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Abstract

We address the issue of performing hypothesis testing in accelerated failure time models for non-censored and
censored samples. The performances of the likelihood ratio test and a recently proposed test, the gradient test,
are compared through simulation. The gradient test features the same asymptotic properties as the classical large
sample tests, namely, the likelihood ratio, Wald and score tests. Additionally, it is as simple to compute as the
likelihood ratio test. Unlike the score and Wald tests, the gradient test does require the computation of the infor-
mation matrix, neither observed nor expected. Our study suggests that the gradient test is more reliable than the
other classical tests when the sample is of small or moderate size.
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1. Introduction

An important class of regression models used to assess the relationship between the response variable and the
covariates in survival analysis is parametric accelerated failure time (AFT) models. These models have a simple
intuitive interpretation in real problems (Wei, 1992). Unlike proportional hazards models, AFT models describe the
logarithm of the event times as a linear regression on the covariates, which act multiplicatively on the event times,
accelerating or decelerating the time scale. Cox semi-parametric models (Cox, 1972) do not assume any particular
distribution for the failure times and have been the most popular models in survival analysis. Nevertheless, some
authors present reasonable arguments in favor of the parametric AFT models based on their asymptotic properties
(Efron, 1977; Oakes, 1977), simulation results (Orbe, Ferreira, & Nufez-Antén, 2002) and applications to real
data (Nardi & Schemper, 2003; Grover, Das, Swain, & Deka, 2013). Given the importance of such models, several
authors have extended the AFT models, for example, adding a random effect to deal with correlated survival data
(Lambert, Collett, Kimber, & Johnson, 2004; Pan, 2001), allowing measurement error in the covariates (Gimenez
& Bolfarine, 1997; Valengca & Bolfarine, 2006) or including a cure fraction to treat the presence of immune
individuals in the sample (Yamaguchi, 1992; Peng, 1998; Ortega, 2009).

Typical distributions that have been used by various authors in connection with the parametric AFT models are the
exponential, Weibull, log-normal, gamma and log-logistic distributions, in addition to more flexible distributions
such as the extended generalized gamma and the generalized F distributions. Descriptions of the most commonly
used distributions, as well as related inferential procedures, can be found in Lawless (2003), Kalbfleisch and
Prentice (2002) and in Cox and Oakes (1984). Moreover, several extensions of the usual survival distributions,
particularly the Weibull distribution, have been proposed to a provide better fit in complex lifetime data; see,
e.g., Marshall and Olkim (1997), Lai, Xie, and Murthy (2003), and Carrasco, Ortega, and Cordeiro (2008). A
comprehensive discussion of general methods for constructing new distributions for lifetime data is presented in
Lai (2013).

The most commonly used statistical test in AFT models is the likelihood ratio test, which performs well when
the sample size is large. The other classical large sample tests, namely the Wald and score tests, can also be
used. However, a disadvantage of these tests is that they require the computation of the information matrix. In
AFT models, the expected information matrix is usually difficult or even impossible to obtain, particularly under
censoring. An alternative is to replace the expected information matrix by its observed counterpart. We noticed,
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however, that in small and moderate-sized samples the observed information matrix may produce unreliable stan-
dard errors. In fact, there is no guarantee that it is positive definite. The gradient test (Terrell, 2002) is a recently
proposed testing procedure serving as an alternative to the classical tests. The gradient statistic does not require
the information matrix, neither observed nor expected, and it is very simple to compute. Additionally, it has the
same first order asymptotic properties as the other three test statistics.

Lemonte and Ferrari (2012) obtained the second-order local power of the gradient test and showed that none of
the four competing tests is uniformly more powerful than the others. In addition, Lemonte and Ferrari (2011a)
compared the size and power properties of the four rival tests in a Birnbaum-Saunders regression model for com-
plete samples. Their simulation results suggest that the score and the gradient tests outperform the likelihood ratio
and the Wald tests in small and moderate-sized samples, and are consistent with the study of Ferrari and Pinheiro
(2014). The only study concerning the performance of the four tests in censored samples is that of Lemonte and
Ferrari (2011b). The authors considered independent and identically distributed observations of the Birnbaum-
Saunders distribution, and of two generalized versions of this distribution, under type-II censoring. Because the
Wald and the score tests involve the information matrix, which could not be obtained under censoring, they imple-
mented these tests with the observed information matrix. They noticed that the Wald and score tests were markedly
oversized and that the inverse of the observed information matrix frequently produced negative standard errors for
censored samples in their simulations. Their overall conclusion is in favor of the gradient test.

