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Abstract

Cure models are popularly used to analyze failure time data where some individuals could eventually experience

and others might never experience an event of interest. However in many studies, there are diagnostic procedures

available to provide further information about whether a subject is cured. Wu et al. (2014) proposed a method,

called the extended cure model, that incorporated such additional diagnostic cured status information into the

classical cure model analysis. Through extensive simulations, they demonstrated that the extended cure models

provide more efficient and less biased estimations, and higher efficiency and smaller bias are associated with higher

sensitivity and specificity of the diagnostic procedure used. In this paper, we provide theoretical justifications

of this positive association for some special cases. More specifically we shows that the maximum likelihood

estimators (MLEs) of the parameters for an extended exponential cure model are asymptotically more efficient

than the MLEs for the corresponding classical exponential cure model.
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1. Introduction

When there is evidence of long-term survivors, cure models are often used to model the survival curve. Let T be a

non-negative random variable for the failure time, x and z the covariate vectors, π(z) the uncured probability for a

subject, and f (t|x, z) and S (t|x, z) the probability density function (pdf) and the survival function for T , respectively.

Denote fu(t|x) and S u(t|x) as the pdf and the survival function for uncured subjects, respectively. The cure model

can be written as a mixture model in terms of the pdf: f (t|x, z) = π(z) fu(t|x), or in terms of the survival function:

S (t|x, z) = π(z)S u(t|x) + [1 − π(z)]. (1)

In the literature, the cure models have been extensively studied. Conventionally π(z) is called the “incidence” part,

and fu(t|x) is referred to as the “latency” part. Logistic regression is commonly used to model the “incidence”

part, although other links or non-linear regression methods could be used. The “latency” part can be modeled

parametrically, semi-parametrically, or non-parametrically. In the parametric approach, the following distributions

have been commonly used: Exponential (Jones et al., 1981; Goldman, 1984; Ghitany & Maller, 1992); Weibull

(Farewell, 1982, 1986); Lognormal (Boag, 1949; Gamel et al., 1990); Gompertz (Gordon, 1990a, 1990b; Cantor

& Shuster, 1992); Extended generalized gamma (EGG) (Yamaguchi, 1992); and Generalized F (GF) distributions

(Peng et al., 1998). In the non-parametric approach, Kaplan-Meier estimation method is used without adjusting for

covariates as in Taylor (1995). In the semi-parametric approach, some authors used the Cox proportional hazards

(PH) model (Kuk & Chen, 1992; Peng & Dear, 2000; Sy & Taylor, 2000), and some used accelerated failure time

(AFT) models (Li & Taylor, 2002; Zhang & Peng, 2007). In general, parametric cure models can achieve greatest

efficiency in estimation if the distributional assumptions are satisfied. However in practice it can be challenging

to verify these assumptions. Although semi-parametric models do not require a distributional assumption, they may
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lose efficiency in estimation compared to a parametric model when a distribution can be correctly identified.

All the cure modeling to date assumes that cured and uncured subjects can not be distinguished in the censored

subset. However medical diagnostic procedures in many studies are available to provide further information about

whether a subject is cured. For instance, closure of the growth plate can be served as an indicator of cure in the

study of bone injury in pediatric patients (Leary et al., 2009; Wu et al., 2014). The diagnostic procedures are likely

associated with a certain degree of accuracy in terms of sensitivity and specificity, because it can be difficult to

completely separate cured and uncured subjects in the censored subset. Motivated by a clinical study, Wu et al.

(2014) extended the classical cure models to incorporate the additional diagnostic information about cured status.

Through extensive simulations, they demonstrated that the extended cure models provide more efficient and less

biased estimations, and the higher efficiency and smaller bias is associated with higher sensitivity and specificity

of diagnostic procedures.

In this paper, we provide theoretical justifications to show how such additional diagnostic information can im-

prove the asymptotic efficiency of model parameter estimators, as compared to the classical cure model approach.

Specifically, we provide theoretical justification of this positive association between the sensitivity and specificity

of the diagnostic procedure and the asymptotic efficiency of the maximum likelihood estimators (MLEs) of the

extended exponential cure model of Wu et al. (2014) in a few special cases.

In Section 2, the formulation of a cure model incorporated with additional cure information (called extended
cure model) is provided. In Section 3, the asymptotic efficiency of the MLEs of the parameters for an extended

exponential cure model and the asymptotic relative efficiency (ARE) of the MLEs respect to the MLEs for the

traditional exponential cure model are systematically studied under some special cases. Discussion is given in

Section 4.

2. Extended Cure Models

Extended cure models have been introduced by Wu et al. (2014). Let O1 = {(ti, δi, xi, zi), i = 1, 2, . . . , n} be a data

set. Here ti is the observed survival time of subject i, δi is the censoring indicator with 1 if ti is uncensored (i.e.,

observed), and 0 otherwise, xi and zi are two covariate vectors. Let β and γ be the parameter vectors related to xi

and zi, respectively, and θ′
1
= (β′,γ′). If the cure model in (1) is used for modeling the data set O1, the observed

likelihood can be written as:

Lo(θ1; O1) =

n∏
i=1

[π(zi) fu(ti|xi)]
δi {π(zi)S u(ti|xi) + [1 − π(zi)]}1−δi . (2)

Assume that for censored subjects, their diagnostic results di are also observed, where di is 1 if subject i is diag-

nosed as cured and 0 if diagnosed as uncured. A diagnostic procedure usually is associated with certain sensitivity

and specificity. Sensitivity measures the proportion of actual positives which are correctly identified (e.g., the per-

centage of sick people who are correctly identified as sick). Specificity measures the proportion of actual negatives

who are correctly identified (e.g., the percentage of healthy people who are correctly identified as healthy). Sup-

pose that the diagnostic procedure results are independent of the failure times, i.e., di is independent of ti, and the

diagnostic procedure has a sensitivity of p0 and a specificity of 1 − p1. We have p0 ≥ p1 for a validated diagnostic

procedure. Although p0 and p1 might be modeled, for simplicity they are assumed not to depend on any covariates.

