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Abstract

The aim of this paper is to study some necessary and sufficient conditions for fundamental (Cauchy) in probability

sequences of random variables. In this way, we will be able to deduce some relationships between certain types of

convergence and these sequences of random variables characterized because in their definition the random variable

limit does not appear. Finally, we introduce the concept of a Σ-completely convergent sequence and a sufficient

condition for it.
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1. Introduction

In the framework of convergence of random variables, there are some concepts which do not involve the limit of

such sequences, viz (Sokol & Rønn-Nielsen, 2013, p. 14):

(i) {Xt}∞t=1 is Cauchy in probability if for every ε > 0, P [|Xr − Xs| > ε] tends to 0 as r and s tend to infinity.

(ii) {Xt}∞t=1 is almost surely Cauchy if P
[
{Xt}∞t=1 is Cauchy

]
= 1.

(iii) {Xt}∞t=1 is Cauchy in Lp (p ≥ 1) if E [|Xr − Xs|p] tends to 0 as r and s tend to infinity.

It is well-known that Cauchy with respect to these three modes of convergence are convergent according to their

respective modes. Nevertheless, in this paper we will focus on the Cauchy in probability sequences and we will

study their convergence not in a classical way but introducing a novel mode of convergence.

In effect, in modern Finance the most usual mode of convergence is almost sure convergence but in the charac-

terization of certain financial parameters it is necessary to turn to stronger modes of convergence and divergence

(Montrucchio, 2004, pp. 645-663; Montrucchio & Privileggi, 2001, pp. 158-188; Cruz Rambaud, 2013, pp.

306-327). Thus, this paper introduces a mode of convergence more restricted than almost sure and in probabil-

ity convergence, the so-called Σ-complete convergence. Consequently, although some results in this work are

well-known, the main novelty is the provided methodology using certain Σ-completely convergent subsequences.

The organization of this paper is as follows. Section 2 presents the concept of a fundamental (Cauchy) sequence of

random variables from three points of view, demonstrating that all definitions are equivalent (Lemma 1). Moreover,

Corollary 3 shows that a sequence of random variables is fundamental in probability if and only if it is convergent

in probability. Despite this is a well-known result, all our approach is around the Σ-complete convergence of a

subsequence (necessary condition: Theorem 1) or the entire sequence (sufficient condition: Theorem 2). Section 3
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formally introduces the concept of complete and Σ-complete convergence, and provides a sufficient condition for a

subsequence being Σ-completely convergent to 0, involving the sequence of the partial sums of the series. Finally,

Section 4 summarizes and concludes.

2. Fundamental (Cauchy) in Probability Sequences

Definition 1 (Billingsley, 1995, p. 272) A sequence {Xt}∞t=1 of random variables is said to be fundamental in
probability if for every ε > 0 there exists a tε such that P[|Xr − Xs| > ε] < ε, for r, s ≥ tε .

Nevertheless, Resnick (1999, p. 171) gives the following

Definition 2 A sequence {Xt}∞t=1 of random variables is said to be Cauchy in probability if for every ε > 0 and δ > 0

there exists a tε,δ such that P[|Xr − Xs| > ε] < δ, for r, s ≥ tε,δ.

On the other hand, let X be the set of the random variables over a probability space (Ω,F , P). If X, Y ∈ X, the

distance between X and Y , d(X,Y) (Lukács, 1975, p. 62), is defined as the greatest lower bound of all x > 0 such

that
P[|X − Y | > x]

x
< 1.

This distance is a semimetric (Aliprantis & Border, 2006, p. 23) because it is possible that d(X,Y) = 0 but X � Y .

In effect, this is the case of two equivalent random variables. Theorem 3.1.2 in Lukács (1975, p. 64) shows that X
is complete and so it gives rise to a Fréchet metric space (Rudin, 1991, p. 33).

Firstly, we will demonstrate that the similar definitions 1 and 2, and the property for the sequence of random

variables to be fundamental (Cauchy) in the Fréchet metric space are in fact equivalent.

