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Abstract

Cure models are popularly used to analyze failure time data where some individuals could eventually experience
and others might never experience an event of interest. However in many studies, there are diagnostic procedures
available to provide further information about whether a subject is cured. Wu et al. (2014) proposed a method,
called the extended cure model, that incorporated such additional diagnostic cured status information into the
classical cure model analysis. Through extensive simulations, they demonstrated that the extended cure models
provide more efficient and less biased estimations, and higher efficiency and smaller bias are associated with higher
sensitivity and specificity of the diagnostic procedure used. In this paper, we provide theoretical justifications
of this positive association for some special cases. More specifically we shows that the maximum likelihood
estimators (MLEs) of the parameters for an extended exponential cure model are asymptotically more efficient
than the MLEs for the corresponding classical exponential cure model.
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1. Introduction

When there is evidence of long-term survivors, cure models are often used to model the survival curve. Let T be a
non-negative random variable for the failure time, x and z the covariate vectors, 7(z) the uncured probability for a
subject, and f(#|x, z) and S (¢]x, z) the probability density function (pdf) and the survival function for 7', respectively.
Denote f,(#|x) and S ,(#|x) as the pdf and the survival function for uncured subjects, respectively. The cure model
can be written as a mixture model in terms of the pdf: f(¢x,z) = n(z)f,(#|x), or in terms of the survival function:

S(1x,z) = 7(2)S ,(7]x) + [1 — n(z)]. )

In the literature, the cure models have been extensively studied. Conventionally 7(z) is called the “incidence” part,
and f,(7[x) is referred to as the “latency” part. Logistic regression is commonly used to model the “incidence”
part, although other links or non-linear regression methods could be used. The “latency” part can be modeled
parametrically, semi-parametrically, or non-parametrically. In the parametric approach, the following distributions
have been commonly used: Exponential (Jones et al., 1981; Goldman, 1984; Ghitany & Maller, 1992); Weibull
(Farewell, 1982, 1986); Lognormal (Boag, 1949; Gamel et al., 1990); Gompertz (Gordon, 1990a, 1990b; Cantor
& Shuster, 1992); Extended generalized gamma (EGG) (Yamaguchi, 1992); and Generalized F (GF) distributions
(Peng et al., 1998). In the non-parametric approach, Kaplan-Meier estimation method is used without adjusting for
covariates as in Taylor (1995). In the semi-parametric approach, some authors used the Cox proportional hazards
(PH) model (Kuk & Chen, 1992; Peng & Dear, 2000; Sy & Taylor, 2000), and some used accelerated failure time
(AFT) models (Li & Taylor, 2002; Zhang & Peng, 2007). In general, parametric cure models can achieve greatest
efficiency in estimation if the distributional assumptions are satisfied. However in practice it can be challenging
to verify these assumptions. Although semi-parametric models do not require a distributional assumption, they may
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lose efficiency in estimation compared to a parametric model when a distribution can be correctly identified.

All the cure modeling to date assumes that cured and uncured subjects can not be distinguished in the censored
subset. However medical diagnostic procedures in many studies are available to provide further information about
whether a subject is cured. For instance, closure of the growth plate can be served as an indicator of cure in the
study of bone injury in pediatric patients (Leary et al., 2009; Wu et al., 2014). The diagnostic procedures are likely
associated with a certain degree of accuracy in terms of sensitivity and specificity, because it can be difficult to
completely separate cured and uncured subjects in the censored subset. Motivated by a clinical study, Wu et al.
(2014) extended the classical cure models to incorporate the additional diagnostic information about cured status.
Through extensive simulations, they demonstrated that the extended cure models provide more efficient and less
biased estimations, and the higher efficiency and smaller bias is associated with higher sensitivity and specificity
of diagnostic procedures.

In this paper, we provide theoretical justifications to show how such additional diagnostic information can im-
prove the asymptotic efficiency of model parameter estimators, as compared to the classical cure model approach.
Specifically, we provide theoretical justification of this positive association between the sensitivity and specificity
of the diagnostic procedure and the asymptotic efficiency of the maximum likelihood estimators (MLEs) of the
extended exponential cure model of Wu et al. (2014) in a few special cases.

In Section 2, the formulation of a cure model incorporated with additional cure information (called extended
cure model) is provided. In Section 3, the asymptotic efficiency of the MLEs of the parameters for an extended
exponential cure model and the asymptotic relative efficiency (ARE) of the MLEs respect to the MLEs for the
traditional exponential cure model are systematically studied under some special cases. Discussion is given in
Section 4.

2. Extended Cure Models

Extended cure models have been introduced by Wu et al. (2014). Let O, = {(#;, 6;,X;,Z;),i = 1,2,...,n} be a data
set. Here #; is the observed survival time of subject i, ¢; is the censoring indicator with 1 if #; is uncensored (i.e.,
observed), and 0 otherwise, X; and z; are two covariate vectors. Let 8 and y be the parameter vectors related to x;
and z;, respectively, and 8] = (B’,y’). If the cure model in (1) is used for modeling the data set Oy, the observed
likelihood can be written as:

Ly(01:01) = | [[n) fultilx)) " {x(2)S u(tibx) + [1 = m(z) 1}~ 2)
i=1

Assume that for censored subjects, their diagnostic results d; are also observed, where d; is 1 if subject i is diag-
nosed as cured and O if diagnosed as uncured. A diagnostic procedure usually is associated with certain sensitivity
and specificity. Sensitivity measures the proportion of actual positives which are correctly identified (e.g., the per-
centage of sick people who are correctly identified as sick). Specificity measures the proportion of actual negatives
who are correctly identified (e.g., the percentage of healthy people who are correctly identified as healthy). Sup-
pose that the diagnostic procedure results are independent of the failure times, i.e., d; is independent of #;, and the
diagnostic procedure has a sensitivity of py and a specificity of 1 — p;. We have py > p; for a validated diagnostic
procedure. Although py and p; might be modeled, for simplicity they are assumed not to depend on any covariates.
Let Oy = {(t;,6;,X;,2;,d;),i = 1,2,...,n} and 6, = (8, po, p1). For uncensored individuals (6; = 1), the contri-
bution to the likelihood is the same as that in (2); while for censored individuals (§; = 0), with the independent
assumption of d; and #;, the contribution is pf"(l - pl)l‘dfn(zi)Su(tilxi) if they are uncured, and the contribution is
pg"(l — po)' "%[1 = m(z;)] if they are cured. A cure model incorporated with these additional diagnostic information
will be called an extended cure model. The observed likelihood for the extended cure model is as follows:

Lo(02:02) = [ 1@ fulalx)l® {p7(1 = p)!“m(@)$ (i) + pii(1 = po) 11— nz)l} 3)
i=1

Because the diagnostic procedure results may not always be available for all the censored subjects, let ; = 1 if the
diagnostic result of subject i is available, and 7; = 0 otherwise. Let O3 = {(#,0;,X;, Z;, i, d;), i = 1,2,...,n}. We
can then write the observed likelihood for the extended cure model when cure information is partially known as
follows:
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n

Lo(62;05) = | |l fultlx)l™ x {p{i(1 = p1) (28 u(ailxi) + pi (1 = po)! 1 = m(z) )}

i=1

(@S u(rifx) + [1 = m(zp) 1700, (4)

It is noted that (4) reduces to (2) except for a constant multiplier when py = p;, which means that if both sensitivity
and (1 — specificity) are the same, the likelihood functions with and without the diagnostic information are the
same. In practice, we want both sensitivity and specificity to be high and py # p;.

As in the literature, one can use logistic regression, other link functions or nonlinear regression to model the “in-
cidence” part n(z). Parametric, semiparametric (PH or AFT), or nonparametric methods can be used to model the
“latency” part S ,(#x). An expectation-maximization (EM) algorithm can be used to estimate the model parameters
in (4). The details of the EM procedure can be found in Wu et al. (2014). In this paper, we focus on the asymptotic
efficiency of the MLEs of the parameters in the extended exponential cure model with the observed likelihood in
Equation (3).

3. Asymptotic Efficiency of Maximum Likelihood Estimation for Extended Exponential Cure Models

In this section, we show for several special cases that the asymptotic efficiencies of the MLEs for an extended
exponential cure model are positively associated with the sensitivity and the specificity of the diagnostic procedure,
and are asymptotically more efficient than the MLEs for the corresponding classical cure model. Assume that the
logit link is used for the incidence part, the exponential distribution for the latency part, and py and p; are known.
Specifically, the assumptions are stated as follows:

° log(lf;z(';[)) = y'z;, where ' = (y0,¥1,...,Yr) is a 1 X (k + 1) parameter vector, and z; = (Zj0, Zi1, - - -»Zi) 1S @
(k + 1) x 1 covariate vector with z;o = 1.

o f,(tiIx;) = h(x;)e”"*)" is the pdf of an exponential distribution and h(x;) = e#*. Here x; = (X0, Xi1, ..., Xim)' is a
(m + 1) X 1 covariate vector with x;o = 1. 8/ = (80,81, --.,Bm) is a 1 X (m + 1) parameter vector.

e po and p; are known with py > p; for a valid diagnostic procedure.

Proposition 1 Denote V)L,) as the asymptotic variance of the MLE of y when the diagnostic procedure is used, and
V;,V as the asymptotic variance of the MLE of v when no diagnostic procedure is used. Let V/’;) be the asymptotic

variance of the MLE of B when the diagnostic procedure is used, and V;?V the asymptotic variance of the MLE of B
when no diagnostic procedure is used. The following results are true:

(1) When sensitivity and specificity are both 100%, i.e., po = 1, p1 = 0, all diagonal entries of V}’? and Vlli) are less

than or equal to the corresponding entries of V}],V and V[]g\' . This implies that the estimators of y and 8 are more
efficient when diagnostic information is included.

(2) Whenk =0, m =0, i.e., ¥ = (y0), B = (Bo), V}? and Vé) are less than or equal to V;,V and Vg’, respectively. This
implies that the estimators of y and B are more efficient when diagnostic information is included. Furthermore,
the asymptotic variance decreases as the sensitivity or specificity increases.

(3) Whenk = 0, m = 1, i.e., ¥ = (y0), B = (Bo,B1)’, and x;; is a binary variable with values of 0 and 1, the
asymptotic variances of the MLEs of yy and By are smaller when the diagnostic procedure is used. This implies
that the estimators of yo and By are more efficient when diagnostic information is included. Furthermore, the
asymptotic variance decreases as the sensitivity or specificity increases.

(4) When k = 1, m = 0, i.e., ¥y = (yo,71), B = (Bo), and z;1 is a binary variable with values of 0 and 1, the
asymptotic variances of the MLEs of yy and By are smaller when the diagnostic procedure is used. This implies
that the estimators of yo and By are more efficient when diagnostic information is included. Furthermore, the
asymptotic variance decreases as the sensitivity or specificity increases.

The proposition will be proved based on several Lemmas. For convenience, for all the derivations in this section,
denote m; = m(z;) and h; = h(x;). The observed likelihood for the extended exponential cure model according to (3)
can be written as:

Lo(6;05) = | |Grhie "™ (pi(1 = p1) e + pii(1 = po)' (1 = m)]' 7, 5)

i=1
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which implies that the observed log-likelihood is:

(625 02) = log[L,(6>; 02)]

—Z&[Iog(m)ﬂog(h) hr,]+Z(1—6>log[p1 (1= p)'~me™ + pi (1 = p) (1 = )] (6)
i=1 i=1

The score functions are:

3Co(02;02) _ 3L,(62300) Om; _ < Omi [ 6 w(1—6) Pl = pp)'-diehit — pli(1 — po)!= ] o
oy omi Oy A Oy |m l pl(L = py)!~dimei + pi(1 = po)' (1 - ;)
and
d; 1-d; —hit;
0(,(0,;0 00,(6,;0 6h 1 - ‘mitie”"
(6> 2) 0(62;0) Z 5it; —(1=6;) - pl( Py - } ()
B Oh; Py = py)!=dime=ti + pfi(1 = po)!=di(1 — ;)
By defining
. —d : _ b;
= py(1=p0)' by = pr (1= ), and vy = =,
one can simplify (7) and (8) to
850(02;02) X (971',' 5i vieé hiti — 1
—_— = — -+ -6)—F],
dy ; dy [ni ( )vin,-e‘h i+ ] — m]
0,(02;07) < Oh; | 6 vimtie i
—_— = ___6iti_1_6i—-
B ; B | hi ( )vinie*hi“‘ +1-m
The entries of the observed information matrix are
8*€,(6>;0,)
e W
dydy
- (971',‘ 37'(,' 5,’ (v,-e‘hf’i - 1)2 - (927'(,' 6,‘ v;e hiti _ 1
= —— | =+ (-6 - ——+1—6,-—, 9
; dy oy’ [”12 ( )(viﬂie*hi’i +1—-m)? ; oydy' | m ( )viﬂie*" i+ 1 — 2
9*€,(6; 0,)
Ip=-—7———
opop’
n 2 —h;it; n —hit:
Oh; Oh; | 6; vimi(1 — m)tse™ "l h: [6; Tt hit;
=Z—’ O (1 - gy —ZL - o =it = (1= 6)—— . (10)
op op’ | h? (vimie it + 1 —m) | & OBOP’ | hi vime it + 1 —
02€,(0,; 0,) on; Oh; vit;e it
I =- 2,2 Z - | (1 =67 — 5 |- (11)
ayop dy OB (vime ™t + 1 — 1;)
For any 7,, and vy,, and for observation i, because 7; = 1+ s the first order partial derivatives of x; are
omi — zm€"  Omi Omi  ZimZne™ ™ and o, \ _ Tnle
Om  (L+ 82 By, dy, (1 +er5) dym) — (L+erm)t
The second order partial derivatives of x; are
27 | — e \2
om _1-e7 (0_ﬂ) (12)
oy2, 24 Y
and
O n; B 1 -2 On; Om; (13)

OymOyn  €'H By, Oy,
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From (12) and (13), we have
% 1= ' % on;

dydy  eru Oy dy’’

Similarly for any f3,, and j3,, and for observation i, the first order partial derivatives of #; = 8™ are

Oh; O O, - on; \’ :
—_— = Ximeﬂ Xi, - A = ximxinezﬁ X" and | — xlzmeZB *
PBm Bm P P
The second order partial derivatives of /; are
Phi 5 g 1 (0K Y
== [ 14
g, 7 \ OB (14
2h , 1 Oh; Oh;
Ohi _ e = L 0 Ol (15)
6ﬁmaﬁn hi aﬁm 6ﬁn

From (14) and (15), we have
0%h; B i% oh;
BB hi OB OB’

Consequently, I}; in (9) and I, in (10) can be rewritten as follows:

ala[ i i_hiti_l2 31611_27/21 6[ i_hm_l
Z I ﬂ[_ -5 (vie ) } Z ;i On e (-5 vie ]

Oy oy’ (vime it + 1 — 11;)? oy oy’ R vimie hiti + 1 — g1
(16)
and
- Bh, 6h, 6,’ Vlﬂ-l(] t2 ~hit Bh, 8h, 1 (S,' V,'ﬂilie_hiti
N R [ RS L S s - (1 — sy —2Te
2 ; B op’ [hlz )(vne hiti 4+ 1 — 11;)? Z B OB’ h; [h,- ( )V,'ﬂ','e_hiti +1- ﬂi]
)

Similarly, if no diagnostic information is used, we only need to set v; = 1 or py = p; = 0.5 in (16), (17), and (11)
to have the following entries

8°,(61;0))
Ju=-—7F"77"—
dydy’
= Om; om; [ 6 (e7hiti —1)? Om; Om; 1 - e | 5 e7hili — 1
SN R A ) -6 — |,
; dy oy’ [n? + )( ehiti 4 1 — ;)2 Z dy oy en | * )n',-e*hf’i +1-m
0%6,(61501)
Jo=-—r7r>—
opop’
" Oh; Oy | 6; (1 = m)t;e " Oh; Oh; 1 [6; fie
=Z—’ O (1 - gy Zlo e Z e e e e F
£ ap p h? (mie~hiti + 1 — ;)2 oB OB’ h; | h; mie it + 1 — m;
_ 6 &,(01,01) orn; Oh; tie_ ifi
To==—508 Z dy Op’ [ O e 1 1 = 77,-)2}'

Denote T = {t;,i = 1,2,...,n}and V = {(6;,d;),i = 1,2,...,n}. To obtain the information matrix, we will take
expectation of I,; and J,, 1, s = 1,2, with respect to O = {T, V}. Let

(po—p1)*
[(1 = pome"it + (1 = po)(1 = mp)l[prmie + po(l — 1))

@i(po, p1) = (18)

We have the following results.
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Lemma 2 Denote 1(12 and J(lg as the i summand of 1,5 and J,», respectively. Then

. ; oy _ _Omi Oh; timie 2iti(1 —
AD = Eo (1D)) - Eo (J%)) = o aﬁ,E {—()so,(po,pl)}

me it 4+ 1

Proof. Because for each i

_P=p) [ if g =0
== P . _ R
pg’(l — po)i-d p—(‘) ifd; =1

. . +.o—hiti
%% (1-6) vitie
oy op’ (vime it + 1 — ;)2

an; Ohy | vitie "
= E E A ap, 1 - 6i
T vIT { a,y aﬂ/ ,( )(viﬂie_hiri + 1 - ﬂ-l)2:|}}

_ g o [0mi Ohi [ =601 — dy)vit;e™" g [0mi0hi | (1 — 8)dvt;e i
B oy op’ | (vime™hiti + 1 — ;)2 Vit 87 op’ | (vime hiti + 1 — 1;)?

Om; Ohi | . [(1 = 6)(1 = dyvitie™™* Om; Ohi | . (1 = &p)divtie™"
ay op """ (mime i+ 1 — )2 gy aﬂ' Y vime i + 1 = )2
1-p —hit;
on; h; ——tie
0 O s, = 0, d, = Ojt)) ———1L2

-
= P iehiti 1 — ;)2

P1 —hit;
an; Oh; o lie™"
+E —P@6; =0,d; = 1|t;
T{@ op’ ( | )(pne‘h" 1 —m)?
om; Oh; (1= p)(1 = po)re"i
=FE P5; =0,d; = 0|t;
T{a " T poyme i+ (1 = po)d =77
on; Oh; pipotie i
+ E —P6; =0,d; = 1|t; s 19
t { oy B¢ ) e+ po(l )P (19
P(8; = 0,d; = Olty) = (1 — pme™" + (1 = po)(1 — ), (20)
and
P(5; = 0,d; = 11t;) = pime”™™ + po(1 — my), 1)

by plugging (20) and (21) into (19), we have

0} — Omi Ohi it (1= p)(1 = poYtie”"
1) Ex {1 = pome™ + (1 = po)(1 - m;
Eo(lz)= 5, a5 Er {[( pome (=P =Tl e+ (1 = po)d — TP
c’)7r, Ohi . —hit, pipotie”"
i o 1 i
y { pitie ol = X Ry o1 = )P