Let O2 = {(ti, δi, xi, zi, di), i = 1, 2, . . . , n} and θ′2 = (θ′1, p0, p1). For uncensored individuals (δi = 1), the contri-

bution to the likelihood is the same as that in (2); while for censored individuals (δi = 0), with the independent

assumption of di and ti, the contribution is pdi
1

(1 − p1)1−diπ(zi)S u(ti|xi) if they are uncured, and the contribution is

pdi
0

(1− p0)1−di [1− π(zi)] if they are cured. A cure model incorporated with these additional diagnostic information

will be called an extended cure model. The observed likelihood for the extended cure model is as follows:

Lo(θ2; O2) =

n∏
i=1

[π(zi) fu(ti|xi)]
δi
{
pdi

1
(1 − p1)1−diπ(zi)S u(ti|xi) + pdi

0
(1 − p0)1−di [1 − π(zi)]

}1−δi
. (3)

Because the diagnostic procedure results may not always be available for all the censored subjects, let ηi = 1 if the

diagnostic result of subject i is available, and ηi = 0 otherwise. Let O3 = {(ti, δi, xi, zi, ηi, di), i = 1, 2, . . . , n}. We

can then write the observed likelihood for the extended cure model when cure information is partially known as

follows:
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Lo(θ2; O3) =

n∏
i=1

[π(zi) fu(ti|xi)]
δi × {pdi

1
(1 − p1)1−diπ(zi)S u(ti|xi) + pdi

0
(1 − p0)1−di [1 − π(zi)]}(1−δi)ηi

{π(zi)S u(ti|xi) + [1 − π(zi)]}(1−δi)(1−ηi). (4)

It is noted that (4) reduces to (2) except for a constant multiplier when p0 = p1, which means that if both sensitivity

and
(
1 − specificity

)
are the same, the likelihood functions with and without the diagnostic information are the

same. In practice, we want both sensitivity and specificity to be high and p0 � p1.

As in the literature, one can use logistic regression, other link functions or nonlinear regression to model the “in-

cidence” part π(z). Parametric, semiparametric (PH or AFT), or nonparametric methods can be used to model the

“latency” part S u(t|x). An expectation-maximization (EM) algorithm can be used to estimate the model parameters

in (4). The details of the EM procedure can be found in Wu et al. (2014). In this paper, we focus on the asymptotic

efficiency of the MLEs of the parameters in the extended exponential cure model with the observed likelihood in

Equation (3).

3. Asymptotic Efficiency of Maximum Likelihood Estimation for Extended Exponential Cure Models

In this section, we show for several special cases that the asymptotic efficiencies of the MLEs for an extended

exponential cure model are positively associated with the sensitivity and the specificity of the diagnostic procedure,

and are asymptotically more efficient than the MLEs for the corresponding classical cure model. Assume that the

logit link is used for the incidence part, the exponential distribution for the latency part, and p0 and p1 are known.

Specifically, the assumptions are stated as follows:

• log
(
π(zi)

1−π(zi)

)
= γ′zi, where γ′ = (γ0, γ1, . . . , γk) is a 1 × (k + 1) parameter vector, and zi = (zi0, zi1, . . . , zik)′ is a

(k + 1) × 1 covariate vector with zi0 = 1.

• fu(ti|xi) = h(xi)e−h(xi)ti is the pdf of an exponential distribution and h(xi) = eβ
′xi . Here xi = (xi0, xi1, . . . , xim)′ is a

(m + 1) × 1 covariate vector with xi0 = 1. β′ = (β0, β1, . . . , βm) is a 1 × (m + 1) parameter vector.

• p0 and p1 are known with p0 ≥ p1 for a valid diagnostic procedure.

Proposition 1 Denote VD
γ as the asymptotic variance of the MLE of γ when the diagnostic procedure is used, and

VN
γ as the asymptotic variance of the MLE of γ when no diagnostic procedure is used. Let VD

β be the asymptotic
variance of the MLE of β when the diagnostic procedure is used, and VN

β the asymptotic variance of the MLE of β
when no diagnostic procedure is used. The following results are true:

(1) When sensitivity and specificity are both 100%, i.e., p0 = 1, p1 = 0, all diagonal entries of VD
γ and VD

β are less
than or equal to the corresponding entries of VN

γ and VN
β . This implies that the estimators of γ and β are more

efficient when diagnostic information is included.

(2) When k = 0, m = 0, i.e., γ = (γ0), β = (β0), VD
γ and VD

β are less than or equal to VN
γ and VN

β , respectively. This
implies that the estimators of γ and β are more efficient when diagnostic information is included. Furthermore,
the asymptotic variance decreases as the sensitivity or specificity increases.

(3) When k = 0, m = 1, i.e., γ = (γ0), β = (β0, β1)′, and xi1 is a binary variable with values of 0 and 1, the
asymptotic variances of the MLEs of γ0 and β0 are smaller when the diagnostic procedure is used. This implies
that the estimators of γ0 and β0 are more efficient when diagnostic information is included. Furthermore, the
asymptotic variance decreases as the sensitivity or specificity increases.

(4) When k = 1, m = 0, i.e., γ = (γ0, γ1)′, β = (β0), and zi1 is a binary variable with values of 0 and 1, the
asymptotic variances of the MLEs of γ0 and β0 are smaller when the diagnostic procedure is used. This implies
that the estimators of γ0 and β0 are more efficient when diagnostic information is included. Furthermore, the
asymptotic variance decreases as the sensitivity or specificity increases.

