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Abstract

We study the nonparametric maximum likelihood estimate of the distribution function in a type II interval censoring

model. We propose an approximate solution of the problem under a technical assumption. Some basic asymptotic

properties of the estimator are investigated.
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1. Introduction

Interval censoring models are commonly used in practice, especially in the biomedical sciences, such as in many

clinical trials and longitudinal studies, in acquired immune deficiency syndrome studies, or the studies of HIV

infection times, etc. There are two basic types of interval censoring models. In the interval censoring model case

I, also termed current status data model, the left (or right) censoring and the status variables of the original data are

observed; while in the interval censoring model case II, two censoring variables and the statuses are observed. The

type I interval censoring model is much more commonly used in practice, and there are rich statistical research

and application literature about this model, for example, Huang (1996), Bebchuk and Betensky (2000), Chen

and Jewell (2001), Yu et al. (2000), Pan and Chappell (2002). Fang and Sun (2001) studied the nonparametric

maximum likelihood estimation (NPMLE) of the doubly interval censored model. Type II interval censoring model

is less commonly used in practice, and its mechanism is more complicated, and there are some research literature on

it, for example, in the book of Groeneboom and Wellner (1992), Wellner (1995), Groeneboom (1996), Jongbloed

(1998). To our knowledge, investigation of this model is still incomplete, NPMLE of the distribution function

exists, can be given by a nonparametric EM algorithm, and its strong consistency is obtained, but its asymptotic

distribution seems not available yet. A good review of the topic of the two types of censoring models can be found

in Sun (2012). Also, these models, along with the other survival models, provide practical background for the

theory of the estimation of Banach space valued parameters.

Unlike Euclidean parameters, Banach parameters are often not
√

n estimable, in that there exists no estimator

which is consistent at rate
√

n, and when the weak limits of estimators exist, they are often non-Gaussian. Also,

unlike maximum likelihood estimators for Euclidean parameters, Banach parameters have no standard method of

estimation. For some models, setting the normal equation of the Hadamard differential (along some particular

selected direction) to zero will yield a version of the nonparametric maximum likelihood estimation (NPMLE),

although it may not be unique. The isotonic regression is another commonly used method for this problem. Orig-

inally this method is used in the optimization of a class of regression problem, such as weighted least squares

problem in the regression context, in which the response and covariate variables have some particular relation-

ship (isotonic relationship, as characterized by Theorem 1.4.1 in Robertson, Wright and Dykstra, 1988), such as

monotone relationship. Then it was found that the method can be used to solve the NPMLE for some models, as a

optimization procedure. See Robertson, Wright and Dykstra (1988) for a systematic account of this method. Early

usage of this method to compute NPMLE can be found in Grenander (1956), Chernoff (1964), Prakasa Rao (1969).
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This method works only for certain models with log-likelihood satisfying some convexity condition. For some

models, one of the methods works; for some models, both methods work; for many other models, none of the

methods works, and often approximate NPMLE can be found which maximizes the log-likelihood up to a small

constant εn, with εn → 0. Such estimates are also called εn-MLE, studied by a number of authors, such as Wald

(1949), Bahadur (1967), and Wong and Severini (1991), and are shown to have some nice properties. For interval

censoring model case II, Groeneboom and Wellner (1992), hereafter GW, studied the NPMLE of the distribution

function, which uses iterative procedures for its computation. They showed the convergence rate of n1/3 log n for

the NPMLE when the data have some mass distributed around the diagonal, otherwise the convergence rate is n1/3,

like that for censoring model case I, but the formal identification of the asymptotic distribution is not easy, although

there is a conjecture about it. Another NPMLE is the one step iteration in the iterative convex minorant algorithm,

with the true distribution as starting value. Groeneboom and Wellner justified the asymptotic distribution of the

one-step iteration “estimator”, obtained its asymptotic distribution. Since this one-step iteration is not an actual

estimator, the result can only be used as a technical tool in the further study of the NPNLE. The iterative convex

minorant is one of the computational algorithms of the isotonic regression, it makes the optimization problem into

a sequence of weighted isotonic regression problems, with the weights obtained by the values at the preceding step.

It is known that the parameter (a distribution function) in this model is not rate-
√

n estimable, not even for many

smooth functionals of it (for example, Yuan, Xu, & Zheng, 2012). Geskus and Groeneboom (1999) showed rate√
n efficient estimability for certain smooth functionals (mostly linear functionals) of this model. In this article we

study a slightly different version of this model in which we observe the statuses of two right censoring variables.

It is known that the (NP)MLE is neither always efficient, nor consistent, nor optimal (Wellner, 2005). Using the

isotonic regression method, we find an approximate NPMLE of our model in that it maximizes the averaged log-

likelihood up to a o(n−1/α) (a.s.) term (0 < α < 1/2). It can be computed in closed form, we show rate n1/3

weak consistency of it and evaluate its asymptotic distribution, study its strong consistency, convergence rate in

probability, rate
√

n estimability for certain smooth functionals of it, and for some submodels of it.

In Section 2 we describe the model, the approximate NPMLE of the underlying distribution function, and some

basic results. Section 3 gives some illustration for the uses of this model and its estimation. Relevant derivations

are given in the Appendix.

2. Approximate NPMLE of Interval Censoring Model Case II

In this model, let (Z,U,V) ∈ R+ × (R+)2, where Z ∼ F and (U,V) ∼ G are independent, and U < V a.s.. G has a

density g with respect to the Lebesque measure on (R+)2. We observe [(ui, vi, 1[zi≤ui], 1[ui<zi≤vi]): i = 1, ..., n] i.i.d.

with (U,V, 1[Z≤U], 1[U<Z≤V]) := (U,V, δ, γ), with 0 < P(δ = 1) < P(γ = 1) < 1. The density-mass function of

(U,V, 1[Z≤U], 1[U<Z≤V]) is (Groeneboom & Weller, 1992, Example 1.6, p. 5)

pF(u, v, δ, γ) = Fδ(u)(F(v) − F(u))γ(1 − F(v))1−δ−γg(u, v). (0)

They used an iterative convex minorant algorithm to compute the NPMLE F̂n(·) of F(·) based on the above model.

To study the asymptotic distribution of F̂n(·), to study the asymptotic distribution of F̂n(·), they used the follow-

ing working hypothesis: starting from the real underlying distribution function F, the iterative convex minorant

algorithm will give at the first iteration step estimator F̂(1)
n (·), which is asymptotically equivalent to the maximum

likelihood estimator F̂n(·).
Let

D→ denote convergence in distribution. GW justified the working hypothesis as below. Assuming that f (t) > 0,

g(t, t) > 0 and that g(t, ·) is left continuous at t, they obtained (Theorem 5.3, GW, p. 100)

(n log n)1/3(F̂(1)
n (t) − F(t))

D→
(
6 f 2(t)
g(t, t)

)1/3
arg max

h
{B(h) − h2},

where B(h) is the two-sided Browning motion, originating from zero, i.e., it is a zero-mean Gaussian process on R
and the increment B(r) − B(h) has variance |r − h|.
The proposed model and method. Our model below is slightly different from (0), in that we define γ = 1[Z≤V]

(instead of 1[U<Z≤V]. In Example 1.6 of GW, the density-mass function of (U,V, 1[Z≤U], 1[Z≤V]) is given as in (0),

but we find that (0) is actually the density-mass of (U,V, 1[Z≤U], 1[U<Z≤V])). The distribution PF of (U,V, δ, γ) has

the following density/mass function

pF(u, v, δ, γ) = Fδ(u)(F(v) − F(u))γ−δ(1 − F(v))1−γg(u, v) (1)
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on (R+)2 × {0, 1}2. Here our main interest is to estimate F in model (1), as g(u, v) is factored out in the model,

its estimate is straight-forward using the data (u1, v1), ...., (un, vn) by many existing methods, such as the kernel

estimator. So we assume g(·, ·) is known. The averaged log-likelihood for F is

ln(F) =
1

n

n∑
i=1

(
δi log F(ui) + (γi − δi) log(F(vi) − F(ui)) + (1 − γi) log(1 − F(vi))

)
.

The approximate NPMLE F̂n(·) of F(·) is the maximizer of ln(F) with respect to F, up to a o(n−1/α) (a.s.) term

(0 < α < 1/2). Unlike MLE for Euclidean parameters, NPMLE for infinite-dimensional parameter in likelihood

model (like F in the above model) is not straight forward. Setting the corresponding Hadamard differential of the

log-likelihood to zero often leads to nowhere. Instead, we use the method of isotonic regression. For this, re-

arrange (u1, ..., un; v1, ..., vn) in increasing order, denoted as (x1, ..., x2n), and {Δi: i = 1, ..., 2n} as the concomitants

of the {ui, vi: i = 1, ..., n}, i.e., Δi = δ j if xi = u j for some j, and Δi = γk if xi = vk for some k. In the proof of

Theorem 1 we will see that

ln(F) =
1

n

2n∑
i=1

(
Δi log F(xi) + (1 − Δi) log(1 − F(xi))

)
+ Rn := l̃n(F) + Rn

with Rn = o(n−α) (a.s.) for some 0 < α < 1/2. Let F̂n(·) be the greatest convex minorant (Robertson, Wright, &

Dykstra, 1988) based on (Δ1, ...,Δ2n), (x1, ..., x2n) and l̃n(F), as

F̂n = arg max
F

l̃n(F).

Let g1(·) and g2(·) be the margins of g(·, ·). Below, we study the asymptotic distribution of F̂n. We need the

following conditions, in which (C2) is for the averaged log-likelihood ln(F) to satisfy a convexity condition, up to

a o(n−1/α) (a.s.) term (0 < α < 1/2), so that the isotonic regression method can be applied.