Lemma 1 The following three conditions are equivalent:

(i) {Xt}∞t=1 is fundamental in probability.

(ii) {Xt}∞t=1 is Cauchy in probability.

(iii) {Xt}∞t=1 is fundamental (Cauchy) in the Fréchet metric space X, that is, for every ε > 0 there exists a tε
such that d(Xr, Xs) ≤ ε, for r, s ≥ tε .

Proof. (i)⇒ (ii). If {Xt}∞t=1 is fundamental in probability, for every ε > 0 and δ > 0:

• There exists a tε such that P[|Xr − Xs| > ε] < ε, for r, s ≥ tε .

• There exists a tδ such that P[|Xr − Xs| > δ] < δ, for r, s ≥ tδ.

There are three possibilities:

(1) ε = δ, in whose case the conclusion is obvious: tε,δ := tε = tδ.

(2) ε < δ, in whose case we can take tε,δ := tε . Therefore, for r, s ≥ tε , P[|Xr − Xs| > ε] < ε < δ.
(3) ε > δ, in whose case we can take tε,δ := tδ. Therefore, taking into account that

[|Xr − Xs| > ε] ⊆ [|Xr − Xs| > δ],
for r, s ≥ tδ, one has

P[|Xr − Xs| > ε] ≤ P[|Xr − Xs| > δ] < δ.
(ii)⇒ (iii). Let ε be any positive real number. By (ii), there exists a tε,ε := tε such that

P[|Xr − Xs| > ε] < ε,
for r, s ≥ tε . Therefore,

d(Xr, Xs) = inf

{
x :

P[|Xr − Xs| > x]

x

}
≤ ε

and (iii) holds.

(iii)⇒ (i). Let ε be any positive real number. By (iii), there exists a tε such that

d(Xr, Xs) ≤ ε,
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for r, s ≥ tε . By the definition of the distance, there exists a δ (0 < δ < ε) such that

d(Xr, Xs) ≤ P[|Xr − Xs| > δ]
δ

< 1.

Observe that
P[|Xr − Xs| > ε]

ε
<

P[|Xr − Xs| > δ]
δ

< 1,

that is,

P[|Xr − Xs| > ε] < ε
and so {Xt}∞t=1 is fundamental in probability. �
In what follows, we will indistinctly use the three definitions.

Theorem 1 Let {Xt}∞t=1 be a sequence of random variables. If {Xt}∞t=1 is fundamental in probability, for any
summable sequence of positive numbers {εk}∞k=1

, there exists a subsequence {Xtk }∞k=1
such that

∑∞
k=1 P[|Xtk+1

− Xtk | >
εk] < ∞.

Proof. Let {εt}∞t=1 be an arbitrary summable sequence of positive real numbers. As {Xt}∞t=1 is fundamental in

probability, for ε1 there exists a tε1 such that P[|Xr − Xs| > ε1] < ε1, for r, s ≥ tε1 . Take t1 := tε1 . Therefore,

P[|Xr − Xt1 | > ε1] < ε1, for r ≥ t1. Now for ε2 there exists a tε2 such that P[|Xr − Xs| > ε2] < ε2, for r, s ≥ tε2 . Take

t2 := max{tε2 , t1 +1}. Thus, P[|Xr −Xtε2 | > ε2] < ε2, for r ≥ tε2 and P[|Xt2 −Xt1 | > ε1] < ε1. Next for ε3 there exists a

tε3 such that P[|Xr−Xs| > ε3] < ε3, for r, s ≥ tε3 . Take t3 := max{tε3 , t2+1}. Thus, P[|Xr−Xtε3 | > ε3] < ε3, for r ≥ tε3
and P[|Xt3 − Xt2 | > ε2] < ε2. We can continue this process infinitely and obviously

∑∞
k=1 P[|Xtk+1

− Xtk | > εk] < ∞
holds. �
Corollary 1 Let {Xt}∞t=1 be a sequence of random variables. If {Xt}∞t=1 is fundamental in probability, there exists a
random variable X and a subsequence {Xtk }∞k=1

such that Xtk → X almost surely.