37Ti Oh; (1 = p)(1 = po)re” " On; Oh; pipotie”"
= — Ex + — Ex
dy op " | (1 = pometi + (1= po)(1 —m) | dy OB [ prme” " + po(1 — ;)

_ 0 or; oh; 1- 1-
T I (1 = p1) = po) N P1Po . 22)
S oy o (I = pomei + (1 = po)(1 —m) ~ pime™ + po(1 — m;)
Similarly, we have
; orn; Oh; tie~hiti
Eo(J)) = = Erq————¢. 23
o(I2) =3, ap Er {me_h,.,, i m} (23)
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It can be shown from (22) and (23) that

3= B 1) 20 1)
_omi 6h,~E {re"”" [ (1 = p)( = po)
dy op’ l (1 = pme it + (1 = po)(1 - 7;)
P1Po }} _ O Ok
pimie it + po(1 — ;)

ayop " [n, -'”/+(1—n,>]

_am o [ (1= p)(1 = po)  1-p
(1= pome i+ (1= p)(I —m)  me i + (1 - ;)

oyop "

87r, oh; Eplpehi P1Po B Po
6 op’ pime” it 4+ po(1 — ;) me™ it + (1 — my)

_ On; Oh; tie™hit (1 = po)(1 = 7m)(po — p1)
dy op’ me it + (1 =m) (1= pome i + (1 = po)(1 - m;)
(97Tz Oh; tiehit « po(l —m)(p1 — po)
3 B \me it + (1 —x;) pimiehiti + po(1 = m;)

_ Om; Ol E timie” (1 — ;) (po = p1)*
C oy op me it + (1 —m) [(1 = pomeit + (1 = po)(1 = mp)][prmiei'i + po(1 — 7;)]

on; Oh; timie”2hiti(1 — 1)
LIl D B S 17

by OB { P %(Po,l?l)}

Lemma 3 Denote I(l? and J(lif as the i'" summand of 111 and J11, respectively. Then

A A : orn; Or; et
AV = Eg (1(1?) —E, (J(l’f) = L "'F; {—_ﬁ%(!’mlﬂ)}-
1

dy oy’ mie~ it + 1

Proof. First of all, A(li; can be expressed as follows:

si-ste)- )
{c’)ﬂ, on;

We can write the third term in the above expression as follows:

(97'1',' aﬂi 1- @27/2' hiti -1
Eo{ 2t (1= )
oy oy’ eV’ vimie il + 1 — m;

(vie it — 1)? on; Om; (e7Miti —
“Ep{ T — sy —e
(v,n', “hiti 41 — ;)2 2\ oy oy’ ( )(n'e*”f’i +1-m)?

on; Omi 1 — &' i _ ] on; om; 1
—Eo—ﬂﬂ;,(—é)— +Eg Om; om; 1 — 7%
Oy Oy’ v vimie it + 1 — 1t Oy Oy’ eV

on; Om; 1 — ¥ vie it — 1
=Er<E — (1 =6)(1 - d;
T{ VIT{ay gy orn [( ) )=

vime it + (1 — 7;)

671, 67r, e ve hiti — 1
+ErqEvr —— | =) di———
vimie "t + po(1 — ;)

(97 c’)y ev'si

o, om; 1 — &' 1= pretii — (1 -
—ET{ i Om; 1 —e P(5; = 0.d; = Olr) ( Plaé. (1 = po)
oy oy’ ev' (I = pme™"t + (1 = po)(1 — ;)
On; Om; 1 — X' —hit; _
+ET{ P = 0.d; = i) —2C P
dy dy'  evn prmie + po(1l = 7;)

By using the expressions of P(5; = 0,d; = 0O|t;) and P(J;

P e7hili — 1
Ymehit 41 —m )

0,d; = 1]t;) in (20) and (21), respectively, we can
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simplify the third term as follows:

(97r, 67r, 1—e2u vie~hiti — 1
By oy’ e (-3 )v et + 1 — 7

on; Oy 1 — et it 671', om; 1 - e —hit;
{an rz ————[(1 = pe ™™ = (1 = po)l ¢ + Et By 3y ,T(Ple = Po)

om; on; 1 — 2y’
=By | ST (- 1)
oy oy’ eV

The above expression does not depend on v;, so it turns out that

,91(9’ e et ] 515: o2 —hiti _
Eoq 2" mloe’? (1_6i)v— = Eg 2~ mloe’? (1-6)—|t.
oy 0y e vime hiti + 1 — g; By 0y’ er' me it + 1 — 1

It follows that
i o—hiti — 1)2 b 182
AD = Onm; Om; (1-6) (vie 1) 67@ aﬂl (ehit — 1)
6 oy’ (vimie —hit; 4 1 — 7Ti)2 (71' e‘h . ”1)2
67(, aﬂ'l 1- 6i di Ve —hit; _ 1 2
}+ET{EV|T|: ( ) ( ) :|}

_elE anl or; (1 —6)(1 — d)(vie it — 1)?
B N %2 (vime Mt + 1 — ;)2 Ay oy’ (vime™"iti + 1 — m;)?

_ —hiti _ 1\2
By {EV|T [67r, or; (1 =06;)(e 1) }}

Oy 0y’ (et + 1 — ;)2
. {an, om; P@i = 0,d; = Ot)[(1 = ppye”™ — (1 - po)]2}
dy oy’ [(1 = pmeit + (1 = 7)(1 = po)]?
Ey {% om; P(6; = 0,d; = 1]t)[pre " — Po]z} By {375 on; P(6; = 0)r;) (e — )2}.
oy oy’ [primieiti + po(1 — m;)]? oy oy (me7hti + 1 — ;)

Again because of (20) and (21), we have

AD = on; aﬂ'iE [(1 = ppe ™ — (1 = po)I?
oy oy (1 = ppmie~"iti + (1 — m)(1 = po)