The proposition will be proved based on several Lemmas. For convenience, for all the derivations in this section,

denote πi = π(zi) and hi = h(xi). The observed likelihood for the extended exponential cure model according to (3)

can be written as:

Lo(θ2; O2) =

n∏
i=1

(πihie−hiti )δi [pdi
1

(1 − p1)1−diπie−hiti + pdi
0

(1 − p0)1−di (1 − πi)]
1−δi , (5)
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which implies that the observed log-likelihood is:

�o(θ2; O2) = log[Lo(θ2; O2)]

=

n∑
i=1

δi[log(πi) + log(hi) − hiti] +
n∑

i=1

(1 − δi) log[pdi
1

(1 − p1)1−diπie−hiti + pdi
0

(1 − p0)1−di (1 − πi)]. (6)

The score functions are:

∂�o(θ2; O2)

∂γ
=
∂�o(θ2; O2)

∂πi

∂πi

∂γ
=

n∑
i=1

∂πi

∂γ

[
δi
πi
+(1 − δi)

pdi
1

(1 − p1)1−di e−hiti − pdi
0

(1 − p0)1−di

pdi
1

(1 − p1)1−diπie−hiti + pdi
0

(1 − p0)1−di (1 − πi)

⎤⎥⎥⎥⎥⎥⎦ (7)

and

∂�o(θ2; O2)

∂β
=
∂�o(θ2; O2)

∂hi

∂hi

∂β
=

n∑
i=1

∂hi

∂β

[
δi
hi
− δiti −(1 − δi)

pdi
1

(1 − p1)1−diπitie−hiti

pdi
1

(1 − p1)1−diπie−hiti + pdi
0

(1 − p0)1−di (1 − πi)

⎤⎥⎥⎥⎥⎥⎦ . (8)

By defining

ai = pdi
0

(1 − p0)1−di , bi = p1
di (1 − p1)1−di , and vi =

bi

ai
,

one can simplify (7) and (8) to

∂�o(θ2; O2)

∂γ
=

n∑
i=1

∂πi

∂γ

[
δi
πi
+ (1 − δi) vie−hiti − 1

viπie−hiti + 1 − πi

]
,

∂�o(θ2; O2)

∂β
=

n∑
i=1

∂hi

∂β

[
δi
hi
− δiti − (1 − δi) viπitie−hiti

viπie−hiti + 1 − πi

]
.

The entries of the observed information matrix are

I11 = −∂
2�o(θ2; O2)

∂γ∂γ′

=

n∑
i=1

∂πi

∂γ

∂πi

∂γ′

⎡⎢⎢⎢⎢⎣ δi
π2

i

+ (1 − δi) (vie−hiti − 1)2

(viπie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦ −
n∑

i=1

∂2πi

∂γ∂γ′

[
δi
πi
+ (1 − δi) vie−hiti − 1

viπie−hiti + 1 − πi

]
, (9)

I22 = −∂
2�o(θ2; O2)

∂β∂β′

=

n∑
i=1

∂hi

∂β

∂hi

∂β′

⎡⎢⎢⎢⎢⎣ δi
h2

i

− (1 − δi)
viπi(1 − πi)t2

i e−hiti

(viπie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦ −
n∑

i=1

∂2hi

∂β∂β′

[
δi
hi
− δiti − (1 − δi) viπitie−hiti

viπie−hiti + 1 − πi

]
, (10)

I12 = −∂
2�o(θ2; O2)

∂γ∂β′
=

n∑
i=1

∂πi

∂γ

∂hi

∂β′

[
(1 − δi) vitie−hiti

(viπie−hiti + 1 − πi)2

]
. (11)

For any γm and γn, and for observation i, because πi =
eγ
′zi

1+eγ′zi
, the first order partial derivatives of πi are

∂πi

∂γm
=

zimeγ
′zi

(1 + eγ′zi )2
,
∂πi

∂γm

∂πi

∂γn
=

zimzine2γ′zi

(1 + eγ′zi )4
, and

(
∂πi

∂γm

)2

=
zim

2e2γ′zi

(1 + eγ′zi )4
.

The second order partial derivatives of πi are

∂2πi

∂γ2
m
=

1 − e2γ′zi

eγ′zi

(
∂πi

∂γm

)2

(12)

and

∂2πi

∂γm∂γn
=

1 − e2γ′zi

eγ′zi

∂πi

∂γm

∂πi

∂γn
. (13)
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From (12) and (13), we have

∂2πi

∂γ∂γ′
=

1 − e2γ′zi

eγ′zi

∂πi

∂γ

∂πi

∂γ′
.

Similarly for any βm and βn, and for observation i, the first order partial derivatives of hi = eβ
′xi are

∂hi

∂βm
= ximeβ

′xi ,
∂hi

∂βm

∂hi

∂βn
= ximxine2β′xi , and

(
∂hi

∂βm

)2

= x2
ime2β′xi .

The second order partial derivatives of hi are

∂2hi

∂β2
m
= x2

imeβ
′xi =

1

hi

(
∂hi

∂βm

)2

, (14)

∂2hi

∂βm∂βn
= ximxineβ

′xi =
1

hi

∂hi

∂βm

∂hi

∂βn
. (15)

From (14) and (15), we have

∂2hi

∂β∂β′
=

1

hi

∂hi

∂β

∂hi

∂β′
.

Consequently, I11 in (9) and I22 in (10) can be rewritten as follows:

I11 =

n∑
i=1

∂πi

∂γ

∂πi

∂γ′

⎡⎢⎢⎢⎢⎣ δi
π2

i

+ (1 − δi) (vie−hiti − 1)2

(viπie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦ −
n∑

i=1

∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi

[
δi
πi
+ (1 − δi) vie−hiti − 1

viπie−hiti + 1 − πi

]

(16)

and

I22 =

n∑
i=1

∂hi

∂β

∂hi

∂β′

⎡⎢⎢⎢⎢⎣ δi
h2

i

− (1 − δi)
viπi(1 − πi)t2

i e−hiti

(viπie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦ −
n∑

i=1

∂hi

∂β

∂hi

∂β′
1

hi

[
δi
hi
− δiti − (1 − δi) viπitie−hiti

viπie−hiti + 1 − πi

]
.