Censored samples are often encountered in survival and reliability studies. Our goal is to evaluate the performance
of the gradient test in comparison with the likelihood ratio test in accelerated failure time models under random
censoring. This paper is organized as follows. In Section 2 we describe the accelerated failure time models and
present the likelihood ratio and gradient tests in these models. In Section 3 we present the simulation results for
both tests in different scenarios. In Section 4 we illustrate and compare the tests in two real data applications.
Finally, Section 5 closes the paper with some concluding remarks.

2. Accelerated Failure Time Models

Let 7; be the event time for individual i, and let x; = (1, x;1, ...,x,',,)T be a fixed covariate vector that allows a
possibly non-null intercept. The AFT model can be represented by
logT; =x/B+oe, i=1,...,n, (1)

where ¢ are independent and identically distributed random errors with a distribution with support in the whole

real line and that does not depend on x;. The vector 8 = ( 0 e e v s ﬂp)T and o are unknown parameters. Hence, (1)
describes a linear regression model for log 7.

Survival times may be subject to right censoring. Here, the censoring times are represented by the independent ran-
dom variables C;, fori = 1,...,n, which are assumed to be independent of T, ..., T,. The censoring mechanism
is assumed to be non-informative, that is, the distribution of the C;’s does not depend on unknown parameters. Let
0; = 1, if the observation for individual i is a failure time, and ¢; = 0, if it is a censoring time. The observations can
be represented by the pairs of random variables (Y;, 6;), where Y; = min(log T;,1og C;), and the covariate vectors
x/ fori=1,...,n.

The likelihood function for the unknown parameters is given by
Sl (vi—xIB\] [ (vi— X B\
L) = | [—f(— s(—=| .
o o o
where y; is the observed value of Y;, f(-) and S(-) denote the density and survival functions of ¢, respectively,

and @ = (B7,0)" is the vector of unknown parameters; see, e.g., Kalbfleisch and Prentice (2002). Therefore, the
log-likelihood function is

() = log L(6) = ) 5i (log f(e) ~logr) + (1 = §) log S (e)),

i=1
where ¢; = (y; — x] B)/0.

The components of the score vector are given by

e 1y .
Uv0: = - iXijs f =O,..., N
3,(6) %5, O_;axj or j p
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and
R CONEES
Usl®) = — = = ;;(eia,- -6,
where | |
4= — 6id ng(ei)+(1_5i)d ogS(e | 2
de; de;
In matrix form, the score vector can be written as
| Up®) | _ o 'XTa
ve)= [ Us(0) ] - [ o HeTa—-178) |
where X = (x1,X3,...,x,)" is the n X (p + 1) matrix of the covariates, and § = (51,02,...,0,),
e = (explei},expler}, ... exple, )T and @ = (aj,as,...,a,)" are n dimensional column vectors. Table 1 gives

the expression for g; in (2) for AFT models frequently used in survival data applications. The expression for a;
for the exponential distribution equals the corresponding a; for the Weibull distribution with oo = 1. Maximum
likelihood estimates (MLEs) for 8 and o are obtained by solving the system of equations U(6) = 0, which requires
a numerical nonlinear optimization algorithm (e.g., Newton-Raphson, Fisher’s scoring or BFGS). For further de-
tails on nonlinear optimization, see Press, Teulosky, Vetterling, and Flannery (1992). The survreg function in the
survival package in R (R Development Core Team, 2011) uses the Newton-Raphson algorithm; see (Therneau
& Lumley, 2008).

Table 1. Expression for g; in (2) for some common models

Model Errors distribution a;
Weibull standard extreme value expfe;} — 9;
Log-normal standard normal oie; + L-d d O(e;)
- i€t | T———| 5 Ple
£ 1—d(e,)) de;
Log-logistic standard logistic L{ei}(l +06;)—6;
1 + exple;}

Note: @(+) is the standard normal cumulative distribution function.