Proof. It is an immediate consequence of the former Theorem 1 and Theorem 4.2.2 in Lukács (1975, pp. 81-82).

�
Corollary 2 Let {Xt}∞t=1 be a sequence of random variables. If {Xt}∞t=1 is fundamental in probability, then it converges
in probability to a random variable X.

Proof. In effect, if {Xt}∞t=1 is fundamental in probability, each subsequence {Xtk }∞k=1
is also fundamental in probabil-

ity. By Corollary 1, each subsequence contains another subsequence which converges almost surely to a random

variable X. In these circumstances, Theorem 2.4.4 in Lukács (1975, p. 49) applies. �
Corollary 3 Let {Xt}∞t=1 be a sequence of random variables. {Xt}∞t=1 is fundamental in probability if and only if it
converges in probability to a random variable X.

Proof. In effect, assume that {Xt}∞t=1 converges in probability to a random variable X and consider an arbitrary ε > 0

and δ > 0. By hypothesis, for ε
2

and δ
2

there exists a tε,δ such that P[|Xt − X| > ε
2
] < δ

2
, for t ≥ tε,δ. Thus, taking

into account that:

[|Xr − Xs| > ε] ⊆
[
|Xr − X| > ε

2

]
∪
[
|Xs − X| > ε

2

]
,

for r, s ≥ tε,δ, one has

P[|Xr − Xs| > ε] ≤ P
[
|Xr − Xs| > ε

2

]
+ P
[
|Xr − Xs| > ε

2

]
<
δ

2
+
δ

2
= δ.

The rest of the proof is Corollary 2. �
Remark An easier and faster proof of corollaries 2 and 3 could be considered taking into account that the space X
is complete with respect to the Fréchet metric introduced in this Section.

Theorem 2 Let {Xt}∞t=1 be a sequence of random variables. A sufficient condition for {Xt}∞t=1 being fundamental in
probability is that there exists a sequence of positive real numbers {εt}∞t=1 such that

∞∑
t=1

εt < ∞ and

∞∑
t=1

P[|Xt+1 − Xt | > εt] < ∞.
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Proof. Let be ε > 0. As limt→∞
∑∞

k=t εk = 0, there exists a t0 such that, for every t ≥ t0,
∑∞

k=t εk < ε. Let r and s be

two positive integer numbers such that r, s ≥ t0. There is not loss of generality in considering r < s. Obviously,∑r−1
k=s εk <

∑∞
k=t0 εk. Therefore,

P [|Xr − Xs| > ε] < P

⎡⎢⎢⎢⎢⎢⎢⎣|Xr − Xs| >
r−1∑
k=s

εk

⎤⎥⎥⎥⎥⎥⎥⎦ <
r−1∑
k=s

P [|Xk+1 − Xk | > εk] .

As limt→∞
∑∞

k=t P[|Xk+1 − Xk | > εk] = 0, there exists a t1 such that, for every t ≥ t1,
∑∞

k=t P[|Xk+1 − Xk | > εk] < ε.
Therefore, for every r and s such that r, s ≥ max{t0, t1} := tε ,

r−1∑
k=s

P[|Xk+1 − Xk | > εk] <

∞∑
k=tε

P[|Xk+1 − Xk | > εk] < ε

and so {Xt}∞t=1 is fundamental in probability. �
3. Σ-Completely Convergent Sequences

Definition 3 A sequence of random variables {Xt}∞t=1 is said to be completely convergent (Note 1) to X if it satisfies

any of the three following equivalent conditions:

(i) For every ε > 0,
∑∞

t=1 P [|Xt − X| > ε] < ∞.

(ii) For every ε > 0, limt→∞
∑∞

k=t P [|Xk − X| > ε] = 0.

(iii) There exists a sequence of positive real numbers {εt}∞t=1 such that

lim
t→∞ εt = 0 and

∞∑
t=1

P [|Xt − X| > εt] < ∞.