(C1) f (t) > 0, g1(t) + g2(t) > 0.

(C2) E
(
(F(V)−F(U)) log(F(V)−F(U))− (1−F(U)) log(1−F(U))−F(V) log F(V)

)
= 0, where the expectation

is for (U,V).

Theorem 1 Assuming (C1) and (C2), we have

n1/3(F̂n(t) − F(t))
D→
(

4F(t) f (t)
g1(t) + g2(t)

)1/3
arg min

h
{B(h) + h2}.

Let
D
= denote equality in distribution. Note −B(h)

D
= B(h), we have arg minh{B(h) + h2} = arg maxh{−B(h) − h2} D

=

arg maxh{B(h) − h2}, which has a density symmetric about zero, as given in Corollary 3.3 of Groeneboom (1989).

Next we study the almost sure behavior of the estimator F̂n, and of any general NPMLE F̂n of F of model (1) with

or without assumption (2), we are not confined to the isotonic regression method, only assuming its existence. We

need the following two conditions.

(C3)
∫ ∞

0

∫ v
0

(√
F(u) +

√
F(v) − F(u) +

√
1 − F(v)

) √
g(u, v)dudv < ∞.

(C4)
∫ ∞

0

√
F(t)(

√
g1(t) +

√
g2(t))dt < ∞.

Theorem 2 (i) Let F̂n(·) be any NPMLE of F(·) in model (1) (with or without condition (C2)). Assume (C3), then

lim
n→∞

∫ ∞
0

|F̂n(t) − F(t)|(g1(t) + g2(t))dt = 0 a.s.

Further, when F(·) is continuous, then

lim
n→∞ sup

t
|F̂n(t) − F(t)| → 0, a.e. (G1 +G2), a.s.

(ii) Let F̂n be as in Theorem 1. Assume (C2) and (C4). Then

lim
n→∞

∫ ∞
0

|F̂n(t) − F(t)|(g1(t) + g2(t))dt = 0 a.s.
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and when F(·) is continuous, then

lim
n→∞ sup

t
|F̂n(t) − F(t)| → 0, a.e. (G1 +G2), a.s.

Below we investigate the convergence rate of the approximate NPMLE F̂n and any NPMLE F̂n of F based on

model (1) in probability. For a parameter b ∈ B, a Banach space, and a probability model pb, let bn be an estimator

of the true parameter b0 based on n i.i.d. observations from pb0
, h(pbn , pb0

) be the Hellinger distance between pbn

and pb0
: h2(pbn , pb0

) = (1/2)
∫

(p1/2
bn

(x) − p1/2
b0

(x))2dx, N[ ](ε,B, ρ) be the bracketing covering number of the family

B, of size ε with respect some semi-metric ρ on B, and H[ ](ε,B, ρ) be the bracketing entropy. It is known (LeCam,

1973; Birgé, 1983; as stated in Wellner, 2005) that the optimal rate rn of convergence in probability, of estimating

b0, in the sense rnh(pbn , pb0
) = OP(1), is determined by

nr−2
n = H[ ](r−1

n ,B, ρ).
Typically, H[ ](ε,B, ρ) = O(ε−d/α), where d is the dimension of the argument of b and α is a smoothness measure

of pb. Thus the optimal rate in this case is rn = nα/(2α+d).

For NPMLE and more generally the minimum contrast estimator, the best achievable rate r′n is determined by Birgé

and Massart (1993), for some 0 < c < ∞, as

√
n(r′n)−2 =

∫ (r′n)−1

c(r′n)−2

H1/2
[ ]

(ε,B, ρ)dε.

When H[ ](ε,B, ρ) = O(ε−d/α), the above gives r′n = nα/(2α+d) if α/d > 1/2; r′n = nα/(2d) if α/d < 1/2; and

log r′n =
√

n(r′n)−2 if α/d = 1/2. So, in this case the NPMLE can achieve the optimal rate of convergence only if

α/d > 1/2.

Let F be the collection of distribution functions F in model (1). For F, F′ ∈ F , let D(pF ||pF′) = EF(log(pF/pF′))

be the Kullback-Leibler divergence between pF and pF′ under pF . Let p1,F(δ, u) = Fδ(u)(1 − F(u))1−δg1(u) and

p2,F(γ, v) = Fγ(v)(1 − F(v))1−γg2(v), then p1,F and p2,F are density-mass functions. We need the following as-

sumptions:

(C5) EpF (log(pF/pF′ ))
α < ∞ for some α > 2, for all F′ with D(pF ||pF′) < δ for all sufficiently small δ.

(C6) Epk,F (log(pk,F/pk,F′ ))
α < ∞ for some α > 2, for all F′ with D(pk,F ||pk,F′) < δ for all sufficiently small δ, for

k = 1, 2.

Theorem 3 (i) Let F̂n be as in Theorem 2. Assume (C1) and (C5). Then,∫ ∞
0

|F̂n(t) − F(t)|[g1(t) + g2(t)]dt = OP(n−1/3), and

sup
t
|F̂n(t) − F(t)| = OP(n−1/3), a.e. (G1 +G2), when F(·) is continuous.

(ii) Let F̂n as in Theorem 1. Assume (C1)-(C2), and (C6). Then∫ ∞
0

|F̂n(t) − F(t)|[g1(t) + g2(t)]dt = OP(n−1/3), and

sup
t
|F̂n(t) − F(t)| = OP(n−1/3), a.e. (G1 +G2), when F(·) is continuous.

In both (i) and (ii) the rate of n1/3 is optimal.

Note that F in model (1) is not rate
√

n estimable, like many smooth functionals of it. There may still be certain

smooth functionals of it which are rate
√

n estimable. Geskus and Groeneboom (1999) showed this kind of result

for model (0). Groeneboom and Wellner (1992, Chapter 5.4) showed such a result for the mean of F in case I

interval censoring model. Huang and Wellner (1995) showed such a result for smooth linear functionals of the form

ν(F) =
∫

HdF, with fixed H, for type I interval censoring model, and that the plug-in estimator is efficient. In fact,

one of their purposes is to help treating estimation of smooth functionals in the case II interval censoring model.

Yuan, Xu, and Zheng (2012) showed the same functional is rate
√

n estimable for case II interval censoring model,
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without knowing the result of Huang and Wellner. Note that not all linear functionals of F are rate
√

n estimable.

For example, for fixed t0, ν(F) = F(t0) is not rate
√

n estimable, but the moments of F are (see for example,

Theorem 2 in Yuan, Xu, & Zheng, 2012). Under some conditions, van der Laan (1993) obtained the following

relationship between smooth functional, canonical gradient and empirical process: ν(θ̂n)−ν(θ) = (Pn−Pθ)(l̃ν(·; θ̂n),

where θ is a general parameter (Euclidean or Banach), θ̂n an estimator of it, and l̃ν the canonical gradient (also called

efficient influence function) of θ. This relationship allows one to investigate a class of rate
√

n estimable smooth

functionals. Below, we give a similar result for model (1) as in Huang and Wellner (1995) for model (0). For fixed

h(·) and M > 0, let the smooth (and linear) functional of F be

ν(F) =

∫ M

0

(1 − F(t))h(t)dt =
∫ M

0

H(t)dF(t), H(t) =
∫ t

0

h(s)ds.

Below we give the asymptotic distribution of the plug-in estimator ν̂n = ν(F̂n), which has nothing to do with the

asymptotic distribution of n1/3(F̂n − F), it only needs ||F̂n − F||2L2(G1+G2) = oP(n−1/2). The following conditions are

from Huang and Wellner (1995).

(C7) The support of F is a bounded interval [0,M], both G and F are dominated by the Lebesque measure.

(C8) F, g1, g2 and h satisfy

σ2 := 2

∫ M

0

F(t)(1 − F(t))
g1(t) + g2(t)

h2(t)dt < ∞.

(C9) 2(h/(g1 + g2)) ◦ F−1 is bounded and is Lipschitz on [0, 1].

Theorem 4 Let F̂n as in Theorem 1, assume the conditions there and (C7)-(C9). Then

√
n(ν(F̂n) − ν(F))

D→ N(0, σ2),

and generally ν(F̂n) is not efficient for ν(F).

Since models with Banach valued parameters are often not rate
√

n estimable, and their weak limits, if exist, are

often non-Gaussian, we cannot talk about efficiency of their estimators. However, this may be possible for some

submodels. Below we explore such a scenario. For this we first review some basic facts of efficient estimation

for Euclidean parameters. For the estimation of Euclidean parameter θ, let θn = θ0 + n−1/2b for some b ∈ C,

the complex plane. A rate n1/2 consistent estimator Tn = Tn(X1, ..., Xn) is said to be regular, if under f (·|θn),

Wn :=
√

n(Tn − θn)
D→ W for some random variable W, and the result does not depend on the sequence {θn}. Let

Z⊕V denote the summation of two independent random variables Z and V , I(θ) be the Fisher information for f (·|θ)
at θ. The convolution Theorem (Hájek, 1970) states that for any regular estimator Tn with weak limit W, there is a

random variable V such that

W = Z ⊕ V, Z ∼ N(0, I−1(θ0)).