We now turn to hypothesis testing. Let 6 = (6],6, )" where 6, and 6, are column vectors of dimensions m and
k — m, respectively. Consider the null hypothesis Hy: 6> = 6, to be tested against H;: 6, # Oy, where O, is a
fixed k — m dimensional column vector. The partition in € induces the corresponding partition in the score vector
U@ = (U g] ©6),U Jz (0))T. Let 6§ = (’GTT,@T )T and @ = (67, 65,)" be the unrestricted and the restricted MLE of 6
under H, respectively. The likelihood ratio statistic (¢.¢) and the gradient statistic (&) for testing H against H,
are given by
& =2{10) - 10))

and o

&6 = Ug,(0)" (6 — 0n),
respectively. Under typical regularity conditions (e.g., Lawless, 2003, Ch. 6; Kalbfleisch & Prentice, 2002, Ch. 3),
&1r and &g have a y? distribution with k — m degrees of freedom under Hj.

3. Simulation

We now present a simulation study for the Weibull, log-normal and log-logistic AFT models. Our goal is to
evaluate and compare the performance of the likelihood ratio and gradient tests. The regression structure is as
follows:

log T; = Bo + Bi1xi1 + Poxip + B3xins + o€, fori=1,...,n,

The values for x;;, x» and x;3 were obtained as random draws of a normal distribution with mean of 1, variance
of 0.25, an exponential with mean of 1/4 and a Bernoulli with a parameter of 0.5, respectively. The error terms ¢;
were generated as independent random variables with a standard extreme value distribution for the exponential and
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Weibull cases, a standard normal distribution for the log-normal case, and a standard logistic distribution for the
log-logistic case. The censoring times C; were generated as independent random variables with a uniform distribu-
tion on the interval [0; c], where ¢ was suitably chosen to produce different proportions of censored observations:
0% (no censoring), 30% and 50%. Four different sample sizes were considered: 30, 50, 100 and 200. Additionally,
we consider BT = (0.15,0.15,0,0) and set the following values for o: 0.5, 1 and 1.5. For the Weibull case, these
three different values for o imply increasing, constant (exponential case) and decreasing failures rates.

Table 2. Null percentage rejection rates of Hy: 82 = 83 = 0 for the likelihood ratio and gradient tests for different
values of o, sample size (n) and censoring percentage (c.p.): Weibull AFT model

o e (%) n=230 n=>50 n =100 n =200
P fr & fx & Zr & Zr &
1 1.5 1.4 1.6 1.0 1.3 0.9 1.1 1.0
0 5 7.6 5.1 6.4 5.0 6.2 5.4 5.6 5.1
10 14.1 11.2 12.5 10.6 11.7 10.9 10.7 104
05 1 2.3 1.0 1.7 1.0 1.5 1.2 1.2 1.1
: 30 5 8.6 5.9 7.0 5.6 6.0 53 5.6 54
10 15.1 12.0 12.8 11.2 11.5 10.5 11.3 11.0
1 2.9 1.7 1.8 1.4 1.5 1.4 1.1 1.0
50 5 94 7.0 7.3 6.3 6.6 6.0 5.4 5.2
10 162 134 142 12.7 123 11.5 10.8 10.5
1 2.1 0.7 1.5 0.9 1.2 0.8 1.1 0.9
0 5 8.1 5.5 6.6 5.3 5.6 5.1 5.6 5.0
10 140 11.0 12.2 10.5 11.4 10.7 11.1 10.6
1 1 2.6 1.5 1.5 0.9 1.4 1.1 1.1 1.1
30 5 9.0 6.9 7.1 5.9 6.1 5.5 5.5 5.3
10 15.8 13.7 13.0 11.8 11.7 11.0 11.0 10.7
1 2.7 2.0 1.5 1.2 1.4 1.2 0.9 0.8
50 5 9.9 7.9 6.6 5.7 6.0 5.8 54 5.1
10 169 15.1 123 114 11.5 11.1 10.2 10.2
0 1 2.2 0.7 1.5 0.9 1.2 0.9 1.3 1.1
8.9 5.9 7.2 5.3 5.7 5.1 5.4 5.0
10 152 124 13.1 11.3 11.1 10.2 10.5 10.2
15 30 1 2.1 1.1 1.5 1.3 1.6 1.3 1.1 1.0
: 8.8 6.5 6.8 5.8 6.2 5.7 5.2 5.0
10 149 12.8 13.0 12.0 11.6 11.0 10.3 10.0
50 1 2.5 1.6 1.5 1.2 1.3 1.1 1.2 1.1
9.3 7.6 6.9 6.3 6.0 5.6 5.4 5.5