(17)

Similarly, if no diagnostic information is used, we only need to set vi = 1 or p0 = p1 = 0.5 in (16), (17), and (11)

to have the following entries

J11 = −∂
2�o(θ1; O1)

∂γ∂γ′

=

n∑
i=1

∂πi

∂γ

∂πi

∂γ′

⎡⎢⎢⎢⎢⎣ δi
π2

i

+ (1 − δi) (e−hiti − 1)2

(πie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦ −
n∑

i=1

∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi

[
δi
πi
+ (1 − δi) e−hiti − 1

πie−hiti + 1 − πi

]
,

J22 = −∂
2�o(θ1; O1)

∂β∂β′

=

n∑
i=1

∂hi

∂β

∂hi

∂β′

⎡⎢⎢⎢⎢⎣ δi
h2

i

− (1 − δi)
πi(1 − πi)t2

i e−hiti

(πie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦ −
n∑

i=1

∂hi

∂β

∂hi

∂β′
1

hi

[
δi
hi
− δiti − (1 − δi) πitie−hiti

πie−hiti + 1 − πi

]
,

J12 = −∂
2�o(θ1; O1)

∂γ∂β′
=

n∑
i=1

∂πi

∂γ

∂hi

∂β′

[
(1 − δi) tie−hiti

(πie−hiti + 1 − πi)2

]
.

Denote T = {ti, i = 1, 2, . . . , n} and V = {(δi, di), i = 1, 2, . . . , n}. To obtain the information matrix, we will take

expectation of Irs and Jrs, r, s = 1, 2, with respect to O = {T,V}. Let

ϕi(p0, p1) =
(p0 − p1)2

[(1 − p1)πie−hiti + (1 − p0)(1 − πi)][p1πie−hiti + p0(1 − πi)]
. (18)

We have the following results.
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Lemma 2 Denote I(i)
12

and J(i)
12

as the ith summand of I12 and J12, respectively. Then

Δ
(i)
12
= EO

(
I(i)

12

)
− EO

(
J(i)

12

)
= −∂πi

∂γ

∂hi

∂β′
ET

{
tiπie−2hiti (1 − πi)

πie−hiti + 1 − πi
ϕi(p0, p1)

}
.

Proof. Because for each i

vi =
pdi

1
(1 − p1)1−di

pdi
0

(1 − p0)1−di
=

⎧⎪⎪⎨⎪⎪⎩
1−p1

1−p0
if di = 0

p1

p0
if di = 1

,

EO
(
I(i)

12

)
= EO

{
∂πi

∂γ

∂hi

∂β′

[
(1 − δi) vitie−hiti

(viπie−hiti + 1 − πi)2

]}

= ET

{
EV|T

{
∂πi

∂γ

∂hi

∂β′

[
(1 − δi) vitie−hiti

(viπie−hiti + 1 − πi)2

]}}

= ET

{
EV|T

{
∂πi

∂γ

∂hi

∂β′

[
(1 − δi)(1 − di)vitie−hiti

(viπie−hiti + 1 − πi)2

]}}
+ ET

{
EV|T

{
∂πi

∂γ

∂hi

∂β′

[
(1 − δi)divitie−hiti

(viπie−hiti + 1 − πi)2

]}}

= ET

{
∂πi

∂γ

∂hi

∂β′

{
EV|T

[
(1 − δi)(1 − di)vitie−hiti

(viπie−hiti + 1 − πi)2

]}}
+ ET

{
∂πi

∂γ

∂hi

∂β′

{
EV|T

[
(1 − δi)divitie−hiti

(viπie−hiti + 1 − πi)2

]}}

= ET

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂πi

∂γ

∂hi

∂β′
P(δi = 0, di = 0|ti)

1−p1

1−p0
tie−hiti

(
1−p1

1−p0
πie−hiti + 1 − πi)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ ET

⎧⎪⎪⎨⎪⎪⎩
∂πi

∂γ

∂hi

∂β′
P(δi = 0, di = 1|ti)

p1

p0
tie−hiti

(
p1

p0
πie−hiti + 1 − πi)2

⎫⎪⎪⎬⎪⎪⎭
= ET

{
∂πi

∂γ

∂hi

∂β′
P(δi = 0, di = 0|ti) (1 − p1)(1 − p0)tie−hiti

[(1 − p1)πie−hiti + (1 − p0)(1 − πi)]2

}

+ ET

{
∂πi

∂γ

∂hi

∂β′
P(δi = 0, di = 1|ti) p1 p0tie−hiti

[p1πie−hiti + p0(1 − πi)]2

}
, (19)

P(δi = 0, di = 0|ti) = (1 − p1)πie−hiti + (1 − p0)(1 − πi), (20)

and

P(δi = 0, di = 1|ti) = p1πie−hiti + p0(1 − πi), (21)

by plugging (20) and (21) into (19), we have

EO
(
I(i)

12

)
=
∂πi

∂γ

∂hi

∂β′
ET

{
[(1 − p1)πie−hiti + (1 − p0)(1 − πi)]

(1 − p1)(1 − p0)tie−hiti

[(1 − p1)πie−hiti + (1 − p0)(1 − πi)]2

}

+
∂πi

∂γ

∂hi

∂β′
ET

{
[p1πie−hiti + p0(1 − πi)] × p1 p0tie−hiti

[p1πie−hiti + p0(1 − πi)]2

}

=
∂πi

∂γ

∂hi

∂β′
ET

[
(1 − p1)(1 − p0)tie−hiti

(1 − p1)πie−hiti + (1 − p0)(1 − πi)