The Cramer-Rao theorem gives the lower bound of the asymptotic variance of any asymptotically unbiased esti-

mators. The convolution theorem further characterizes the weak limit of an asymptotically optimal estimator: it is

a normal random variable with mean zero and variance I−1(θ0). An estimator is efficient iff V = 0. In many cases,

the convergence rate of Euclidean or infinite-dimensional parameters can be different from
√

n. For example, for

distributions with singularity of order α, the optimal convergence rate an estimator of its Euclidean parameter in

the model is rn = n1/(1+α), −1 < α < 1 (α � 0). In this case, the local parameter is defined as θn = θ0+ r−1
n b, and the

local likelihood ratio is often asymptotically non-normal, see Ibragimov and Has’minskii (1981). For Euclidean

parameter taking only finite number of possible values, the optimal convergence rate rn of an estimator is exponen-

tial (for example, Hammersley, 1950; Robson, 1958). For infinite-dimensional parameters, the convergence rates

of their estimators are often slower than
√

n and the weak limits are often non-Gaussian, although in some few

cases rate
√

n exist with Gaussian weak limits. When the convergence rate is not
√

n, the problem is much harder,

as the locally asymptotical normal (LAN) property no longer holds with such rates for the full model. However a

number of papers have tackled this question, such as in Millar (1985) and LeCam (1994). These authors consid-

ered very general parameter spaces, established convolution results for estimators regardless of their convergence

rates or forms of their weak limits. But these results are mostly of the existence type, not the specific type. Also,

it is unclear whether one of the two components in their convolution representation is optimally achievable. For

example, given an infinite-dimensional parameter and/or the corresponding likelihood model, although the optimal

convergence rate for estimators of this parameter can be determined in principle (LeCam, 1973; Birgé, 1983),
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but it is still unknown if there is an optimal weak limit of its estimators, and what is its specific form if it exists.

Pötzelberger, Schachermayer and Strasser (2000) gave examples in which the infinite-dimensional version of the

convolution theorem does not hold in general abstract space, but does hold under some regularity conditions. The

results are of existence type. Janssen and Ostrovski (2005) gave more detailed account of the optimal weak limit.

Their Theorem 2.3 gives a convolution result for arbitrary convergence rate rn, for linear functions of infinite-

dimensional parameter and their estimate, with the assumption that the two involved estimators are asymptotically

joint Gaussian. They gave the optimal weak limit as the minimal variance random element defined in their con-

dition (a), but how to find this random element is still not clear. Also, the joint asymptotic Gaussian assumption

can only be satisfied for a few parameters in the infinite-dimensional spaces, and in these cases often rn =
√

n.

Their Theorem 3.1 and 4.1 established convolution results for infinite-dimensional parameters in abstract spaces,

but again the results are of existence type.

A non-negative function l(·) is said bowl shaped if (i) l(x) = l(−x). (ii) {x: l(x) ≤ c} is convex for every c ≥ 0.

For rate
√

n estimable parameter θ, the asymptotic minimax theorem (Hájek, 1972) states that for arbitrary (not

necessarily regular) estimator Tn of θ, and any bowl-shaped function l(·),
lim
b→∞

lim inf
n→∞ sup

θ:
√

n|θ−θ0 |≤b
Eθl(
√

n(Tn − θ)) ≥ El(Z),

with Z as given before. Also, for non-
√

n consistent estimators, such results are unclear.

Let θn = θ0 + r−1
n b for some b ∈ C, the complex plane, rn → ∞. A rate rn consistent estimator Tn = Tn(X1, ..., Xn)

is said to be regular, if under f (·|θn), Wn := rn(Tn − θn)
D→ W for some random variable W, and the result does not

depend on the sequence {θn}. It is possible that on some submodels of the original one, both the convolution and

asymptotic minimax result can hold with rate rn �
√

n, although they are not on the original model. Motivated

from the exercises of Chapter 2 in Groeneboom and Wellner (1992), below we give such results for the type II

censoring model (1), although it is not clear whether such optimal weak limit Z is achievable by some estimator(s).

Consider the following parametric submodels of (1): fix t > 0 with f (t) > 0, and an with an → ∞, let hn(s) =

f (t)[1(t − ca−1
n ≤ s ≤ t) − 1(t < s ≤ t + ca−1

n )], with 0 < c < ∞, Hn(t) =
∫ t

0
hn(s)ds, and for |θ| < 1, let

Fn(t|θ) = F(t) + θHn(t).

Fn(t|θ) has a density (derivative) f (t|θ) = f (t)+θhn(t) = (1+θ) f (t) > 0 for all n, so Fn(·|θ) is increasing, Fn(0|θ) = 0.

Since Hn(∞) = f (t)(
∫ t

t−a−1
n

ds − ∫ t+a−1
n

t ds) = 0, Fn(∞|θ) = 1, i.e., Fn(·|θ) is a proper distribution function, and we

parametrized F(·) by a Euclidean parameter θ. Let Q(t) = 1
3

(
2 f 2(t)g1(t)

F(t) +
2 f 2(t)g2(t)

1−F(t) + f (t)g(t, t)
)
.

Theorem 5 Assume an = o(n1/3), rn = n1/2c3/2a−3/2
n Q1/2(t). Then the local log-likelihood of Fn(t, θ) satisfies the

LAN condition with rate rn, and

(i) For any rate-rn regular estimator Tn of F(t), with rn(Tn − F(t))
D→ W, we have, for some random variable V,

W = Z ⊕ V, Z ∼ N(0, 1).

(ii) For any bowl-shaped function l(·), for any estimator Tn of F(t), and b > 0,

lim inf
n

sup
θ:rn |θ|≤b

Eθl(rn(Tn − Fn(t, θ))) ≥ 1

2
E[l(Z)1(|Z| ≤ b/2].

(iii) Especially, take c3/2 = Q−7/6(t)δ for δ > 0, b = Q1/2−α(t)δ2, rn = n1/3Q1/2−α(t)δ, and l(·) = | · |, we have

sup
δ>0

lim inf
n

sup
θ:n1/3 |θ|≤δ

Eθ
∣∣∣∣∣n1/3(Tn − Fn(t|θ))

∣∣∣∣∣ ≥ 0.4344491√
2π

Q1/3(t).

3. Illustration for Applications

Interval censoring model case II is a generalization of that of case I. A common example of interval-censored

survival data occurs in medical or health studies. In clinical trials, an individual due for the scheduled observations

may miss some observations and may return with a changed status, thus contributing an interval-censored time of

the occurrence of the change. As another example, in the acquired immune deficiency syndrome (AIDS) studies,
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if a subject is HIV positive at the beginning of the study, the subject’s HIV infection time is usually determined

by a retrospective study of the subject’s history. This an interval censoring case II, with censoring variables as the

first HIV positive test and the last HIV negative test. More practical bakground can be found in Sun (2012).

Although the asymptotics of F̂n(·) is non standard, with a rate of n1/3 instead of the common n1/2, and with a

non-Gaussian weak limit, these making F̂n harder to use, but the application of F̂n(·) is not hindered by this

phenomenon. Like most standard estimators, it can be used to predict the probability of events related in this

model, or test hypothesis about a given null distribution F. When the corresponding densities f and g1 and g2 are

given, then Theorem 1 can be used to test F, construct confidence interval for F and error bounds for F̂n. The key

is to evaluate the distribution of H := arg minh{B(h) + h2}, known as the Chernoff distribution, its density function

is given in Corollary 3.3 of Groeneboom (1989). For the NPMLE F̂n(·), there are existing softwares to compute

it, for example the R-package “Decon” developed by Wang and Wang (2011). For given α, let H−1(1 − α) be the

(1 − α)-th upper quantile of the Chernoff distribution, by Theorem 1, the (1 − α)-th confidence interval for F(t) is

[F̂n(t) ± n−1/3Â(t)H−1(1 − α)],

where Â(t) =
(

4F̂n(t) fn(t)
g1(t)+g2(t)

)1/3
is an estimate of A(t) :=

(
4F(t) f (t)

g1(t)+g2(t)

)1/3
, here an estimate fn(t) of f (t) is also needed and

may be obtained by differencing of F̂n(t); g1(t) and g2(t) are either known, or can be easily estimated as the data

(Ui,Vi) (i = 1, ..., n) are directly observed. Similarly for testing H0 : F(t) = F0(t), a test statistic is given by

Tn = n1/3(F̂n(t) − F0(t)).

Under H0, Tn is asymptotically distributed with weak limit given in Theorem 1. If |Tn| > Â(t)H−1(1 − α/2), H0 is

rejected with significance level α; otherwise H0 is accepted.

In fact, since the random variable H does not depend on t, and A(t) is deterministic, under some more conditions,

we can have that n1/3(F̂n(·) − F(·)) being a tight stochastic sequence on the support space, and the resulting weak

convergence can be strengthened to that on the corresponding metric space equipped with the supreme norm. Thus

any linear functional of n1/3(F̂n(·) − F(·)) converges weakly, and the confidence interval described above can be

strengthened to confidence band, the point-wise test of H0 can be generalized to test of H′0: F(·) = F0(·) using

these linear functionals.

The interested variable X and the observed variables U and V can all be generated from the Gamma densities, with

different parameters for them to satisfy the underlying conditions,

g(x; k, θ) = [θkΓ(k)]−1xk−1e−x/θ1(x>0).

The condition V > U (a.s.) can be satisfied by specifying V = U + Z for some non-negative random variable

Z, for example from another independent Gamma distribution. In some literatures, the censoring variable are just

generated from uniform distributions. For the Gamma distribution, condition (C1) is automatic, (C3)-(C4) are

commonly used conditions for the proof of consistency of NPMLE, as in van de Geer (1993). (C5)-(C6) are easily

satisfied for the Gamma families, condition (C2) can be satisfied with suitable chosen parameters in two different

Gamma distributions for U and V . Conditions (C7)-(C9) are satisfied if we constraint the Gamma distributions on

a finite interval.
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Appendix

Proof of Theorem 1. Let

l̃n(F) =
1

n

n∑
i=1

(
δi log F(ui) + (1 − δi) log(1 − F(ui)) + γi log F(vi) + (1 − γi) log(1 − F(vi))

)

and

Rn =
1

n

n∑
i=1

(
(γi − δi) log(F(vi) − F(ui)) − (1 − δi) log(1 − F(ui)) − γilogF(vi)

)
.