10 151 13.6 129 12.0 11,5 11.1 10.8 10.6

Based on 10, 000 simulation replicates we estimated the null rejection rates of the likelihood ratio and the gradient
tests of Hy: B2 = B3 = 0 for three nominal levels (e = 0.01, 0.05 and 0.10). We also considered the null hypothesis
Hoy: B> = 0, but the results are similar and not presented here for brevity. The simulations were performed in R,
with the optimization of the likelihood function obtained using the survreg function in the package survival
with default initial values. Tables 2, 3 and 4 reveal the well-known liberal tendency of the likelihood ratio test
when the sample is not large. In fact, for all of the cases considered with n < 100, the null rejection rates of the
likelihood ratio test exceed the corresponding nominal level regardless of whether censoring is present or not, and
regardless of the error distribution. For instance, for the Weibull case (Table 2), whenn = 30, 0 = 0.5 and @ = 5%
the null rejection rates are 7.6% (no censoring), 8.6% (30% censoring) and 9.4% (50% censoring). The gradient
test exhibits some liberal tendency, but this tendency is much less pronounced than that of the likelihood ratio test.
In the aforementioned case the null rejection rates of the gradient test are 5.1%, 5.9% and 7.0%, respectively. It
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can be noticed that the performance of both tests deteriorates slightly as the censoring percentage increases. We
conclude that the gradient test is less size distorted than the likelihood ratio test.

Table 3. Null percentage rejection rates of Hy: 8, = B3 = 0 for the likelihood ratio and gradient tests for different

values of o, sample size (n) and censoring percentage (c.p.): log-normal AFT model

o (%) n =230 n=>50 n =100 n =200
P &R &6 &R e &R &G 195 &6
1 1.8 0.8 1.6 1.1 1.3 1.1 1.0 0.9
0 5 7.3 5.4 6.2 5.3 5.7 5.2 5.5 5.2
10 132 11.2 11.7 10.6 11.0 10.5 105 10.2
05 1 1.9 0.8 1.5 0.9 1.2 0.9 1.0 0.9
’ 30 5 8.0 5.5 6.8 5.5 5.8 5.3 5.5 5.2
10 143 119 125 11.0 11.6 109 106 10.3
1 2.3 0.9 1.7 1.0 14 1.1 1.1 0.9
50 5 8.6 459 7.2 5.8 5.6 5.0 5.2 4.9
10 154 122 13.6 12.0 11.2 103 10.7 104
1 1.9 0.8 1.6 0.9 1.2 0.9 1.0 1.0
0 5 7.3 5.5 6.3 52 5.9 5.5 5.5 5.2
10 13.6 11.5 11.8 10.7 11.2  10.8 104 10.1
| 1 1.8 0.9 1.5 0.8 1.2 1.0 1.2 1.1
30 5 7.7 5.6 6.4 5.4 5.4 5.1 5.4 5.2
10 142 11.8 12.5 11.1 11.0 10.3 104 10.2
1 1.8 0.8 1.4 1.0 1.3 1.1 1.2 1.0
50 5 7.7 5.2 6.5 5.2 6.0 5.4 5.6 5.1
10 144 114 124 11.0 114 109 105 10.2
0 1 1.8 0.8 1.6 1.0 1.4 1.1 1.1 1.0
5 7.4 5.4 6.3 5.3 5.6 5.0 5.3 5.0
10 133 11.2 12.1 10.8 10.8 10.3 10.5 10.1
15 30 1 1.9 0.7 1.4 0.8 1.1 0.8 1.2 1.1
’ 5 7.7 5.5 6.2 52 5.8 5.4 5.6 5.4
10 13.7 114 12.0 10.8 11.3 10.6 11.0 10.8
50 1 2.2 1.0 1.6 0.9 1.5 1.3 1.2 1.2
5 8.2 6.0 6.9 5.8 6.4 5.7 5.5 5.2
10 147 125 129 11.6 11.7 11.2 11.0 10.7
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Table 4. Null percentage rejection rates of Hy: 8, = B3 = 0 for the likelihood ratio and gradient tests for different
values of o, sample size (n) and censoring percentage (c.p.): log-logistic AFT model