These three conditions are equivalent by virtue of Proposition 2 in Cruz Rambaud (2011, pp. 215-221). Another

definition very close to the former one is the following (see Cruz Rambaud & Rodrı́guez López-Cañizares, 2012,

pp. 35-42).

Definition 4 A sequence of random variables {Xt}∞t=1 is said to be Σ-completely convergent to X (denoted by

Xt
Σ−c−→ X) if there exists a sequence of positive real numbers {εt}∞t=1 such that

∞∑
t=1

εt < ∞ and

∞∑
t=1

P [|Xt − X| > εt] < ∞.

This definition is not equivalent to that of the convergence in probability because Cruz Rambaud and Rodrı́guez

López-Cañizares (2012, pp. 35-42) provide an example in which they demonstrate that complete does not imply

Σ-complete convergence. Finally, taking into account that in general convergence in probability does not imply

complete convergence, we can deduce that definition 4 is more restricted than convergence in probability. Let be

S t =
∑t

k=1 Xk.

Theorem 3 Let {Xt}∞t=1 be a sequence of positive random variables. If {S t}∞t=1 is almost surely convergent to S then
there exists a subsequence of {Xt}∞t=1 which is Σ-completely convergent to 0.

Proof. Assume that {S t}∞t=1 is almost surely convergent to S . By Egoroff’s Theorem (Billingsley, 1995, p. 187),

for every ε > 0, there exists an Aε , such that P(Aε) < ε and {S t}∞t=1 is uniformly convergent on Ac
ε . If {S t}∞t=1 is

uniformly convergent on Aε , {S t}∞t=1 would be uniformly convergent on Ω and so the conclusion holds. Therefore,

we can suppose that {S t}∞t=1 is not uniformly convergent on Aε . Consequently, there exists a δε > 0 such that, for

every r, we can find a t(r, ε) ≥ r and an ω(r, ε) ∈ Aε , verifying

|S t(r,ε)(ω(r, ε)) − S (ω(r, ε))| > δε,
or equivalently,

∞∑
k=t(r,ε)+1

Xk(ω(r, ε)) > δε.
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Now, take a sequence {εs}∞s=1 such that
∑∞

s=1 εs < ∞. Without loss of generality, we can choose δεs < εs, for every

s. Since in general

P[|S t − S t−1| > 2δε] ≤ P[|S t − S | > δε] + P[|S t−1 − S | > δε] < ε + ε = 2ε

and

P[|S t − S t−1| > 2δε] = P[|Xt | > 2δε],

it remains:

P[|Xt | > 2δε] < 2ε.

Thus, we can deduce that:

∞∑
s=1

P[|Xt(ts−1,εs)| > 2εs] ≤
∞∑

s=1

P[|Xt(ts−1,εs)| > 2δεs ] < 2

∞∑
s=1

εs < ∞

and so it can be deduced that {Xt(ts−1,εs)}∞s=1 is a subsequence of {Xt}∞t=1 which is Σ-completely convergent to 0. �
Figure 1 summarizes the modes of convergence studied in this paper.

Figure 1. Implications among modes of convergence

where each arrow means one convergence concept implies the other, and:

• “a.s.” means “converges almost surely”,

• “f.p.” means “fundamental in probability”,

• “P” means “converges in probability”, and

• “Theorem 2” means that this result provides a sufficient condition for a sequence being fundamental in

probability.

4. Conclusion

In this paper we have provided three equivalent definitions of the so-called fundamental (or Cauchy) in probability

sequences of random variables, involving Fréchet metric spaces (Lemma 1). The main contribution of the first

section in this paper is that a sequence of random variables is fundamental in probability if and only if it is

convergent in probability (Corollary 3), involving Σ-completely convergent subsequences of {Xt}∞t=1. Despite this

result is well-known, our aim has been to demonstrate it from a classic point of view (around the concept of Σ-

complete convergence) and starting from the defined Fréchet metric space X. The second concept presented in this

paper is the corresponding to a Σ-completely convergent sequence of random variables which is a restriction of a

completely convergent sequence. Theorem 3 provides a sufficient condition for a subsequence being Σ-completely

convergent to 0.
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