Then

ln(F) = l̃n(F) + Rn,

and by (C2), Rn
a.s.
= o(n−α), ∀α < 1/2. So we only need to maximize l̃n(F) to get an approximate NPMLE F̂n of F.

It is known that approximate NPMLE enjoys many properties of the exact NPMLE (Wong & Severini, 1991), often

the former is relatively easy to compute, while the latter is often hard. To use the method of isotonic regression,

we re-written l̃n(F) in terms of the Δi’s and xi’s as

l̃n(F) =
1

n

2n∑
i=1

(
Δi log F(xi) + (1 − Δi) log(1 − F(xi))

)
.

Thus {yi := F(xi)} is an increasing sequence, and we are to maximizing, over yi’s

l̃n(F) =
1

n

2n∑
i=1

(
Δi log yi + (1 − Δi) log(1 − yi)

)

subject to 0 ≤ y1 ≤ · · · ≤ y2n ≤ 1. Let Φ(y) = y log y + (1 − y) log(1 − y), it is a strictly convex function with

derivative φ(y). By Theorem 1.5.1 of Robertson, Wright, and Dykstra (1988), especially expression (1.5.4) of p.

31, the maximization of

2n∑
i=1

(
Δi log yi + (1 − Δi) log(1 − yi)

)
=

2n∑
i=1

(
Φ(yi) + (Δi − yi)φ(yi)

)

is the same as minimization of
∑2n

i=1(Δi − yi)
2 subject to the same constraint, and the unique solution ŷi = F̂n(xi)’s

is the slope (or left derivative) of the greatest convex minorant of the cumulative-sum diagram of the points

(2n)−1(i,
∑

j≤i Δ j). This cumulative-sum diagram is given by the function c(0) = 0 and c(s) = (2n)−1∑
j≤i Δ j if

s ∈ (2n)−1(i− 1, i]. It follows that ŷi ≤ a if and only if i/(2n) ≤ arg mins{c(s)− as} (van der Vaart & Wellner, 1996,

p. 298). Let

Vn(t) =
1

2n

2n∑
i=1

Δi1(xi ≤ t), Gn(t) =
1

2n

2n∑
i=1

1(xi ≤ t),

V1,n(t) =
1

n

n∑
i=1

δi1(ui ≤ t), G1,n(t) =
1

n

n∑
i=1

1(ui ≤ t),

V2,n(t) =
1

n

n∑
i=1

γi1(vi ≤ t), G2,n(t) =
1

n

n∑
i=1

1(vi ≤ t).

Then

Vn(t) =
1

2
[V1,n(t) + V2,n(t)], Gn(t) =

1

2
[G1,n(t) +G2,n(t)]

and

F̂n(xi) ≤ a iff arg min
s
{Vn(s) − aGn(s)} ≥ xi (i = 1, ..., 2n).

For fixed t, F̂n(t) = F̂n(xi) for some xi that is just at left of t. By (C1), t − xi is asymptotically negligible. Thus,

F̂n(t) ≤ a iff arg min
s
{Vn(s) − aGn(s)} − t ≥ 0. (A.1)
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We are to find the limit distribution of n−1/3(F̂n(t) − F(t)). (Why the convergence rate of n1/3? We will see this

latter after we computed the asymptotic variance of mn,h(Z,U,V), to be defined latter). Now, let’s evaluate the limit

of probability of the event {n−1/3(F̂n(t) − F(t)) ≤ x} = {F̂n(t) ≤ F(t) + xn−1/3} for each fixed x. Thus we need to

evaluate the limit of the arg maxs event in (A.1) for a = F(t) + xn−1/3.

Make the change of variable s = t+n−1/3h, and let ŝn = arg mins{Vn(s)−aGn(s)} and ĥn = arg minh{Vn(t+n−1/3h)−
aGn(t + n−1/3h)}. Then ŝn = t + n−1/3ĥn, and so{

arg min
s

[Vn(s) − aGn(s)] − t ≥ 0
}
=

{
arg min

h
[Vn(t + n−1/3h) − aGn(t + n−1/3h)] ≥ 0

}
.

Thus we are to evaluate the limit of P(ĥn ≥ 0). Let P1,n be the empirical measure of (z1, u1), ..., (zn, un), P2,n be that

of (z1, v1), ..., (zn, vn), Pn = (P1,n + P2,n)/2, P the theoretical measure corresponding to Pn, A = {(z, u) : z ≤ u}, and

Ph means EP(h) for any measure P and function h. We have

arg min
h

[Vn(t + n−1/3h) − (F(t) + xn−1/3)Gn(t + n−1/3h)]

= arg min
h

[
Pn1A1R×[0,t+hn−1/3] − (F(t) + xn−1/3)Pn1R×[0,t+hn−1/3]

]
= arg min

h

[
Pn1A(1R×[0,t+hn−1/3] − 1R×[0,t]) − (F(t) + xn−1/3)Pn(1R×[0,t+hn−1/3] − 1R×[0,t])

+Pn1A1R×[0,t] − (F(t) + xn−1/3)Pn1R×[0,t]

]
= arg min

h

[
Pn1A(1R×[0,t+hn−1/3] − 1R×[0,t]) − (F(t) + xn−1/3)Pn(1R×[0,t+hn−1/3] − 1R×[0,t])

]
= arg min

h

[
(Pn − P)1A(1R×[0,t+hn−1/3] − 1R×[0,t]) + [P1A(1R×[0,t+hn−1/3] − 1R×[0,t])

−F(t)Pn(1R×[0,t+hn−1/3] − 1R×[0,t])] − xn−1/3
Pn(1R×[0,t+hn−1/3] − 1R×[0,t])

]
= arg min

h

[
n2/3(Pn − P)1A(1R×[0,t+hn−1/3] − 1R×[0,t]) + n2/3[P1A(1R×[0,t+hn−1/3] − 1R×[0,t])

−F(t)Pn(1R×[0,t+hn−1/3]) − 1R×[0,t])] − xn1/3
Pn(1R×[0,t+hn−1/3] − 1R×[0,t])

]
:= arg min

h
[B1,n(h) + B2,n(h) − B3,n(h)] := arg min

h
Bn(h).

Below, without confusion, for h < 0 by the notation [t, t + hn−1/3] we actually mean [t + hn−1/3, t]. We have

B3,n(h) ∼ xn1/3sign(h)
1

2

(
P(U ∈ [t, t + hn−1/3]) + P(V ∈ [t, t + hn−1/3])

)

= xn1/3 1

2

( ∫ t+hn−1/3

t
g1(u)du +

∫ t+hn−1/3

t
g2(v)dv

)
∼ x

2
[g1(t) + g2(t)]h;

B2,n(h) ∼ n2/3 1

2
sign(h)

(
E[1(Z ≤ U)1(U ∈ [t, t + hn−1/3])] − F(t)E[1(U ∈ [t, t + hn−1/3])]

+E[1(Z ≤ V)1(V ∈ [t, t + hn−1/3])] − F(t)E[1(V ∈ [t, t + hn−1/3])]
)

= n2/3 1

2
sign(h)

(
E[(1(Z ≤ U) − F(t))1(U ∈ [t, t + hn−1/3])]

+E[(1(Z ≤ V) − F(t))1(V ∈ [t, t + hn−1/3])]
)

= n2/3 1

2

∫ t+hn−1/3

t
(F(u) − F(t))[g1(u) + g2(u)]du

∼ n2/3 1

2
f (t)[g1(t) + g2(t)]

∫ t+hn−1/3

t
(u − t)du

=
1

4
f (t)[g1(t) + g2(t)]h2.
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For fixed t, let mn,h(z, u, v) = n1/6(1/2)sign(h)
(
1(z ≤ u)1(u ∈ [t, t+hn−1/3])+1(z ≤ v)1(v ∈ [t, t+hn−1/3])

)
, we have

B1,n(h) = n−1/2
n∑

i=1

(mn,h(zi, ui, vi) − Emn,h(Z,U,V)).

LetMn = {mn,h: h ∈ [−K,K]}. Then Mn(z, u, v) = n1/6(1/2)
(
1(u ∈ [t±Kn−1/3])+1(v ∈ [t±Kn−1/3])

)
is an envelope

function ofMn. We have

EM2
n(Z,U,V) = O(1),

E[M2
n1(Mn > η

√
n)]→ 0, ∀η > 0,

and

E(mn,s(Z,U,V) − mn,h(Z,U,V))2 = 1
4
n1/3E

(
1(Z ≤ U)1(t + (s ∧ h)n−1/3 < U ≤ t + (s ∨ h)n−1/3)

+1(Z ≤ V)1(t + (s ∧ h)n−1/3 < V ≤ t + (s ∨ h)n−1/3)
)2

≤ 1
2
n1/3E

(
1(Z ≤ U)1(t + (s ∧ h)n−1/3 < U ≤ t + (s ∨ h)n−1/3)

+1(Z ≤ V)1(t + (s ∧ h)n−1/3 < V ≤ t + (s ∨ h)n−1/3)
)

=
1

2
n1/3

∫ (t+(s∨h)n−1/3

(t+(s∧h)n−1/3

F(y)[g1(y) + g2(y)]dy ∼ 2−1F(t)[g1(t) + g2(t)]|s − h|,

thus

sup
|s−h|<δn

E(mn,s(Z,U) − mn,h(Z,U))2 → 0, ∀δn → 0.