o (%) n =230 n=>50 n =100 n =200
P ELr & EIR & &R & ELR &
1 1.9 0.9 1.6 0.8 1.2 0.9 1.0 0.8
0 5 7.7 5.3 7.2 5.8 5.7 5.2 5.5 5.1
10 14.1 11.7 13.2 115 11.1  10.5 10.6 10.1
05 1 2.4 1.1 1.6 0.9 1.3 1.1 1.1 1.0
’ 30 5 8.5 6.1 6.4 5.1 5.9 5.2 5.2 5.0
10 146 12.0 12.1  10.7 11.0 104 10.1 9.7
1 2.1 0.9 1.4 0.9 1.3 1.1 1.2 1.0
50 5 8.5 5.8 6.9 5.6 5.8 5.2 5.7 5.3
10 153 125 13.1 11.7 114 10.8 10.7 104
1 1.8 0.8 1.5 0.9 1.3 1.1 1.0 0.9
0 5 7.5 5.5 6.5 5.5 5.8 53 5.1 4.9
10 139 113 124 11.2 11.3 10.7 10.3 10.0
| 1 1.8 0.8 1.6 1.0 1.4 1.1 1.0 0.8
30 5 7.7 5.6 6.9 5.8 6.0 5.5 5.1 4.9
10 142 119 12.5 11.3 114 10.7 10.3 10.0
1 1.9 0.9 1.5 1.1 1.3 1.1 1.2 1.0
50 5 7.8 5.9 6.8 5.7 5.8 5.4 5.2 5.0
10 140 12.1 12.6 11.5 11.2  10.7 104 10.2
0 1 1.9 0.9 1.4 0.9 1.2 0.9 1.1 0.9
7.7 5.6 6.2 5.0 5.8 5.3 54 5.1
10 140 11.8 12.3  10.8 11.3 10.6 10.6 10.2
15 30 1 2.0 0.8 1.7 1.1 14 1.0 1.1 1.0
’ 5 7.4 5.4 6.8 5.6 5.7 5.0 5.5 5.2
10 13.7 11.5 126 11.2 11.1 104 11.2 10.8
50 1 2.1 1.1 1.4 0.9 1.4 1.3 1.1 1.0
5 7.9 6.0 6.6 5.7 6.1 5.8 5.6 5.4

10 141 121 125 11.7 11.7 113 10.6  10.5

We now turn to the investigation of the finite-sample power properties of the two tests. As our size simulations
show, the tests have different sizes. To perform power comparisons, we first ensure that the tests have the correct
size under the null hypothesis. To this end, we used 100,000 Monte Carlo simulated samples, drawn under the null
hypothesis, to estimate the exact critical value of each test for the chosen nominal level. For the power simulations
we considered the Weibull AFT models and computed the rejection rates under the alternative hypotheses Hie):
B2 = B3 = €, for € ranging from —1.5 to 1.5. The results for the Weibull AFT model are presented in Figure 1.
The plots for the log-normal and log-logistic AFT models are similar and are not presented here for brevity. It
can be noticed that the powers of both tests are strongly influenced by the scale parameter, with larger values of o
corresponding to lower power. As expected, increasing censoring percentage is accompanied by a loss of power
for both tests. Additionally, the panels in Figure 1 suggest that the likelihood ratio and gradient tests have similar
powers.

In short, the likelihood ratio and the gradient tests are equally powerful, but the likelihood ratio test is liberal when
the sample size is not very large, while the gradient test is clearly much less size-distorted. Our overall conclusion
is that the gradient test is more reliable than the likelihood ratio test when the sample size is small or moderate,
and it should be preferred in practical applications.

4. Real Data Applications

To illustrate the use of the likelihood ratio and gradient tests we present two data analyses. The first concerns
the failure of sub-surface equipment in a sample of oil wells obtained from an oil-drilling company. The second
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Figure 1. Power of the likelihood ratio and gradient tests for different values of o, sample size (n) and censoring
percentage: Weibull AFT model
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Figure 2. Kaplan-Meier estimate of the survival functions; oil wells data

analysis concerns the survival times in patients with lung cancer. In both cases we use only a randomly selected
part of the full data to obtain subsamples of moderate size (less than 100). All of the calculations and plots were
performed using the survreg function in the R survival package.

We first consider a retrospective study related to the operating time of oil wells from January 2000 to December
2006. For most of the wells it is necessary to install equipment to apply pressure at the bottom to lift the fluid
to the surface. The time between failures caused by problems in sub-surface equipment was observed for 354
wells. Santos and Valenca (2012) consider an extension of the Weibull regression model to identify the factors
that influence the time to failure of the wells. To illustrate the use of the studied statistics, we only consider the
time until the first failure and use a subsample of n = 70 cases extracted at random from the original data set.
The subsample contains 16% censored cases, while 19% of the cases are censored in the original data set. The
analysis includes two factors, namely: the elevation method (PJ: pumpjack; PCP: progressive cavity pump) and
administrative unit (three operating units in different geographical locations: A, B and C). Plots of the Kaplan-
Meier estimate of the survival functions for each administrative unit and elevation method are shown in Figure 2.
It is apparent that the pumpjack method provides a slightly longer operating time for the wells than the progressive
cavity pump method. Additionally, wells located at B seem to have higher survival times than those at A or C.