]
+
∂πi

∂γ

∂hi

∂β′
ET

[
p1 p0tie−hiti

p1πie−hiti + p0(1 − πi)

]

=
∂πi

∂γ

∂hi

∂β′
ET

{
tie−hiti

[
(1 − p1)(1 − p0)

(1 − p1)πie−hiti + (1 − p0)(1 − πi)
+

p1 p0

p1πie−hiti + p0(1 − πi)

]}
. (22)

Similarly, we have

EO
(
J(i)

12

)
=
∂πi

∂γ

∂hi

∂β′
ET

{
tie−hiti

πie−hiti + 1 − πi

}
. (23)

6
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It can be shown from (22) and (23) that

Δ
(i)
12
= EO

(
I(i)

12

)
− EO

(
J(i)

12

)

=
∂πi

∂γ

∂hi

∂β′
ET

{
tie−hiti

[
(1 − p1)(1 − p0)

(1 − p1)πie−hiti + (1 − p0)(1 − πi)

+
p1 p0

p1πie−hiti + p0(1 − πi)

]}
− ∂πi

∂γ

∂hi

∂β′
ET

[
tie−hiti

πie−hiti + (1 − πi)

]

=
∂πi

∂γ

∂hi

∂β′
ET

{
tie−hiti

[
(1 − p1)(1 − p0)

(1 − p1)πie−hiti + (1 − p0)(1 − πi)
− 1 − p0

πie−hiti + (1 − πi)

]}

+
∂πi

∂γ

∂hi

∂β′
ET

{
tie−hiti

[
p1 p0

p1πie−hiti + p0(1 − πi)
− p0

πie−hiti + (1 − πi)

]}

=
∂πi

∂γ

∂hi

∂β′
ET

{
tie−hiti

πie−hi ti + (1 − πi)
× (1 − p0)(1 − πi)(p0 − p1)

(1 − p1)πie−hiti + (1 − p0)(1 − πi)

}

+
∂πi

∂γ

∂hi

∂β′
ET

{
tie−hiti

πie−hiti + (1 − πi)
× p0(1 − πi)(p1 − p0)

p1πie−hiti + p0(1 − πi)

}

= −∂πi

∂γ

∂hi

∂β′
ET

{
tiπie−2hiti (1 − πi)

πie−hiti + (1 − πi)

(p0 − p1)2

[(1 − p1)πie−hiti + (1 − p0)(1 − πi)][p1πie−hiti + p0(1 − πi)]

}

= −∂πi

∂γ

∂hi

∂β′
ET

{
tiπie−2hiti (1 − πi)

πie−hiti + 1 − πi
ϕi(p0, p1)

}
.

�
Lemma 3 Denote I(i)

11
and J(i)

11
as the ith summand of I11 and J11, respectively. Then

Δ
(i)
11
= EO

(
I(i)

11

)
− EO

(
J(i)

11

)
=
∂πi

∂γ

∂πi

∂γ′
ET

{
e−2hiti

πie−hiti + 1 − πi
ϕi(p0, p1)

}
.

Proof. First of all, Δ
(i)
11

can be expressed as follows:

Δ
(i)
11
= EO

(
I(i)

11

)
− EO

(
J(i)

11

)

= EO

{
∂πi

∂γ

∂πi

∂γ′

[
(1 − δi) (vie−hiti − 1)2

(viπie−hiti + 1 − πi)2

]}
− EO

{
∂πi

∂γ

∂πi

∂γ′

[
(1 − δi) (e−hiti − 1)2

(πie−hiti + 1 − πi)2

]}

− EO

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi

[
(1 − δi) vie−hiti − 1

viπie−hiti + 1 − πi

]}
+ EO

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi

[
(1 − δi) e−hiti − 1

πie−hiti + 1 − πi

]}
.

We can write the third term in the above expression as follows:

EO

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi

[
(1 − δi) vie−hiti − 1

viπie−hiti + 1 − πi

]}

=ET

{
EV|T

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi

[
(1 − δi)(1 − di)

vie−hiti − 1

viπie−hiti + (1 − πi)

]}}

+ ET

{
EV|T

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi

[
(1 − δi) di

vie−hiti − 1

viπie−hiti + p0(1 − πi)

]}}

=ET

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi
P(δi = 0, di = 0|ti) (1 − p1)e−hiti − (1 − p0)

(1 − p1)πie−hiti + (1 − p0)(1 − πi)

}

+ ET

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi
P(δi = 0, di = 1|ti) p1e−hiti − p0

p1πie−hiti + p0(1 − πi)

}
.

By using the expressions of P(δi = 0, di = 0|ti) and P(δi = 0, di = 1|ti) in (20) and (21), respectively, we can

7
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simplify the third term as follows:

EO

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi

[
(1 − δi) vie−hiti − 1

viπie−hiti + 1 − πi

]}

=ET

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi
[(1 − p1)e−hiti − (1 − p0)]

}
+ ET

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi
(p1e−hiti − p0)

}

=ET

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi
(e−hiti − 1)

}
.

The above expression does not depend on vi, so it turns out that

EO

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi

[
(1 − δi) vie−hiti − 1

viπie−hiti + 1 − πi

]}
= EO

{
∂πi

∂γ

∂πi

∂γ′
1 − e2γ′zi

eγ′zi

[
(1 − δi) e−hiti − 1

πie−hiti + 1 − πi

]}
.