. . —hiti _ 2 —hit; _ 1\2
N %aﬂzE { (pre Po) } om; (97T1E { (e 1) }

dy oy’ pime i+ po(l —m) | dy oy’ mie it + 1 - m;
_omi 37TiE { [(A=pe’ = =p)l*  (1=p)e™ - 1)2}
dy oy (I =pometi+ (1 =a)(1 = po)  me i +1-m
+ Om; om; E { (pre = po)*  pi(e™ 1) }
dy oy’ pimie it + po(l — ;) me it +1 —m;
_omi 37TiE { pr=po =1 =p)U+m)e" + (2= po— pyme™ + (1 - m)(l - PO)}
Oy oy’ me~hiti + 1 — g; (1 = poyme~hiti + (1 = 7)(1 = po)
on; o, { Po — D1 —p1(1 + m)e it + (po + pr)me™ " + (1 - ﬂi)Po}
Oy oy’ mie~hiti + 1 — 1 pimiehiti + po(1 — ;)
on; om; e 2hili
=Gy 0y {m%(m,pl)}-

Lemma 4 Denote I(') and J(') as the i summand of I, and J», respectively. Then

' ' »\ _ Oh; Oh; 72 (1 = ;)2 e 2hit
@ _ (i) @)\ _ i ; ; :
Ay =Eo (Izz)‘Ea (Jzz) - ﬁﬁﬁ’ ET{ — = ©i(po,p1) ¢ -

mie it 4+ 1
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Proof. A(Z’; can be written as follows:
@) _ (i) ()
Ay = Eo (Izz) (J )
Oh; Oh; vimi(1 — 77 e Oh; Oh; , 1= e
= —EO - , (1 - 61) —hit 2 / ( (it 2 1 — 2
op op (vimrie™hiti + 1 — ;) 0,3 op (ﬂ, il + 1 —71;)
Oh; oh; 1 Viﬂitieih"t" Oh; oh; 1 Titie ~hiti
+E — -6 —=E PV Epd (1 -6 — |},
0 { 9B 9B h; [( )vime‘hi“ +1-n 9\ a8 B’ h ( )ﬂie‘hr’i +1-m

By using (20) and (21), we can write the third term in the above expression as follows:

(9}1,' oh; 1 V[?T[lie_hiti
~ (1 =gy —YTitie
6/3 ﬁﬂ' ]’l,' Viﬂie‘*h"t" +1- T

E(()hi oh; 1 (1-6)(1 - d,»)v[ﬂ,-t,»e‘h”*

+EJE oh; oh; 1 (1 - 6)divl‘7l',‘li€_hit’
(BB b vime i+ 1 - VY 9B 0B i vime i w1 —m;

[0hi 0hi 1 (1= 6)(1 = d(1 = pr)mitie”™" }+ET{EV [ah Oh; 1 (1 =6)d;p\mitie™" ]}
| 9B 0B h; (1 - pome ™ + (1 - po)(1 — ;) "B 0B hi pimie i+ po(1 - 7y)
Oh; oh; 1 P(6; = 0,d; = 0lt;)(1 — py)mtie —M}+E {ah hi 1 P8 = 0.d; = lit)pimitie —hn}

B P hi (1 — pryme it + (1= po)(1 — my) OB OB hi  prmeili + po(1 — ;)

[ Oh; Oh; 1 oh; oh; 1
=Er{Evr B 6,3’_( — pmitie”" | b + Ex{ Eyir BB I —DPitie”
Oh o 1,
=Et{EviT 6,80ﬂ’_ mitie M b

Because the above expression does not depend on v;, we have

ah ah ] Vzﬂztz ~hit 19]’!1 6/1, 1 ﬂ'i[ie_hitf
| (1 =07) =Eos 7o |U-6)—|¢-
6ﬂ P’ h; Ve vime i + 1 — 1, bid OB OB’ h; mehiti 4 1 —m;

Therefore, it follows that

op 6,3’ (v,n,e hit; + 1 —m;)? B op’ (et + 1 — 1,2
= —Er {EVIT [Wl Oh; (4 = 000 ~ dovim(l - ”i)’,-ze_hili]}
6ﬂ 6ﬁ’ (vin-ie—h,-t,- +1- 7ri)2
_ By {EV|T [ah Ah; (1 = 8)dvim(1 — m)tre™"it }} B {EV [% oh; (1 = 6pmi(1 — m)rre"it }}
9 aﬂ, (vimje™ti + 1 = m;)* B OB (mehiti + 1 — ;)
- {ahi oh; P(6; = 0,d; = 0l;)(1 — p1)(1 = po)mi(1 - ni)tl?e"f’i}

B p’ [(1 = poymie™t + (1 = 7)(1 = po)I2

Oy Oh; P(6; = 0,d; = 1|t p1 pomi(1 — mp)ife ™" £ | Ohi Oy P(6; = Olt)mi(1 — my)i2e it
R + JE—

B op’ [pimie~hit + po(1 — m;)]? B op’ (mie it + 1 — ;)

Based on (20) and (21), we have
A0 Ol [ (= (1 = pom(l - m)ige
2 op op’ (1 = pme"iti + (1 = 7;)(1 = po)
Oh; Oh; - {plpom(l —m)ite }+ Ohi ol {m(l _mn?e—hm}

3ﬂ op’ pimie it + po(1 — ;) B op’ me it + 1 —g;
Oh; 3/1 p)( = po)ri(1 —mpze™ (1= po)m(1 — m)t7e
) _%QB’ {(1 —pome i+ (I=m)(1=po)  me i+ - }
Oh; (9h pipori(l — mite “hite pomi(1 — ,Tl,)tize—h[z;
BB {pme Wl - me - }
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_ Oy {<1 ~ po)mi(1 —m)ite” (1 = po)(1 =) }
op op’ me i +1—m (1= p)me it + (1 —m)(1 = po)
. Oh; Oh; Er {Poﬂi(l —mpze™ ™ (po - p)(1 - ;) }
B op’ me it + 1 —m;  pymehiti + po(1 — ;)
Oh; Oy (A1 — mp) e 2Nl
= Bp ET{ P —— <Pi(P0,P1)}-

O
Because the expressions of A(lg, A(I?, and A(zg all involve ¢;(po, p1), to prove Proposition 1, we need the following
lemma regrading ¢;(po, p1).

Lemma 5 For function

(po — p1)*
[(1 = pomeit + (1 = po)(1 — w1 [prmie i + po(1 — )]’

@i(po, p1) =

if 0 < py < po < 1, then for any i, ;(po, p1) is an increasing function of py, and a decreasing function of p;.