Let l∞(−K,K) = {s(·): ||s|| := supt∈[−K,K] |s(t)| < ∞} be the space of all bounded real functions on [−K,K], it

is indexed by the totally bounded space (for definition c.f., VW, p. 17) ([−K,K], ρ) with rho(·, ·) = | · − · |.
Let N[ ](ε||Mn||P,2,Mn, L2(P)) be the bracketing number (c.f., VW, p. 83) of Mn, of size ε||Mn||P,2, with re-

spect to the norm L2(P). Note ||Mn||P,2 = [EM2
n(Z,U)]1/2 = O(1), so ε||Mn||P,2 = O(ε). It is obvious that the

minimum number of balls with radius ε||Mn||P,2 needed to cover Mn under the norm L2(P) is O(K/ε). Thus,

N[ ](ε||Mn||P,2,Mn, L2(P)) ≤ C/ε for some 0 < C < ∞ and so, for all δn ↘ 0,∫ δn
0

√
log N[ ](ε||Mn||P,2,Mn, L2(P))dε ≤

∫ δn
0

√
log(C/ε)dε = C

∫ ∞
log(C/δn)

√
ye−ydy→ 0.

Thus, by Theorem 2.11.23 (VW, p. 221), {B1,n(h): h ∈ [−K,K]} is asymptotically tight, and converges in distribu-

tion to the Gaussian process G on l∞([−K,K]), with mean zero and covariance function R(s, h) on [−K,K]2 given

by

R(s, h) = lim
n

(
E[mn,s(Z,U,V)mn,h(Z,U,V)] − E[mn,s(Z,U,V)]E[mn,h(Z,U,V)]

)
.

For fixed h,

E[mn,h(Z,U,V)] = n1/6 1

2
sign(h)

(
E[1(Z ≤ U)1(U ∈ [t, t + hn−1/3])] + E[1(Z ≤ V)1(V ∈ [t, t + hn−1/3])]

)

= n1/6 1

2
sign(h)

∫ t+hn−1/3

t
F(u)[g1(u) + g2(u)]du ∼ n−1/6 1

2
F(t)[g1(t) + g2(t)]h→ 0,

and for s, h > 0, note U ≤ V a.s.,

E[mn,s(Z,U,V)mn,h(Z,U,V)] = n1/3 1
4
E
(
1(Z ≤ U)1(t ≤ U ≤ t + (h ∧ s)n−1/3)

+1(Z ≤ U)1(t ≤ U ≤ t + hn−1/3)1(t ≤ V ≤ t + sn−1/3)

+1(Z ≤ U)1(t ≤ U ≤ t + sn−1/3)1(t ≤ V ≤ t + hn−1/3)

+1(Z ≤ V)1(t ≤ V ≤ t + (h ∧ s)n−1/3)
)
.
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Note

n1/3E
(
1(Z ≤ U)1(t ≤ U ≤ t + (h ∧ s)n−1/3) + 1(Z ≤ V)1(t ≤ V ≤ t + (h ∧ s)n−1/3

)

= n1/3

∫ t+(h∧s)n−1/3

t
F(u)[g1(u) + g2(u)]du ∼ F(t)[g1(t) + g2(t)](h ∧ s),

and

n1/3E
(
1(Z ≤ U)1(t ≤ U ≤ t + hn−1/3)1(t ≤ V ≤ t + sn−1/3)

)

= n1/3

∫ t+sn−1/3

t

∫ v∧(t+hn−1/3)

t
F(u)g(u, v)dudv

∼ n1/3F(t)
∫ t+sn−1/3

t
g(t, v)[(v ∧ (t + hn−1/3) − t]dv

=

(
1

2
F(t)g(t, t)(s ∧ h)2 + F(t)g(t, t)h(s − h)1(s > h)

)
n−1/3 → 0.

Similarly,

n1/3E
(
1(Z ≤ U)1(t ≤ U ≤ t + sn−1/3)1(t ≤ V ≤ t + hn−1/3)

)
= O(n−1/3)→ 0.

By the same way, for s, h < 0,

E[mn,s(Z,U,V)mn,h(Z,U,V)] ∼ F(t)[g1(t) + g2(t)](−h ∧ −s).

For s, h with sh < 0 (suppose s < 0 < h. The case h < 0 < s is similar),

E[mn,s(Z,U,V)mn,h(Z,U,V)] = −1

4
n1/3E[1(Z ≤ U)1(t + sn−1/3 ≤ U ≤ t)1(t ≤ V ≤ t + hn−1/3)]

= −1

4
n1/3

∫ t+hn−1/3

t

∫ t

t+sn−1/3

F(u)g(u, v)dudv ∼ 1

4
F(t)g(t, t)shn−1/3 → 0.

Thus we have

R(s, h) =
1

4
F(t)[g1(t) + g2(t)]r(s, h), r(s, h) = (|h| ∧ |s|)1(sh > 0).

It is easy to check that r(s, h) is the covariance function of {B(h): h ∈ R}. Here we can see why the convergence

rate of F̂n(t) is n1/3. If a rate a(n) is used with a(n) → ∞, then in the definition of mn,h(u, v, z) we should replace

n−1/3 and n2/3/n1/2 = n1/6 by a−1(n) and a2(n)/n1/2, and the asymptotic variance of mn,h(U,V,Z) would then be

O(a−1(n)[a2(n)/n1/2]2) = O(a3(n)/n), which is a non-zero constant only if a(n)3 = n.

Now we have, for all finite K > 0, on l∞([−K,K]),

Bn(h)
D⇒ 1

2

√
F(t)[g1(t) + g2(t)]B(h) +

1

4
f (t)[g1(t) + g2(t)]h2 − x

2
[g1(t) + g2(t)]h. (A.2)

Let ĥ be the minimizer of the right hand side of (A.2) above. To simplify the expression for ĥ, the following Lemma

will be used.

Lemma Let B(h) be the two-sided Brownian motion, originating from zero, a > 0, b > 0 and c are constants, then

arg min
h
{aB(h) + bh2 + ch} d

= (a/b)2/3 arg min
r
{B(r) + r2} − 1

2

c
b
.

Proof. Let h = (a/b)2/3r − 1
2

c
b , using the fact that B(σh − μ) = √σB(h) − B(μ), we have

aB(h) + bh2 + ch = a(a/b)1/3
B(r) − aB(c/(2b)) + a(a/b)1/3r2 − 1

4

c2

b
,

and

min
h
{aB(h) + bh2 + ch} = min

r
{a(a/b)1/3

B(r) − aB(c/(2b)) + a(a/b)1/3r2 − 1

4

c2

b
}.
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Let h∗ and g∗ be the minimizers of the left hand side and right hand side above, then h∗ = (a/b)2/3r∗ − 1
2

c
b simply

by the given relationship between h and r. Since, as a(a/b)1/3 > 0,

arg min
r
{a(a/b)1/3

B(r) − aB(c/(2b)) + a(a/b)1/3r2 − 1

4

c2

b
} = arg min

r
{B(r) + r2} = r∗,

the desired conclusion follows. �
Using this Lemma, we have

{ĥ ≥ 0} =
{(

4F(t)
f 2(t)[g1(t) + g2(t)]

)1/3
arg min

h
{B(h) + h2} + x

f (t)
≥ 0
}

=

{(
4F(t) f (t)

g1(t) + g2(t)

)1/3
[− arg min

h
{B(h) + h2}] ≤ x

}

=

{(
4F(t) f (t)

g1(t) + g2(t)

)1/3
arg min

h
{B(h) + h2} ≤ x

}
.

In the last step above, with the notation
D
= denotes equal in distribution, we used the fact that −B(h)

D
= B(−h)

D
= B(h),

and hence B(h) + h2 is symmetric about 0, in distribution, and so − arg minh{B(h) + h2} D
= arg minh{B(h) + h2}. �

Below we will show that ĥn = OP(1), so by (A.2) and the continuity of arg min{·}, we have, for all x,

P
(
n1/3(F̂n(t) − F(t)) ≤ x

)
= P(ĥn ≥ 0)→ P(ĥ ≥ 0)

= P
((

4F(t) f (t)
g1(t) + g2(t)

)1/3
arg min

h
{B(h) + h2} ≤ x

)
,

this gives the desired result.

Now, we show that ĥn = Op(1). Recall ŝn = t + n−1/3ĥn or ĥn = n1/3(ŝn − t), where ŝn = arg mins{Vn(s) − (F(t) +
xn−1/3)Gn(s)}. So we only need to show n1/3(ŝn − t) = OP(1). For this, let G1(·) and G2(·) be the margins of G(·, ·),
and

Mn(s) = (F(t) + xn−1/3)Gn(s) − Vn(s),

M(s) =
1

2
F(t)[G1(s) +G2(s)] − 1

2

∫ s

−∞
F(y)[g1(y) + g2(y)]dy.

Then ŝn = arg maxs Mn(s), and it is easy to check that arg maxs M(s) = t. Since ||Gn(s) − 1
2
(G1(s) + G2(s)||R ≤

1
2
[sups |G1,n(s)−G1(s)|+sups |G2,n(s)−G2(s)|]→ 0 (a.s.), V(s) := 1

2

∫ s
−∞ F(y)[g1(y)+g2(y)]dy = 1

2
[
∫ s
−∞ F(y)g1(y)dy+∫ s

−∞ F(y)g2(y)dy] := 1
2
[V1(s) + V2(s)], V1(s) and V2(s) are the conditional distribution function P(U ≤ s|Z ≤ U)

and P(V ≤ s|Z ≤ V), and Vn(s) is the empirical version of V(s), thus ||Vn − V ||R → 0 a.s.. Thus for fixed x and t,
||Mn − M||R → 0 a.s., and so by Corollary 3.2.3 in VW (p. 287), we have ŝn → t in probability.