It follows that

Δ
(i)
11
= EO

{
∂πi

∂γ

∂πi

∂γ′

[
(1 − δi) (vie−hiti − 1)2

(viπie−hiti + 1 − πi)2

]}
− EO

{
∂πi

∂γ

∂πi

∂γ′

[
(1 − δi) (e−hiti − 1)2

(πie−hiti + 1 − πi)2

]}

= ET

{
EV|T

[
∂πi

∂γ

∂πi

∂γ′
(1 − δi)(1 − di)(vie−hiti − 1)2

(viπie−hiti + 1 − πi)2

]}
+ ET

{
EV|T

[
∂πi

∂γ

∂πi

∂γ′
(1 − δi)di(vie−hiti − 1)2

(viπie−hiti + 1 − πi)2

]}

− ET

{
EV|T

[
∂πi

∂γ

∂πi

∂γ′
(1 − δi)(e−hiti − 1)2

(πie−hiti + 1 − πi)2

]}

= ET

{
∂πi

∂γ

∂πi

∂γ′
P(δi = 0, di = 0|ti)[(1 − p1)e−hiti − (1 − p0)]2

[(1 − p1)πie−hiti + (1 − πi)(1 − p0)]2

}

+ ET

{
∂πi

∂γ

∂πi

∂γ′
P(δi = 0, di = 1|ti)[p1e−hiti − p0]2

[p1πie−hiti + p0(1 − πi)]2

}
− ET

{
∂πi

∂γ

∂πi

∂γ′
P(δi = 0|ti)(e−hiti − 1)2

(πie−hiti + 1 − πi)2

}
.

Again because of (20) and (21), we have

Δ
(i)
11
=
∂πi

∂γ

∂πi

∂γ′
ET

{
[(1 − p1)e−hiti − (1 − p0)]2

(1 − p1)πie−hiti + (1 − πi)(1 − p0)

}

+
∂πi

∂γ

∂πi

∂γ′
ET

{
(p1e−hiti − p0)2

p1πie−hiti + p0(1 − πi)

}
− ∂πi

∂γ

∂πi

∂γ′
ET

{
(e−hiti − 1)2

πie−hiti + 1 − πi

}

=
∂πi

∂γ

∂πi

∂γ′
ET

{
[(1 − p1)e−hiti − (1 − p0)]2

(1 − p1)πie−hiti + (1 − πi)(1 − p0)
− (1 − p1)(e−hiti − 1)2

πie−hiti + 1 − πi

}

+
∂πi

∂γ

∂πi

∂γ′
ET

{
(p1e−hiti − p0)2

p1πie−hiti + p0(1 − πi)
− p1(e−hiti − 1)2

πie−hiti + 1 − πi

}

=
∂πi

∂γ

∂πi

∂γ′
ET

{
p1 − p0

πie−hiti + 1 − πi

−(1 − p1)(1 + πi)e−2hiti + (2 − p0 − p1)πie−hiti + (1 − πi)(1 − p0)

(1 − p1)πie−hiti + (1 − πi)(1 − p0)

}

+
∂πi

∂γ

∂πi

∂γ′
ET

{
p0 − p1

πie−hiti + 1 − πi

−p1(1 + πi)e−2hiti + (p0 + p1)πie−hiti + (1 − πi)p0

p1πie−hiti + p0(1 − πi)

}

=
∂πi

∂γ

∂πi

∂γ′
ET

{
e−2hiti

πie−hiti + 1 − πi
ϕi(p0, p1)

}
.

�
Lemma 4 Denote I(i)

22
and J(i)

22
as the ith summand of I22 and J22, respectively. Then

Δ
(i)
22
= EO

(
I(i)

22

)
− EO

(
J(i)

22

)
=
∂hi

∂β

∂hi

∂β′
ET

⎧⎪⎪⎨⎪⎪⎩
π2

i (1 − πi)
2 t2

i e−2hiti

πie−hiti + 1 − πi
ϕi(p0, p1)

⎫⎪⎪⎬⎪⎪⎭ .

8
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Proof. Δ(i)
22

can be written as follows:

Δ
(i)
22
= EO

(
I(i)

22

)
− EO

(
J(i)

22

)

= −EO

⎧⎪⎨⎪⎩∂hi

∂β

∂hi

∂β′

⎡⎢⎢⎢⎢⎣(1 − δi) viπi(1 − πi)t2
i e−hiti

(viπie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭ + EO

⎧⎪⎨⎪⎩∂hi

∂β

∂hi

∂β′

⎡⎢⎢⎢⎢⎣(1 − δi) πi(1 − πi)t2
i e−hiti

(πie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭

+ EO

{
∂hi

∂β

∂hi

∂β′
1

hi

[
(1 − δi) viπitie−hiti

viπie−hiti + 1 − πi

]}
− EO

{
∂hi

∂β

∂hi

∂β′
1

hi

[
(1 − δi) πitie−hiti

πie−hiti + 1 − πi

]}
.

By using (20) and (21), we can write the third term in the above expression as follows:

EO

{
∂hi

∂β

∂hi

∂β′
1

hi

[
(1 − δi) viπitie−hiti

viπie−hiti + 1 − πi

]}

=ET

{
EV|T

[
∂hi

∂β

∂hi

∂β′
1

hi

(1 − δi)(1 − di)viπitie−hiti

viπie−hiti + 1 − πi

]}
+ ET

{
EV|T

[
∂hi

∂β

∂hi

∂β′
1

hi

(1 − δi)diviπitie−hiti

viπie−hiti + 1 − πi

]}

=ET

{
EV|T

[
∂hi

∂β

∂hi

∂β′
1

hi

(1 − δi)(1 − di)(1 − p1)πitie−hiti

(1 − p1)πie−hiti + (1 − p0)(1 − πi)

]}
+ ET

{
EV|T

[
∂hi

∂β

∂hi

∂β′
1

hi

(1 − δi)di p1πitie−hiti

p1πie−hiti + p0(1 − πi)

]}

=ET

{
∂hi

∂β

∂hi

∂β′
1

hi

P(δi = 0, di = 0|ti)(1 − p1)πitie−hiti

(1 − p1)πie−hiti + (1 − p0)(1 − πi)

}
+ ET

{
∂hi

∂β

∂hi

∂β′
1

hi

P(δi = 0, di = 1|ti)p1πitie−hiti

p1πie−hiti + p0(1 − πi)

}

=ET

{
EV|T

[
∂hi

∂β

∂hi

∂β′
1

hi
(1 − p1)πitie−hiti

]}
+ ET

{
EV|T

[
∂hi

∂β

∂hi

∂β′
1

hi
p1πitie−hiti

]}

=ET

{
EV|T

[
∂hi

∂β

∂hi

∂β′
1

hi
πitie−hiti

]}
.