The regression model considered here is the Weibull accelerated failure time model in which
log T; = ﬁo + x,-lﬁl + xizﬁz + xi3ﬂ3 + o€, (3)

for i = 1...70, where the ¢’s are independent random errors with a standard extreme value distribution, x;
indicates the elevation method (x;; = O for PCP and x;; = 1 for PJ), and x;; and x;3 indicate the administrative unit
(x» = 1 for A and x;3 = 1 for C). Our goal is to test each factor in the presence of the other, i.e., the null hypotheses
under test are Hyo: 82 = B3 = 0 and Hp: B = 0. The results for the likelihood ratio test and gradient test are given
in Table 5. We note that both tests indicate that administrative unit is strongly significant. On the other hand, at
the 5% significance level, elevation method is considered significant by the likelihood ratio test (p-value = 0.041)
but not by the gradient test (p- value = 0.054). On the basis of our simulation results in a similar situation (here,
n =70, 16% censoring and & = 0.951), the gradient test is more reliable and hence it is the one to be taken into
account.

Table 5. Summary of inference results: Oil wells data

Factor Parameter  Estimate (SE) IR p-value e p-value df
Elevation method Bi 0.841(0.371)  4.195 0.041 3.701 0.054 1
B> —-1.390(0.281)

Administrative unit 26.284 < 0.001 22432 <0.001 2

B3 —-1.365(0.366)

We now consider the cancer data set available in the survival package in R. The data are survival times for
patients with advanced lung cancer from the North Central Cancer Treatment Group. The original data set has
228 observations and 10 variables, and 28% of the observations are censored. To illustrate the performance of
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Figure 3. Kaplan-Meier estimate of the survival functions; lung cancer data

the statistical tests in a moderate-sized sample we randomly selected a subsample of 60 patients from the original
sample, and use two factors, namely: sex (male and female) and ECOG score (Eastern Cooperative Oncology
Group score). The score runs from 0 to 5, with O denoting perfect health and 5 denoting death. Our data only
includes the first three levels (denoted here as 0 = good, 1 = regular, 2 = bad), and the censoring proportion is
26%. Figure 3 presents the Kaplan-Meier estimate of the survival functions for males and females and for the
different ECOG scores.

The regression model considered here is given in (3) with x;; indicating sex (x;; = O for male and x;; = 1 for
female), and x;, and x;3 indicating ECOG score (x;; = 1 for regular and x;3 = 1 for bad). The inferential results are
given in Table 6. We note that sex is considered highly significant by both tests. In contrast, at the 5% significance
level, there is a conflict between the tests in terms of ECOG score: the likelihood ratio test indicates that the ECOG
score is significant (p-value = 0.036) while the gradient test concludes that the ECOG score is not significant (p-
value = 0.051). The simulation results suggest that inferential decisions should be based on the gradient test.

Table 6. Summary of inference results: Lung cancer data

Factor Parameter Estimate (SE) ér p-value e p-value df
Sex B 0.397(0.225)  3.451 0.063 3.531  0.060 1
B2 —0.164(0.250)
ECOG B, —0.753(0.295) 6.670  0.036 5961  0.051 2

5. Concluding Remarks

We investigated and compared the performance of the likelihood ratio and gradient tests in parametric accelerated
failure time models for survival data under random censoring. The Wald and score tests were not included in our
simulation study because they require the computation of the Fisher information matrix, which cannot be obtained
analytically for the models considered here. One could argue that the Fisher information should be replaced by
the observed information matrix. However, the observed information produced negative standard errors for a
non-negligible proportion of the simulated censored samples.

The simulation results suggest that the gradient and the likelihood ratio tests present similar powers. However, the
gradient test clearly presents better size behavior than the likelihood ratio test, the latter being markedly liberal in
small samples. Not surprisingly, the performance of both tests is sensitive to changes in the censoring percentage.

Our overall conclusion is that the gradient test should be preferred in practical applications when the sample is
small or of moderate size.
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