Also, for s in a small neighborhood of t, for some 0 < C < ∞,

M(s) − M(t) =
1

2
sign(s − t)

∫ s

t
(F(t) − F(y))(g1(y) + g2(y))dy

∼ 1

2
sign(t − s)

∫ s

t
f (t)(y − t)(g1(y) + g2(y))dy ≤ −C(t − s)2.

Mn(s) − Mn(t) =
1

n

n∑
i=1

1

2
sign(s − t)[(F(t) − δi)1(t ≤ ui ≤ s) + (F(t) − γi)1(t ≤ vi ≤ s)]

+xn−1/3
n∑

i=1

1

2
sign(s − t)[1(t ≤ ui ≤ s) + 1(t ≤ vi ≤ s)]

:=
1

n

n∑
i=1

ξi + xn−1/3
n∑

i=1

ζi.
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Then E(ξi) = M(s) − M(t) and

(Mn − M)(s) − (Mn − M)(t) = n−1/2
(
n−1/2

n∑
i=1

(ξi − E(ξi)) + xn1/6 1

n

n∑
i=1

ζi

)
.

Note

E|ζi| = 1

2
(|G1(t) −G1(s)| + |G2(t) −G2(s)|) = O(|t − s|)

and for |s − t| < δ with δ small,

σ2(s, t) := Eξ2i =
1

4

(
sign(s − t)

∫ s

t
[F2(t) − 2F(t)F(y) + F(y)][g1(y) + g2(y)]dy

+2
∫ s

t

∫ s
t [F2(t) − F(t)F(u) − F(t)F(v) + F(u)]g(u, v)dudv

)
= O(|s − t|).

Now, let ηi = ξi/σ(s, t), then the ηi’s are i.i.d. with E(ηi) = 0, E(η2
i ) = 1 and E|ηi|α < ∞ (2 < α ≤ 4). Let

S n =
∑n

i=1 ηi, by Theorem 2.2.4 in Csörgö and Révész (1981, p.94), there is a Wiener process W(·) such that

|S n −W(n)|
n1/α(log n)1/2

a.s.→ 0.

So

n−1/2S n = n−1/2W(n) + n−(1/2−1/α)(log n)1/2 S n −W(n)

n1/α(log n)1/2

= n−1/2W(n) + o(1), a.s.

Note n−1/2W(n)
D
= W(1) ∼ N(0, 1). Thus there is 0 < C < ∞ such that for large n,

sup|t−s|<δ |(Mn − M)(s) − (Mn − M)(t)| = n−1/2 sup
|t−s|<δ

∣∣∣∣∣n−1/2σ(s, t)S n + xn1/6 1

n

n∑
i=1

ζi

∣∣∣∣∣
≤ n−1/2 sup

|t−s|<δ

(
σ(s, t)|n−1/2S n| + |x|n1/6 1

n

n∑
i=1

|ζi|
)

≤ n−1/2 sup
|t−s|<δ

(
σ(s, t)[C +C|W(1)|] +C|x|n1/6|t − s|

)
, (a.s.).

Since E|W(1)| ≤ (EW2(1))1/2 = 1. Let φn(δ) =
√
δ + |x|n1/6δ, then φn(δ)/δα is decreasing on (0,∞) for 1 < α < 2.

We have

E
(

sup
|t−s|<δ

|(Mn − M)(s) − (Mn − M)(t)|
)
≤ Cφn(δ)√

n
.

Let rn be the largest sequence satisfies

r2
nφn(

1

rn
) ≤ √n,

which gives rn = n1/3. Since ŝn = arg maxs Mn(s), Mn(ŝn) ≥ Mn(t) ≥ Mn(t)−Op(r−2
n ), so by Theorem 3.2.5 in VW

(p. 289-290), we have rn|ŝn − t| = OP(1), as we wanted.

Proof of Theorem 2. (i). Let μ = μ1 × μ2, where μ1 is the Lebesque measure on (R+)2 and μ2 the counting measure

on D := {(0, 0), (0, 1), (1, 1)}, PF be the distribution of pF , B be the Borel filed on (R+)2 ×D, and H(pF̂n
, pF) be the

Hellinger distance as given before Theorem 3, and ||pF̂n
− pF || be the variational distance, between pF̂n

(·) and pF ,

||pF̂n
− pF || = 2 sup{|PF̂n

(B) − PF(B)| : B ∈ B} =
∫
|pF̂n

(u, v, δ, γ) − pF(u, v, δ, γ)|dμ.

It is known that ||pF̂n
− pF || ≤ 2h(pF̂n

, pF) (cf. Bickel, Klaassen, Ritov, & Wellner, 1993, p. 464). We will show

that H(pF̂n
, pF)→ 0 a.s., so that ||pF̂n

− pF || → 0 (a.s.). Note pF can be re-written as

pF(u, v, δ, γ) =
(
δF(u) + (γ − δ)(F(v) − F(u)) + (1 − γ)(1 − F(v))

)
g(u.v).
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So we will have ∫ ∞
0
|F̂n(t) − F(t)|(g1(t) + g2(t))dt

≤ ∫ ∞
0

∫ v
0

(
|F̂n(u) − F(u)| + |F̂n(v) − F(v) − F̂n(u) + F(u)| + |F̂n(v) − F(v)|

)
g(u, v)dudv

=
∑

(δ,γ)∈D
∫ ∞

0

∫ v
0
|pF̂n

(u, v, δ, γ) − pF(u, v, δ, γ)|dudv

= ||pF̂n
− pF || → 0, (a.s.).

The above implies F̂n(t) − F(t) → 0 a.e. (G1 + G2), a.s. When F(·) is a continuous distribution function, this in

turn implies

lim sup
n

sup
t
|F̂n(t) − F(t)| → 0, a.e. (G1 +G2), a.s.

Below we show H(pF̂n
, pF) → 0 a.s. For fixed F, let hF′ = (

√
pF′/pF − 1)1(pF > 0), G = {hF′ : F′ ∈ F }, and Pn

and P are as given in the proof of Theorem 1. By Lemma 1.1 of van de Geer (1993), since F̂n is the NPMLE of F
in model (1),

H2(pF̂n
, pF) ≤ 2(Pn − P)

(
1(pF > 0)[

√
pF̂n
/pF − 1]

)
.

So we only need to show

sup
h∈G
|(Pn − P)h| → 0, a.s.

i.e., G is a Glivenko-Cantelli class with respect to P.

For this, given a probability measure Q and r > 0, let ||g||Qr = [Q|g|r]1/r := [EQ|g(T )|r]1/r, N(ε,G, || · ||Qr ) be the

covering number of the set G with respect to the norm || · ||Qr , and H(ε,G, || · ||Qr ) = log N(ε,G, || · ||Qr ) be the entropy

of G with respect to || · ||Qr . Similarly, let N[ ](ε,G, || · ||Qr ) be the minimum number of brackets to cover G under

norm || · ||Qr , i.e. the minimum number k of pairs (lk, uk), lk, uk ∈ G such that ∀g ∈ G, there is (lk, uk) with lk ≤ g ≤ uk

and ||uk − lk ||Qr ≤ ε, and H[ ](ε,G, || · ||Qr ) = log N[ ](ε,G, || · ||Qr ).

Below we need to evaluate H(ε,G, || · ||Pn,1 ). Since for all F1, F2 ∈ F ,∣∣∣∣∣
∣∣∣∣∣(
√

pF1

pF
− 1
)
1(pF > 0) −

(√ pF2

pF
− 1
)
1(pF > 0)

∣∣∣∣∣
∣∣∣∣∣
P1

=
∑

(δ,γ)∈D

∫ ∞
0

∫ v

0

|p1/2
F1

(u, v, δ, γ) − p1/2
F2

(u, v, δ, γ)|
p1/2

F (u, v, δ, γ)
pF(u, v, δ, γ)dudv

=
∑

(δ,γ)∈D

∫ ∞
0

∫ v

0

|p1/2
F1

(u, v, δ, γ) − p1/2
F2

(u, v, δ, γ)|p1/2
F (u, v, δ, γ)dudv

= || √pF1
− √pF2

||Q1
,

where Q is the probability measure corresponding to
√

pF (after normalization) and μ2, as by condition (C3)

this measure is well defined. Now, let G0 = { √pF′ : F′ ∈ F }. Since F is fixed, we have H(ε,G, || · ||P1
) =

H(ε,G0, || · ||Q1
) = O(H(ε,G0, || · ||P1

)). Thus, there is 0 < C < ∞, for large n,

H(ε,G, || · ||Pn,1 ) ≤ CH(ε,G0, || · ||Pn,1 ) a.s.

Now we only need to evaluate H(ε,G0, || · ||Pn,1 ). Since μ2 is counting measure for (δ, γ), in computing the entropy

we can treat pF′ as a function of (u, v) only, and G0 is a collection of bounded two-dimensional functions on (R+)2,

so by Corollary 2.7.4 in VW (p. 158), we have

H[ ](ε,G0, || · ||Pn,1 ) = O(
1

ε2
).

Since N(ε,G0, || · ||) ≤ N[ ](2ε,G0, || · ||) (VW, p. 84) for any norm || · ||, we have H(ε,G0, || · ||Pn,1 ) = O(1/(4ε2)) < ∞
(a.s.), and so for all fixed ε > 0,

1

n
H(ε,G, || · ||Pn,1 )

P→ 0

59



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

and by Theorem 24 in Pollard (1984, p. 23), G is a Glivenko-Cantelli class with respect to P.

(ii). Recall the notation l̃n(F) in the proof of Theorem 1. It is not a proper log-likelihood. Let

l̃1,n(F) =

n∑
i=1

[δiF(ui) + (1 − δi)(1 − F(ui))]g1(ui),

l̃2,n(F) =

n∑
i=1

[γiF(vi) + (1 − γi)(1 − F(vi))]g2(vi).