Because the above expression does not depend on vi, we have

EO

{
∂hi

∂β

∂hi

∂β′
1

hi

[
(1 − δi) viπitie−hiti

viπie−hiti + 1 − πi

]}
= EO

{
∂hi

∂β

∂hi

∂β′
1

hi

[
(1 − δi) πitie−hiti

πie−hiti + 1 − πi

]}
.

Therefore, it follows that

Δ
(i)
22
= −EO

⎧⎪⎨⎪⎩∂hi

∂β

∂hi

∂β′

⎡⎢⎢⎢⎢⎣(1 − δi) viπi(1 − πi)t2
i e−hiti

(viπie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭ + EO

⎧⎪⎨⎪⎩∂hi

∂β

∂hi

∂β′

⎡⎢⎢⎢⎢⎣(1 − δi) πi(1 − πi)t2
i e−hiti

(πie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭

= −ET

⎧⎪⎨⎪⎩EV|T

⎡⎢⎢⎢⎢⎣∂hi

∂β

∂hi

∂β′
(1 − δi)(1 − di)viπi(1 − πi)t2

i e−hiti

(viπie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭

− ET

⎧⎪⎨⎪⎩EV|T

⎡⎢⎢⎢⎢⎣∂hi

∂β

∂hi

∂β′
(1 − δi)diviπi(1 − πi)t2

i e−hiti

(viπie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭ + ET

⎧⎪⎨⎪⎩EV

⎡⎢⎢⎢⎢⎣∂hi

∂β

∂hi

∂β′
(1 − δi)πi(1 − πi)t2

i e−hiti

(πie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭

= −ET

⎧⎪⎨⎪⎩∂hi

∂β

∂hi

∂β′
P(δi = 0, di = 0|ti)(1 − p1)(1 − p0)πi(1 − πi)t2

i e−hiti

[(1 − p1)πie−hiti + (1 − πi)(1 − p0)]2

⎫⎪⎬⎪⎭
− ET

⎧⎪⎨⎪⎩∂hi

∂β

∂hi

∂β′
P(δi = 0, di = 1|ti)p1 p0πi(1 − πi)t2

i e−hiti

[p1πie−hiti + p0(1 − πi)]2

⎫⎪⎬⎪⎭ + ET

⎧⎪⎨⎪⎩∂hi

∂β

∂hi

∂β′
P(δi = 0|ti)πi(1 − πi)t2

i e−hiti

(πie−hiti + 1 − πi)2

⎫⎪⎬⎪⎭ .
Based on (20) and (21), we have

Δ
(i)
22
= −∂hi

∂β

∂hi

∂β′
ET

⎧⎪⎨⎪⎩ (1 − p1)(1 − p0)πi(1 − πi)t2
i e−hiti

(1 − p1)πie−hiti + (1 − πi)(1 − p0)

⎫⎪⎬⎪⎭
− ∂hi

∂β

∂hi

∂β′
ET

⎧⎪⎨⎪⎩ p1 p0πi(1 − πi)t2
i e−hiti

p1πie−hiti + p0(1 − πi)

⎫⎪⎬⎪⎭ + ∂hi

∂β

∂hi

∂β′
ET

⎧⎪⎨⎪⎩πi(1 − πi)t2
i e−hiti

πie−hiti + 1 − πi

⎫⎪⎬⎪⎭
= −∂hi

∂β

∂hi

∂β′
ET

⎧⎪⎨⎪⎩ (1 − p1)(1 − p0)πi(1 − πi)t2
i e−hiti

(1 − p1)πie−hiti + (1 − πi)(1 − p0)
− (1 − p0)πi(1 − πi)t2

i e−hiti

πie−hiti + 1 − πi

⎫⎪⎬⎪⎭
− ∂hi

∂β

∂hi

∂β′
ET

⎧⎪⎨⎪⎩ p1 p0πi(1 − πi)t2
i e−hiti

p1πie−hiti + p0(1 − πi)
− p0πi(1 − πi)t2

i e−hiti

πie−hiti + 1 − πi

⎫⎪⎬⎪⎭

9
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=
∂hi

∂β

∂hi

∂β′
ET

⎧⎪⎨⎪⎩ (1 − p0)πi(1 − πi)t2
i e−hiti

πie−hiti + 1 − πi

(p1 − p0)(1 − πi)

(1 − p1)πie−hiti + (1 − πi)(1 − p0)

⎫⎪⎬⎪⎭
+
∂hi

∂β

∂hi

∂β′
ET

⎧⎪⎨⎪⎩ p0πi(1 − πi)t2
i e−hiti

πie−hiti + 1 − πi

(p0 − p1)(1 − πi)

p1πie−hiti + p0(1 − πi)

⎫⎪⎬⎪⎭
=
∂hi

∂β

∂hi

∂β′
ET

⎧⎪⎨⎪⎩π
2
i (1 − πi)

2t2
i e−2hiti

πie−hiti + 1 − πi
ϕi(p0, p1)

⎫⎪⎬⎪⎭ .
�

Because the expressions of Δ
(i)
12

, Δ
(i)
11

, and Δ
(i)
22

all involve ϕi(p0, p1), to prove Proposition 1, we need the following

lemma regrading ϕi(p0, p1).

Lemma 5 For function

ϕi(p0, p1) =
(p0 − p1)2

[(1 − p1)πie−hiti + (1 − p0)(1 − πi)][p1πie−hiti + p0(1 − πi)]
,

if 0 ≤ p1 ≤ p0 ≤ 1, then for any i, ϕi(p0, p1) is an increasing function of p0, and a decreasing function of p1.