Proof. If holding py fixed, we can rewrite ¢;(pg, p1) as

i(po, pr) = PP Po _ 1 - po
BT e | pime i+ po(1 = m) (1= pome ™+ (1= po)(1 =) |

and smaller 1= All

> - _ pm
Because py > pi, smaller p; leads to larger py — pi, larger i i+ po(l=m)® (=pnyme Fiii+(1-po)(1-m1) "

these lead to a larger ¢;(po, p1). If we hold p; as fixed, ¢;(po, p1) can be rewritten as

oi(po. pr) = L= [ 1-p 3 P
pe I=m |- pome i + (1= po)(1—m)  pime ™+ po(1 — ;)
Larger pg leads to larger py — p;, larger c l—m)n,e*h}’i_f(ll_po)(1—ﬂi)’ and smaller plﬂie,hi,f’ipo a0 These lead to a larger

wi(po, p1). O

With the differences for each entry of the information matrix computed by Lemmas 2 - 4, and the property of the
differences established by Lemma 5, we are ready to prove Proposition 1.

Proof of Proposition 1. Let

. S e hiti _ 1)2 1=z [ 6. ehiti — 1
al) =| =5 +(1-6) (h ) sl |t =) |
T (me=hiti + 1 — 7;) ev'z i mie il + 1 — ;
0 0; -6 (1 — ﬂi)[ize_hifi 1 (s b= (1) ﬂiliefh"t"
a =|— — - ) |- — | = =51 — -§)——|,
22 hlz ! (me‘h"' +1 —71',')2 ]’l,‘ h,’ " ! ﬂie_hftf +1- T
—hit:
. te iti
(i) i
a>=(1-6)—————,
2= l)(nie*’“’f +1—m;)?
—2/‘1,‘f,‘
49 = ¢
u ﬂiefhit"+1—ﬂ'l"
4 = ”,'2(1 - ﬂ[)ztize‘th’f
2~ >

mie it + 1 —
o _ time (1 = )

27 mehiti 41 —m;

Then we have

n

» O Om;
_ § i) 9% O
EO(JII)—EO( a“ﬁy 6‘}/’]’

i=1

10
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N o) Ohy Ohy
E =E O——1.
0(J22) O(iZI Ay 8B 6,8’]

5 i) Om; Ohy

E =E W_=—
0(J12) 0(1,:1 ais (9’}’ Bﬁ’]

and, by Lemmas 2 - 4,
A=y A =E
11 Z T by 3y’
; Oh; Oh;
_ @ _
A22 = ZA22 = ET (Z g%(l?o»Pl)aﬂ aﬁ,J

; on; Oh;
Ay = ZA() —Er (Zd( SDz(pO’pl)a aﬂ,]

It is obvious from the above expressions that a(]g >0, dﬁ’; > 0, and Eo[a(') (llz)(p,(po, p1)] = 0. Also, because of

the positive definite property of the information matrix, we have a(lq >0, a(zg >0, dg’l) >0, and d(’) > 0.

on; on;
Z d”%(Po, pl)__]

Proof of Case 1. When py = 1 and p; = 0, ¢;(po, p1) reduces to
1

@i(po, p1) = A= myme

For any i, we have
( ) = liﬂie_zhili(l —7;) 1 _ t,-e‘h""
dyzei(po. p mehiti + (1 — ) (1 = mpyme™ht — mehiti + 1 -’
and by (23)
E O\ _ E tie—h,’l,’
0 (alz) T M e+ 1= |
Thus
! i (97Ti (')hi
Eo(Ipp) = Eo[ |a = deitpo, p0)] 7 —,) = (24)

i=1 dy OB

Using (24) we have

1
N : om; o
07 = ot - oo o = e Sl o ] 55 |
i=1

and

-1
- S, Oh; dh;
VP = (Eo(ln) - Ey(I)Ey iDEo()] = {Eo (Z |a5) + dei(po, p1)] 72 T aﬁ,)}

i=1

For any (k + 1) dimensional vectors # and w, a non-negative constant ¢, and a (k + 1) X (k + 1) positive definite
matrix A, we have

1
wWA+eww) lu=u'|lA"" - I—A‘lww'A‘1 u
—+wAlw
1
=uwAu- 1—uTA"ww’A_'u
S +wAlw
1
=u'A\u - ———— @AW <u'Au (25)
S +wAlw

11
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By adding A(lif one at a time, for any u, we have u’V)l,)u < u’V}’,"u. By takingu; asu;; = 0if j #iand u;; = 1if j =i,
we can conclude that all the diagonal entries of V}I,) are less than or equal to the corresponding diagonal entries
of V;V . Because smaller diagonal entries indicate higher efficiency, the estimator of y with diagnostic information
included is more efficient than that without diagnostic information included.

Similarly, it can be shown that all the diagonal entries of Vl? are less than or equal to the corresponding diagonal

entries of V¥ and, hence, the estimate of 8 with diagnostic information included is more efficient than that without
diagnostic information included. ]

Proof of Case 2. Because g—’;j and %" are the same for all subjects when y = (yp) and 8 = (8), denote

on; Oh;
=C,y, and — =C,
6‘}/ an 6ﬂ Bo-
Then we have
Eo = B[S0 4 g6 Omi Omi | _ 2 g (40 4 40
o) =Ep [ +d 1901(190,171)] v nCy Eo (a” d, 901(170,171)), (26)
i=1
o or; oh;
Eo(I12) = Eo [ ) — dei(po, Pl)] 3y 6ﬂ’) nCmCBOEo( W — gy (po, Pl)) (27)
i1
and
n Oh; oh;
Eo(I) = EO[ a5 + dei(po. )| 7 B aﬁ,J = nC}, Eo (ayy + diy'¢1(po, 1)) (28)
i=1

From (26), (27), and (28), we have

E2(@) = dVei(po, p1))
E (€3] d(l)
olay, + 901(P0,P1))

-1
(V] = Eoi) - EoMn)E, In)Ep(Iiy) = nC2 Eo () + dVe1(po. p1) — n

Because Eo(a(l) ltpl(po,pl)) and Eo(am (12)901(po,p1)) are increasing functions of pg, and decreasing

(1

functions of p; through their dependence on ¢;(po, p1), and E2 0(ay; d(l)gal(po, p1)) is a decreasing function of

-1
Po, and an increasing function of p; through its dependence on ¢;(pg, p1), [ y] is an increasing function of py,
and a decreasing function of pj, i.e., an increasing function of py (sensitivity) and 1 — p; (specificity). Larger

-1
[Vf ] leads to smaller V)? . Thus the efficiency of the estimator of y increases as either specificity or sensitivity
increases, and the estimator of y with diagnostic information included is more efficient than that without diagnostic
information included.

