be ignored in the variance estimation.

Consider the weighted Cox log partial likelihood that leads to the partial score function (14),

L(β,C†) =
∑
i≤n

∫ C†

0

wi(u)Yi(u){Z′i (u)β − log R(β, u)}dNi(u) , (16)

where R(β, u) = nS (0)(β, u). By Lemma A2 of Hjort and Pollard (1993), we can expand log R(β, u) around the true

value β0

log R(u, β0 + x) − log R(u, β0) = Z̄′(u)x +
1

2
x′V(u)x + ν(x, u) , (17)

where V(u) =
∑n

i=1 wi(u)Yi(u) exp{Z′i (u)β0}{Zi(u) − Z̄i(u)}⊗2/R(β0, u). The reminder term ν(u, x) is bounded by
4
3

maxi≤n |(Zi(u) − Z̄(u))′x|.
Using (17), we expand L(β,C†) around the true value β0 to approximate

L(β0 + t/
√

n) − L(β0) (18)

by

∑
i≤n

∫ C†

0

[
n−

1
2 (Zi(u) − Z̄(u))′t − 1

2
n−1t′V(u)t − ν( t√

n
, u)

]
wi(t)Yi(u)dNi(u) ,

which can be further written as

U′nt − 1

2
t′Int − rn(t), (19)

where Un = n−
1
2
∑n

i=1

∫ C†

0
(Zi(u)− Z̄(u))wi(u)Yi(u)dNi(u) and rn(t) =

∑
i≤n

∫ C†

0
νn(t/

√
n, u)dNi(u), which is bounded

by
∑

i≤n

∫ C†

0
4
3
(2K)3|t|3n−

3
2 dNi(u) where K is the absolute bound on the covariates. The latter term is O(n−

1
2 ) and

goes to zero as n → ∞. Hence, (18) can be approximated by U′nt − 1
2
t′Int, which can be maximized at t = I−1

n Un.

Note that its concavity in t follows from the convexity of log R(β, u) in β. Suppose β̂ is a solution to the estimating

equation (14) that maximizes the log partial likelihood (16), then
√

n(̂β − β0) maximizes (18). By the assumption

of (5) and the extension of the Basic Corollary of Hjort and Pollard (1993),

√
n(̂β − β0) = I−1Un + op(1), (20)

and the asymptomatic normality of β̂ can be established if the asymptomatic normality of Un is established.

We now follow the arguments in Lin, Wei, Yang, and Ying (2000) to establish the asymptotic normality of Un. Let

Mi(t) =
∫ t

0

wi(u)Ȳi(u)dNi(u) −
∫ t

0

wi(u)Ȳi(u) exp{Z′i (u)β0}dΛ0(u) ,

then write the partial score function as

Un(β0, t) =n−
1
2 M̄Z(t) −

∫ t

0

Z̄n(u)dM̄(u) , (21)

where M̄(t) =
∑

i≤n Mi(t) and M̄Z(t) =
∑

i≤n

∫ t
0

Zi(u)dMi(u). For fixed time t, M̄(t) and M̄Z(t) are sum of iid

zero-mean random variables. By the multivariate central limit theorem, (n−
1
2 M̄(t), n−

1
2 M̄Z(t)) converges in finite
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dimensional distribution to a zero-mean Gaussian processes (WM,WMZ). Note that Mi(t) is the difference of

two monotone functions. The bounded variation assumption (3) implies that Zi(·) is bounded and we may assume

without loss of generality that Zi(·) ≥ 0; otherwise Zi(·) can be written as difference of two nonnegative, non-

decreasing functions by the Jordan decomposition. Thus each component of
∫ t

0
Zi(u)dMi(u) is also a difference

of two monotone functions in t. Therefore, by the weak convergence of the monotone class as in the example of

2.11.16 in var der Vaart and Wellner (1996), (n−
1
2 M̄(t), n−

1
2 M̄Z(t)) is tight and converges weakly to (WM,WMZ)

and it can be verified that both satisfy Kolmogorov-Chentsov criterion (e.g. Corollary 16.9 in Kallenberg, 2010)

so that they have continuous sample path with respect to the Euclidean distance.

By the Skorokhord strong embedding theorem (Shorack & Wellner, 1986, pp. 47-48), there exists a probabil-

ity space in which (n−
1
2 M̄(t), n−

1
2 M̄Z(t), S (1)(β0, t), S (0)(β0, t)) converges almost surely to (WM ,WMZ , s

(1)(β0, t),
s(0)(β0, t)). Note that Zi(·) ≥ 0 (i = 1, . . . , n) is a monotone function by assumption and 1/Gi(t) is nonnegative and

nondecreasing function in t; therefore, S (0)(β0, t) and S (1)(β0, t) are nonnenegative monotone functions in t. Then,

we can apply the Lemma 1 in Lin et al. (2000) twice to show that

n−
1
2

∫ t

0

S (1)(β0, u)

S (0)(β0, u)
dM̄(u)→

∫ t

0

s(1)(β0, u)

s(0)(β0, u)
dMM(u) (22)

uniformly in t almost surely. Combining this result with the convergence of n−
1
2 M̄Z toM yields the uniform con-

vergence of Un(β0, t) toWMZ (t) − ∫ t
0

z̄(β0, u)dWM(u) almost surely in the new probability space and thus weakly

in the original probability space. This limiting Gaussian process has covariance function Σ(s, t) = E[
∫ s

0
{Zi(u) −

z̄(β0, u)}dMi(u)
∫ s

0
{Zi(u) − z̄(β0, u)}T dMi(u)], 0 ≤ s, t ≤ C†, between times s and t. Then by the Basic Corol-

lary of Hjort and Pollard (1993),
√

n(̂β − β0) converges in distribution to a multivariate normal distribution

MVN(0, I−1ΣI−1).

We now prove that the nonparametric estimation of the weight function wi(t) can be ignored in the variance esti-

mation. Note that the weight wi(t) is a generic weight function W(·) evaluated at time t based on the history Hi(t)
of subject i, where H(t) is defined in Section 2.1. Therefore, we can write wi(t) = W(t,Hi(t)). We then suppress

the arguments of the function W for notational convenience. Let U(Ni(t),Yi(t), β,W) be the partial score functions

corresponding to (14). Then EH(t)(U(Ni(t),Yi(t), β0,W0) = 0 for true value β0 and the true weight function W0 as

showed in Section 4. The estimating function (14) is to solve

1

n

∑
i≤n

U(Ni(t),Yi(t), β, Ŵ) = 0 (23)

for β, by plugging in a nonparameteric estimate Ŵ. Here the Ŵ is obtained by a stratified Kaplan-Meier estimator.

Note that the partial score function U(Ni(t),Yi(t), β,W) is obtained by ∂L(Ni(t),Yi(t), β,W)/∂β, where L(·) is the log

partial likelihood function in (16). By using the accumulated Kullback-Leiber information for partial likelihood

functions as in Wong (1986), we can show that the true weight function W0 maximizes EH(t)(L(Ni(t),Yi(t), β,W))

over the set of weight functions W, where EH(t)(·) is the expectation taken with respect to the history H(t). This

indicates that the criterion of 3.11 in Newey (1994) is satisfied. Therefore, by the Proposition 2 of Newey (1994),

the nonparametric estimation of the weight function Ŵ can be ignored in calculating the asymptotic variance of β̂;
that is, the variance estimate will be the same as if Ŵ = W0.
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