Then l̃n(F) = l̃1,n(F) + l̃2,n(F), and l̃1,n(F) and l̃2,n(F) are log-likelihoods corresponding to densities p1,F(u, δ) =
Fδ(u)(1 − F(u))1−δg1(u) and p2,F(v, γ) = Fγ(v)(1 − F(v))1−γg2(v). As in the proof of Theorem 1, the same F̂n

maximizes both l̃1,n(F) and l̃2,n(F). Let μ = μ1 × μ2, with μ1 the Lebesque measure on R+ and μ2 the counting

measure on {0, 1}, and let

H2(p1,F̂n
, p1,F) =

∫ (
p1/2

1,F̂n
(u, δ) − p1/2

1,F(u, δ)
)2

dμ,

H2(p2,F̂n
, p2,F) =

∫ (
p1/2

2,F̂n
(v, γ) − p1/2

2,F(v, γ)
)2

dμ.

Let hk,F′ = (
√

pk,F′/pk,F − 1), Pk be the probability corresponding to pk,F (k = 1, 2), P1,n be the empirical measure

for (ui, δi) (i = 1, ..., n), and P2,n for that of (vi, γi) (i = 1, ..., n). Then as before

H2(pk,F̂n
, pk,F) ≤ 2(Pk,n − Pk)hk,F̂n

, (k = 1, 2).

Similarly, we have H2(pk,F̂n
, pk,F)→ 0 (a.s.), and consequently ||pk,F̂n

− pk,F || → 0 (a.s.), and note

||p1,F̂n
− p1,F || = 2

∫ ∞
0

|F̂n(u) − F(u)|g1(u)du, ||p2,F̂n
− p2,F || = 2

∫ ∞
0

|F̂n(v) − F(v)|g2(v)dv,

the result follows. �
Proof of Theorem 3. (i) Let d(F, F′) = Dβ(pF ||pF′) with β = 5/8. Note d(F, F′) ≥ 0 with “=” iff F ≡ F′, though

d(·, ·) is not a distance. For F′ ∈ F , let l(F′) = EF(log pF′ ) = EF(ln(F′)). It is seen that F = arg maxF′ l(F′). Also,

for F′ ∈ F within a small neighborhood of F, i.e., with D(pF ||pF′) ≤ 1, we have

l(F′) − l(F) = −D(pF ||pF′) ≤ −d2(F, F′).

Denote xi = (ui, vi, δi, γi), then

(ln(F) − l(F)) − (ln(F′) − l(F′)) = n−1/2
(
n−1/2∑n

i=1[log
pF (xi)

pF′ (xi)
− (l(F) − l(F′))]

)
:= n−1/2

(
n−1/2∑n

i=1[ξi − EF(ξi)]
)
.

The ξi’s are i.i.d.. Let σ2(F, F′) = VarF(ξi), which exists by (C5) for all F′ in a small neighborhood B(δ) = {F′ :

d(F, F′) < δ} = {F′ : D(pF ||pF′ ) < δ
1/β} of F, we have, for some 0 < C < ∞,

σ2(F, F′) ≤ EF(ξ2i ) = EF

(
log

pF′ (xi)

pF (xi)

)2
≤ EF

([
pF′ (xi)

pF (xi)
− 1
]

log
pF′ (xi)

pF (xi)

)
= D(pF′ ||pF) + D(pF ||pF′) ≤ CD(pF ||pF′)

= Cd1/β(F, F′) ≤ Cδ1/β.

Thus, σ(F, F′) ≤ Cδ1/(2β) for F′ ∈ B(δ). Now, let ηi = (ξi−EF(ξi))/σ(F, F′), then the ηi’s are i.i.d. with EF(ηi) = 0,

VarF(ηi) = EpF (η2
i ) = 1 and EF |ηi|α < ∞ (by (C5)). Let S n =

∑n
i=1 ηi, then, as in the proof of Theorem 1, for some

0 < C < ∞,

EF sup
d(F,F′)<δ

|ln(F) − l(F)) − (ln(F′) − l(F′)| ≤ Cn−1/2 sup
d(F,F′)<δ

σ(F, F′)EF |n−1/2S n| ≤ Cn−1/2φn(δ),
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with φn(δ) = δ1/(2β). Note φn(δ)/δα is decreasing on (0,∞) for some α < 2. The largest sequence rn satisfies

r2
nφn(

1

rn
) ≤ √n

is rn = nβ/(4β−1). Also, F̂n = arg maxF′ ln(F′), and for all F′ ∈ F ,

ln(F̂n) ≥ ln(F′) ≥ ln(F′) − OP(r−2
n ),

so by Theorem 3.2.5 in VW (p.289-290), rnd(F, F̂n) = OP(1), or n2/3D(pF ||pF̂n
) = OP(1).

Now, let ||pF̂n
− pF || =

∫ |pF̂n
(x)− pF(x)|dx be the variational distance between pF̂n

and pF . By Pinsker’s inequality

||pF̂n
− pF || ≤

√
2D(pF ||pF̂), this gives

OP(1) = n1/3||pF̂n
− pF ||

= n1/3
∫ ∞

0

∫ v
0

(
|F̂n(v) − F(v)||F̂n(v) − F(v) − F̂n(u) + F(u)| + |F̂n(u) − F(u)|

)
g(u, v)dudv

≥ n1/3
∫ ∞

0
|F̂n(t) − F(t)|(g1(t) + g2(t))dt.

The above implies n1/3|F̂n(t)−F(t)| = OP(1), a.e. G1 +G2. When F(·) is continuous, F̂n(t)
P→ F(t) is uniform, thus

supt |F̂n(t) − F(t)| = OP(n−1/3), a.e. G1 +G2.

(ii). Recall the notation l̃n(F) in the proof of Theorem 1. For F′ ∈ F , let l̃(F′) = Ep1,F (log p1,F′) + Ep2,F (log p2,F′).

Then F = arg maxF′ l̃(F′). Let d(F, F′) = [D(p1,F ||p1,F′) + D(p2,F ||p2,F′ )]
β, with β = 5/8 as in the proof in (i). We

have

l̃(F′) − l̃(F) = −[D(p1,F ||p1,F′) + D(p2,F ||p2,F′)] ≤ −d2(F, F′).
Denote xi = (ui, δi), yi = (vi, γi), then

(l̃n(F) − l̃(F)) − (l̃n(F′) − l̃(F′)) = n−1/2
(
n−1/2

n∑
i=1

[log
p1,F(xi)

p1,F′ (xi)
+ log

p2,F(yi)

p2,F′(yi)
− (l(F) − l(F′))]

)

:= n−1/2
(
n−1/2

n∑
i=1

[ξi − EF(ξi)]
)
.

The ξi’s are i.i.d.. Let σ2(F, F′) = VarF(ξi), which exists by (C6) for all F′ in a small neighborhood B(δ) = {F′:
d(F, F′) < δ} = {F′: D(p1,F ||p1,F′) + D(p2,F ||p2,F′ ) < δ

1/β} of F. Similarly as in the proof of (i), we have, for some

0 < C < ∞,

σ(F, F′) ≤ 2

2∑
k=1

[D(pk,F′ ||pk,F) + D(pk,F ||pk,F′ )] ≤ Cδ1/β.

Also, with rn = nβ/(4β−1), ∀F′ ∈ F , l̃n(F̂n) ≥ l̃n(F′)l̃n(F′) − OP(r−2
n ). So, as before, we get rnd(F, F̂n) = OP(1), or

n1/3[D(p1,F ||p1,F̂n
) + D(p2,F ||p2,F̂n

)] = OP(1), and consequently, by Pinsker’s inequality,

OP(1) = n1/3(||p1,F̂n
− p1,F || + ||p2,F̂n

− p2,F ||)

= 2n1/3

∫ ∞
0

|F̂n(t) − F(t)|(g1(t) + g2(t))dt.

Lastly we check that the rate rn = n1/3 is optimal. We only check this for (ii) and that for (i) is the same. By

Theorem 2.7.5 in van der Vaart and Wellner (1996, p. 159), the bracketing entroy H[ ](ε,F , Lr(Q)) = O(ε−1), i.e.,

we have d = α = 1 (recall the paragraph for optimal rate before Theorem 3), and the best rate rn of convergence

is rn = nα/(2α+1) = n1/3, or n1/3h(pFn , pF0
) = OP(1) for any estimator Fn of F0. Also, since α/d = 1 > 1/2, n1/3 is

also the best achievable rate for NPMLE of F0. Similarly as in the proof of Theorem 2 (i), we have

h(pFn , pF0
) ≥

[
1
2

∫
(F1/2

n (u) − F1/2
0

(u))2d(G1(u) +G2(u))
]1/2

≥ 1√
2

∫ |F1/2
n (u) − F1/2

0
(u)|d(G1(u) +G2(u))

≥ 1

2
√

2

∫ |F1/2
n (u) − F1/2

0
(u)||F1/2

n (u) + F1/2
0

(u)|d(G1(u) +G2(u))

=
∫ |Fn(u) − F0(u)|d(G1(u) +G2(u)),
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thus the best achievable rate of convergence of estimating F0 in terms of L1(G1 +G2) distance is n1/3.

Proof of Theorem 4. Let Pn, P and Δi’s as in the proof of Theorem 1. Note PF is the distribution in model (1), not

to confuse it with P. Then as in Huang and Wellner (1995), hereafter HW, for any function r(·), we have∫
(Δ − F̂n(t))r(F̂n(t))dPn(t,Δ) = 0.