Similarly, we have

(VP = Eoln) - Ep(Lin)Eg! (1) Eo(T1)
(“(l) (112)901(170,171))
Eo(a)}) +dYe1(po. p1))

= nCj,Eo (g +dy¢1(po. p1) = nC,

-1, . . . . . . . . .
[Vg] is also an increasing function of py, and a decreasing function of py, i.e., an increasing function of pg

e e -1 . .
(sensitivity) and 1 — p; (specificity). Larger [V‘? ] leads to smaller V2. Therefore, the efficiency of the estimator
of B increases as either specificity or sensitivity increases, and the estimator of B with diagnostic information
included is more efficient than that without diagnostic information included. ]

Proof of Case 3. a”’ is the same for all subjects when ¥ = (yp), so we can denote it as an unknown constant C,,.

For B8 = (Bo,B1) and x;1 being a binary variable with values of 0 and 1, ‘;}é can be expressed as follows:
Oh; 1 1 1
@—hi[x” }—60[0]1()@1—0)"'61 1 }I(x,‘]—l).

12
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Here ¢y = exp(By) and e; = exp(By + B1) are the shorthand notations of i; = h(x;; = 0) and h; = h(x; = 1),
respectively. I(-) is an indicator function.

For j =0,1, let
bui; = Eo (af) +d{\ei(po. plxn = Jj).
biaj = Eo (1 = dei(po, p)lxin = j),
bx; = Eo (a5} + dsyei(po. plxin = ).

Assume that there are ng observations with x;; = 0, and n; observations with x;; = 1. By the independent and
identically distributed (i.i.d.) property when the covariates are the same, we have

. ; ; on; on;
Eo(I11) = Eo [Z [ O+ d(l%(Po,Pl)] ] = C5 (nib111 + nobyo), (29)

i=1

& ; omn; oh;
Eo(L;p) = Eo[ a\) = d\eipo, p1) )
2.1 1% %

= Cy[nibiziei(1, 1) + nobiagen(1, 0)]
= C,,(nibia1er + nobixoeo, nibioier), (30)

and

: Oh; Oh;
Eo(Iy) = E (§ a$) + dyyei(po. p1) —]
o\122 o - [ 22 22 0> /1 ] 6ﬁ aﬂ,

1 1 1 0
=l’11b221€%|: 11 ]"’nObZZOe%[ 00 ]

2 2 2

_ | mbxiey +nobxnoe; nibaie;

= 2 2 |-
nibyie; mbxie;

As a result, the inverse of Eg(I») is

—1 -1
E, (Izz)—[ e e } (31)

nobyoey  nobaey  mibyie;

From (29), (30), and (31), the inverse of Vf is as follows:

[VyD] = Eo(I11) - Eo(I1n)E,' (In)E,(11)
= Cyo(nlblll + nobi10)

nibzrer + nobiaoeg

1 1

2 nobyge? nobyge?
— Gy, (mbizier + nobiaoeo, nibizier) [ 1 ‘1 b
n1biz1€1

nobyoey  nobaoel  nibxier

2 2

(nobi20e)”  (mibizier) }

2 2
nobaoe; nibye;

=C, [nlblll +nobiio -

2 2
nob mb
=C§O(n1b111+nob110— el I

bo by

Because b111, bi11o, bao, and by are increasing functions of pg, and decreasing functions of p; through their
dependence on ¢;(po, p1), and by»; and by are decreasing functions of py, and increasing functions of p; through
-1
their dependence on ¢;(po, p1), [Vﬂ is an increasing function of py, and a decreasing function of py, i.e., an
-1
increasing function of pg (sensitivity) and 1 — p; (specificity). Larger [Vf ] leads to smaller Vf . Consequently,

the efficiency of the estimator of y increases as either specificity or sensitivity increases, and the estimator of y
with diagnostic information included is more efficient than that without diagnostic information included.

13
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For V/? , we have

1| Vii Vi
Vio Vo

where

G = (m1bya1e)(nobaoed)(nibiiy + nobiio) — (mibaiet)(mobiagen)* — (nobazoed)(mibinier)?,
Vit = (nibai€)(mibyyy + nobyio) — (m1b121e1)%,
Vay = (mibxiet + nobasoed) (b1 + nobiig) — (nibizier + nobingen)?,

Via = —(mbyie})(mibi + nobiio) + (nibiarer + nobiageo)(nibiager).
For the asymptotic variance of the MLE of 3 with diagnostic information included, we have

D (mibyie)(nibyyy + nobiio) — (mibiarer)?

VS =
Bo 2 2 2 2
(n1ba1e7)(nobaoey)(nibiy + nobiio) — (nibazier)(nobizoeo)* — (nobxoey)(mibiaier)?
1
neboone? — (m1bx1€})(nobinoeo)?
0%220€ (nibaare)(niby+nobio)—(n1biarer)?

1

(nobiz0e0)?
(n1bia1e))?
’11”2215%

nobyoe] —
nibyyi+nobiio—

Because by11, b119, bao, and by, are increasing functions of py, and decreasing functions of p; through their
dependence on ¢;(py, p1), and byp; and by are decreasing functions of py, and increasing functions of p; through

their dependence on ¢;(po, p1), ("nlbb'#ee‘) is a decreasing function of py and an increasing function of p; and, hence,

2 . . . . . . . .
mbi + nobrio — % is an increasing function of py and a decreasing function of p;. This implies that
1b221€]

2
(nob1z0€o)
(nybpyye))?

"1’12216%

(nobizeo)* . . . . . . 2
oo isa decreasing function of po and an increasing function of py, nobxoey —

nbyyie] niby+nobiio—
is an increasing function of py and a decreasing function of p;, and VD0 is a decreasing function of py and an
increasing function of py, i.e., a decreasing function of pq (sensitivity) and 1 — p; (specificity). Therefore, the
efficiency of the estimator of 5 increases as either specificity or sensitivity increases. Because the estimator of
Bo without diagnostic information included corresponds to the case here sensitivity is the same as 1 - specificity
(po = p1), the estimator of By with diagnostic information included (with py > p;) is more efficient than that

without diagnostic information included. ]

nibyi+nobiio—

Proof of Case 4. When B = (), because ‘Z—;‘; is the same for all subjects, it is denoted as an unknown constant Cg, .