Note dP(t, δ) = (1/2)Fδ(t)(1 − F(t))1−δg1(t)dt and dP(t, γ) = (1/2)Fγ(t)(1 − F(t))1−γg2(t)dt. Let g(t) = (g1(t) +
g2(t))/2, and G(t) = (G1(t) +G2(t))/2. Then∫

(1−Δ)h(t)
g(t) dP(t,Δ) =

1

2

( ∫
(1 − 0)h(t)

g(t)
(1 − F(t))g1(t)dt +

∫
(1 − 0)h(t)

g(t)
(1 − F(t))g2(t)dt

)
=
∫

h(t)(1 − F(t))dt.

Similarly, ∫
(1 − F̂n(t))h(t)

g(t)
dP(t,Δ) =

∫
(1 − F̂n(t))h(t)dt.

So we have, as in HW,

√
n(ν(F̂n) − ν(F)) =

√
n
∫

[(1 − F̂n(t)) − (1 − F(t))]h(t)dt

=
√

n
∫

1 − F̂n(t) − (1 − Δ)

g(t)
h(t)dP(t,Δ)

=
√

n
∫
Δ − F(t)

g(t)
h(t)d(Pn − P)(t,Δ) + oP(1).

Now the rest proofs are the same as in HW. We only point out that, in the proof of the oP(1) part, to show∫
[F̂n(t) − F(t)]2dG(t)

P→ 0, we can use our Theorem 2(ii) directly when the conditions there are met, in stead

of the more complicated arguments there; to show K
√

n||F̂n − F||2L2(G) = OP(n−1/6), we only need to apply our

Theorem 3(ii) directly when the conditions there are met, in stead of the arguments there. It is easy to check that

the asymptotic variance of
√

n
∫
Δ−F(t)

g(t) h(t)d(Pn − P)(t,Δ) is σ2.

Now we compute the efficient influence function Ĩν(·) and the information bound for estimating ν(F) via model (1)

and constraint (C2). We first compute the efficient influence function of ν(F) without constraint (C2), the extended

version Ĩν,e(·). By Theorem 2 (iii) in Yuan, Xu and Zheng (2011), with x = (u, v, δ, γ), we have

Ĩν,e(x) =
g1(u)h(v)

g(u, v)
[(1 − δ)(1 − γ) − (1 − F(v))].

Let r(u, v) = (F(v) − F(u)) log(F(v) − F(u)) − (1 − F(u)) log(1 − F(u)) − F(v) log F(v). Then (C2) is η(F) :=

EPF [r(U,V)] = 0. Let Π(s|s1) be the projection of s onto [s1], the linear span of s1, s⊥1 the orthogonal complement

of [s1] with respect to PP, < s1, s2 >PF= EPF (s1, s2) and ||s||2PF
=< s, s >PF . By Proposition A.5.2 in Bickel,

Klaassen, Ritov and Wellner (1993), the canonical gradient of η (the adjoint of the pathwise differential η̇[·](F) of

η(F), evaluated at 1) is η̇∗(x) = η̇∗[1](x) = r(u, v), and

Ĩν(x) = Π(Ĩν,e|(η̇∗)⊥) = Ĩν,e(x)− < Ĩν,e, η̇∗ >PF ||η̇∗||−2
PF
η̇∗(x),

and the information bound for estimating ν(F) in model (1) with constraint (C2) is EPF (Ĩ2
ν (x)). Since generally

EPF (Ĩ2
ν (x)) � σ2, ν(F̂n) is not efficient for ν(F), unlike the corresponding result for the case I interval censoring

model. �
Proof of Theorem 5. The log-likelihood for θ under this submodel is

Ln(θ) =

n∑
i=1

(
δi log Fn(ui|θ) + (γi − δi) log(Fn(vi|θ) − Fn(ui|θ)) + (1 − γi) log(1 − Fn(vi|θ))

)
,

with local log-likelihood ratio

Ln(θ + hr−1
n ) − Ln(θ) = r−1

n L′n(θ)h +
1

2
r−2

n L′′n (θ)h2 + o(1)r−2
n L′′n (θ)h2.
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where L′n(θ) and L′′n (θ) are the first two derivatives,

L′n(θ) =

n∑
i=1

(
δiHn(ui)

Fn(ui|θ) +
(γi − δi)(Hn(vi) − Hn(ui))

Fn(vi|θ) − Fn(ui|θ) − (1 − γi)Hn(vi)

1 − Fn(vi|θ)
)

:=

n∑
i=1

ξni,

L′′n (θ) = −
n∑

i=1

(δiH2
n(ui)

F2
n(ui|θ) +

(γi − δi)(Hn(vi) − Hn(ui))
2

(Fn(vi|θ) − Fn(ui|θ))2
+

(1 − γi)H2
n(vi)

(1 − Fn(vi|θ))2

)
:= −

n∑
i=1

ηni.

Note the ξni’s are i.i.d., with Eθ(ξni) = 0; Hn(t) = f (t)ca−1
n , Fn(t|θ) = F(t) + θ f (t)ca−1

n ∼ F(t) and

Hn(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, s < t − ca−1

n or s ≥ t + ca−1
n ;

f (t)(s − t + ca−1
n ), t − ca−1

n < s ≤ t;

f (t)(ca−1
n − s + t), t < s < t + ca−1

n .

We have

Varθ(ξni) = Eθ(η2
ni) = Eθ

(δiH2
n(ui)

F2
n(ui|θ)

)
+ Eθ
(
(γi − δi)(Hn(vi) − Hn(ui))

2

(Fn(vi|θ) − Fn(ui|θ))2

)
+ Eθ
( (1 − γi)H2

n(vi)

(1 − Fn(vi|θ))2

)
:= Jn1 + Jn2 + Jn3.

Jn1 ∼ 2

∫ t

t−ca−1
n

f 2(t)g1(u)(u − t + ca−1
n )2

F(u)
du ∼ 2

3

f 2(t)g1(t)
F(t)

c3a−3
n ;

Jn3 ∼ 2

∫ t

t−ca−1
n

f 2(t)g2(v)(v − t + ca−1
n )2

1 − F(v)
dv ∼ 2

3

f 2(t)g2(t)
1 − F(t)

c3a−3
n .

Jn2 ∼ 2

∫ t

t−ca−1
n

∫ v

t−ca−1
n

f 2(t)g(u, v)(v − u)2

F(v) − F(u)
dudv +

∫ t+ca−1
n

t

∫ t

t−ca−1
n

f 2(t)g(u, v)[(v − t) − (t − u)]2

F(v) − F(u)
dudv

= 2

∫ t

t−ca−1
n

∫ v

t−ca−1
n

f 2(t)g(u, v)(v − u)2

f (u)(v − u) + O((v − u)2)
dudv +

∫ t+ca−1
n

t

∫ t

t−ca−1
n

f 2(t)g(u, v)[(v − t) − (t − u)]2

f (u)(v − u) + O((v − u)2)
dudv

∼ 2

∫ t

t−ca−1
n

∫ v

t−ca−1
n

f (t)g(t, t)(v − u)dudv +
∫ t+ca−1

n

t

∫ t

t−ca−1
n

f (t)g(t, t)[(v − t) − (t − u)]2

(v − u)
dudv

=
1

3
f (t)g(t, t)c3a−3

n + c4a−4
n

∫ 1

0

∫ 1

0

f (t)g(t, t)(v − u)2

2t + ca−1
n (v − u)

dudv

∼ 1

3
f (t)g(t, t)c3a−3

n .

Thus we get

Varθ(ξni) ∼ 1

3

(
2 f 2(t)g1(t)

F(t)
+

2 f 2(t)g2(t)
1 − F(t)

+ f (t)g(t, t)
)
c3a−3

n := Q(t)c3a−3
n .

Take r−1
n = n−1/2c3/2a3/2

n Q−1/2(t), by central limit theory and strong law of large numbers, we have

r−1
n L′n(θ)

D→ N(0, 1) and r−2
n L′′n (θ)

a.s.→ −1,

i.e., the local log-likelihood ratio satisfies the LAN condition with rate rn and variance 1. (i). Since an = o(n1/3),

rn → ∞. The conclusion follows from standard convolution result with LAN condition.

(ii) With LAN, this follows by Remark 12.3 in Ibragimov and Has’minskii (1981, p. 169), or Theorem 2.3 in

Groeneboom and Wellner (1992, p. 15).
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(iii) Take c3/2 = Q−α(t)δ for some α > 0 to be determined, and l(·) = | · |, we have rn = n1/3Q1/2−α(t)δ. Take

b = Q1/2−α(t)δ2, by Theorem 4 (ii), we get

lim infn supθ:n1/3 |θ|≤δ Eθ
∣∣∣∣∣n1/3(Tn − Fn(t|θ))

∣∣∣∣∣ ≥ 1
2
Qα−1/2(t)δ−1E[|Z|1(|Z| ≤ Q1/2−αδ2/2)]

= Qα−1/2δ−1
√

2π

∫ Q1/2−αδ2/2

0

ze−
z2

2 dz =
1√
2π

Qα−1/2δ−1(1 − e−Q1−2αδ4/8)

=
1√
2π

Qα−1/2+(1−2α)/4a−1(1 − e−a4/8),

where a = Q(1−2α)/4δ. Take α = 7/6, then Qα−1/2+(1−2α)/4 = Q1/3. Maximizing R(a) := a−1(1 − e−a4/8), or solve

2ea4/8 − a4 − 2 = 0 for a > 0, with a0 = arg maxa>0 R(a), we get a4
0 = 18.6933 and R(a0) = 0.434449. Thus

sup
δ>0

lim inf
n

sup
θ:n1/3 |θ|≤δ

Eθ
∣∣∣∣∣n1/3(Tn − Fn(t|θ))

∣∣∣∣∣ ≥ 0.434449√
2π

Q1/3(t).
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