For y = (yp,71)’, we can express ‘; as

67r,~ e‘y’z,- 1 1 1

T - Iz = 0) + IGa = 1),

Gy - A+ ern) [ - ] go[ 0 ] @ =0 +g1| ] (za =1
where gy = (1+em)2 when z;; =0 and g; = % when z;; = 1.

For j=0,1, let

citj = Eo (al) + di(po. po)lzir = j).

Cl2j = EO( @ (g%(PO P1)|Zzl = ])’

Cnj = Eo (a(zg 2901(170’ P1)|Zzl - ])

Suppose there are n; observations with z;; = 0 and n} observations with z;; = 1. It then can be obtained with the

14
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i.i.d. property when the covariates are the same that

< i i (97T,‘ 671’,'
Eo(I1)) = Eo (Z[ U+ dleipo. pv)| == 5y ay,)

i=1

. o 1T 1 . >l 10
=n;C1118] 11 +715C1108) 0 0

2 2 2

_| memng +n32c110g0 HTCmg%
5 5 )

nic18; nici18)

which implies that

1
2
o ngc
11080 1 +11080 1 :| . (32)
niciogy  mpciogy - micing)

Because

3y Op’

. 1
+ﬂ0612080[ 0 ]}

nyc12181 + nyC12080 ] (33)

i=

= Cg, {NjC12181 [

n 1€12181

< om; Oh;
Eo(I)) = 0{ (’) 2901(170,171)] = }

and
Oh; Oh;

op aﬁ’] = Cp, (e + nienn). (34)

Eo(I») = Eg (Z a5, + deipo, p0)] =2
im1
From (32), (33), and (34), we have
1
[Vé)] = Eo(In) - E,(I0)E, (1I1)Eo(112)
= Céo(nT0221 + nyC20)

njc12181 + 1512080
nic2181

i i
2 ,ox * % ne 11082 ncigl
Cp,(njci2181 + noclzogo,nlclzlgl)[ I O H

= ) o 7+ = 2
n4C1108 n,€1108 nicingy

5 | . (njc12080)*  (njc12181)?
= Cﬁo nyc1 +nycpo — . R . >
1,C1108, nicig)
* 2 * 2
-2 (n*CZZI + 1 e — 5Co0 ”1"121)
= 1 0 -

Fo €110 1l
C111, €110, €220, and ¢pp; are increasing functions of pg, and decreasing functions of p; through their dependence on
wi(po, p1), and c21 and ¢ g are decreasing functions of py, and increasing functions of p; through their dependence

-1
on ¢;(po, p1), SO [V[? ] is an increasing function of p, and a decreasing function of py, i.e., an increasing function
e o -1 .
of po (sensitivity) and 1 — p; (specificity). Larger [V’?] leads to smaller V,? . Consequently, the efficiency of
the estimator of B increases as either specificity or sensitivity increases, and the estimator of B8 with diagnostic
information included is more efficient than that without diagnostic information included.

L)
G|V, Vp

2 2 . . 2 2 2 2
G* = (njci18)myc11085) () caz1 + nyeazo) — (nyc1187)(ngc12080)” — (ngci108p)(Mici2181)°,

For Vf , it can be computed as

where

2 2
Vi = mjcing) e + ngeano) — (njci2i81)7,
.
253
5
Vi

* 2 * 2 5 5 5 5 2
(nic11187 + nyci108p) (M) 221 + nycazo) — (M€12181 + NyC12080) >

2 . . .
—(njcingpmicnn + nyeano) + (njci21g1 + nyci208o)(nici2ig),

15
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so the asymptotic variance of the MLE of vy, with diagnostic information included is as follows:

D _ (njeing)mjenn +njcano) — (c12181)
T (i eingh(mie1108) () ean + micano) — (Me11180) (1 c12080)% — (n5c11083) (M c12181)?
_ 1
- * 2 (mc11183)(15¢12080)?
MoC1108p ~ (e gD caan+myean)—(mc12181)?

1

(ngc12080)*

* 2
n.,c -
0 IIOgO . . (”T"IZIKHZ
nyCan1+ngC0o—— 5
nergy

Because ci11, c110, €220, and cpp; are increasing functions of pg, and decreasing functions of p; through their

dependence on ¢;(po, p1), and c12; and ¢y are decreasing functions of py, an(zi increasing functions of p; through

their dependence on ¢;(po, p1), we can draw an inference as follows: % is a decreasing function of py and
1€1118]

(myc12181)*

an increasing function of p; and, hence, njcaa1 +nyca0 — P

is an increasing function of py and a decreasing

2
(15¢12080)
(ricip18))?

function of p;. This can imply that

is a decreasing function of py and an increasing function of

njca1+nyc00— >
! 0 nyeiney

(n5¢12080)>
(ricip18))?

p1, and ngc 10g(2) - is an increasing function of py and a decreasing function of p;. It turns out

nj 22144220~ P
that V% is a decreasing function of py and an increasing function of py, i.e., a decreasing function of pg (sensitivity)
and 1 — p; (specificity). Therefore, the efficiency of the estimator of y, increases as either specificity or sensitivity
increases. Because the estimate of y, without diagnostic information included corresponds to the case where
sensitivity is the same as 1 - specificity (pp = p;), the estimator of y, with diagnostic information included (with

po > p1) is more efficient than that without diagnostic information included. ]
4. Summary and Discussion

An extended cure model incorporated with additional diagnostic information about cured status is very useful to
model the failure time data where some individuals could eventually experience, and others never experience, the
event of interest when their diagnostic information is available. In this paper, we have shown theoretically that the
MLEs for the parameters in the extended exponential cure model are asymptotically more efficient than the MLEs
for those in the classical exponential cure model. Specifically we showed for some special cases that the asymptotic
efficiency increases as the sensitivity and the specificity of diagnostic procedures increase. In conclusion, based on
the results provided in this paper, we highly recommend that when additional cure information is available, even
only partially, we should incorporate this information into the model. It is also recommended that investigators
should devise diagnostic procedures of cure and collect available cure information when we design and conduct
studies.
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