Proof. If holding p0 fixed, we can rewrite ϕi(p0, p1) as

ϕi(p0, p1) =
p0 − p1

πie−hiti

[
p0

p1πie−hiti + p0(1 − πi)
− 1 − p0

(1 − p1)πie−hiti + (1 − p0)(1 − πi)

]
.

Because p0 ≥ p1, smaller p1 leads to larger p0 − p1, larger
p0

p1πie−hiti+p0(1−πi)
, and smaller

1−p0

(1−p1)πie−hiti+(1−p0)(1−πi)
. All

these lead to a larger ϕi(p0, p1). If we hold p1 as fixed, ϕi(p0, p1) can be rewritten as

ϕi(p0, p1) =
p0 − p1

1 − πi

[
1 − p1

(1 − p1)πie−hiti + (1 − p0)(1 − πi)
− p1

p1πie−hiti + p0(1 − πi)

]
.

Larger p0 leads to larger p0 − p1, larger
1−p1

(1−p1)πie−hiti+(1−p0)(1−πi)
, and smaller

p1

p1πie−hi ti+p0(1−πi)
. These lead to a larger

ϕi(p0, p1). �
With the differences for each entry of the information matrix computed by Lemmas 2 - 4, and the property of the

differences established by Lemma 5, we are ready to prove Proposition 1.

Proof of Proposition 1. Let

a(i)
11
=

⎡⎢⎢⎢⎢⎣ δi
π2

i

+ (1 − δi) (e−hiti − 1)2

(πie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦ − 1 − e2γ′zi

eγ′zi

[
δi
πi
+ (1 − δi) e−hiti − 1

πie−hiti + 1 − πi

]
,

a(i)
22
=

⎡⎢⎢⎢⎢⎣ δi
h2

i

− (1 − δi)
πi(1 − πi)t2

i e−hiti

(πie−hiti + 1 − πi)2

⎤⎥⎥⎥⎥⎦ − 1

hi

[
δi
hi
− δiti − (1 − δi) πitie−hiti

πie−hiti + 1 − πi

]
,

a(i)
12
= (1 − δi) tie−hiti

(πie−hiti + 1 − πi)2
,

d(i)
11
=

e−2hiti

πie−hiti + 1 − πi
,

d(i)
22
=
π2

i (1 − πi)
2t2

i e−2hiti

πie−hiti + 1 − πi
,

d(i)
12
=

tiπie−2hiti (1 − πi)

πie−hiti + 1 − πi
.

Then we have

EO (J11) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

a(i)
11

∂πi

∂γ

∂πi

∂γ′

⎞⎟⎟⎟⎟⎟⎠ ,

10



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

EO (J22) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

a(i)
22

∂hi

∂β

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠ ,

EO (J12) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

a(i)
12

∂πi

∂γ

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠
and, by Lemmas 2 - 4,

Δ11 =

n∑
i=1

Δ
(i)
11
= ET

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

d(i)
11
ϕi(p0, p1)

∂πi

∂γ

∂πi

∂γ′

⎞⎟⎟⎟⎟⎟⎠ ,

Δ22 =

n∑
i=1

Δ
(i)
22
= ET

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

d(i)
22
ϕi(p0, p1)

∂hi

∂β

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠ ,

Δ12 =

n∑
i=1

Δ
(i)
12
= −ET

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

d(i)
12
ϕi(p0, p1)

∂πi

∂γ

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠ .

It is obvious from the above expressions that a(i)
12
≥ 0, d(i)

12
≥ 0, and EO[a(i)

12
− d(i)

12
ϕi(p0, p1)] ≥ 0. Also, because of

the positive definite property of the information matrix, we have a(i)
11
≥ 0, a(i)

22
≥ 0, d(i)

11
≥ 0, and d(i)

22
≥ 0.

Proof of Case 1. When p0 = 1 and p1 = 0, ϕi(p0, p1) reduces to

ϕi(p0, p1) =
1

(1 − πi)πie−hiti
.

For any i, we have

d(i)
12
ϕi(p0, p1) =

tiπie−2hiti (1 − πi)

πie−hiti + (1 − πi)

1

(1 − πi)πie−hiti
=

tie−hiti

πie−hiti + 1 − πi
,

and by (23)

EO
(
a(i)

12

)
= ET

[
tie−hiti

πie−hiti + 1 − πi

]
.

Thus

EO(I12) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

12
− d(i)

12
ϕi(p0, p1)

] ∂πi

∂γ

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠ = 0. (24)

Using (24) we have

VD
γ =

{
EO(I11) − EO(I12)E−1

O (I22)E′O(I12)
}−1
=

⎧⎪⎪⎨⎪⎪⎩EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

11
+ d(i)

11
ϕi(p0, p1)

] ∂πi

∂γ

∂πi

∂γ′

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭
−1

and

VD
β =

{
EO(I22) − E′O(I12)E−1

O (I11)EO(I12)
}−1
=

⎧⎪⎪⎨⎪⎪⎩EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

22
+ d(i)

22
ϕi(p0, p1)

] ∂hi

∂β

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭
−1

.

For any (k + 1) dimensional vectors u and w, a non-negative constant c, and a (k + 1) × (k + 1) positive definite

matrix A, we have

u′(A + cww′)−1u = u′
⎛⎜⎜⎜⎜⎜⎝A−1 − 1

1
c + w′A−1w

A−1ww′A−1

⎞⎟⎟⎟⎟⎟⎠ u

= u′A−1u − 1
1
c + w′A−1w

uT A−1ww′A−1u

= uT A−1u − 1
1
c + w′A−1w

(u′A−1w)2 ≤ u′A−1u. (25)

11
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By adding Δ
(i)
11

one at a time, for any u, we have u′VD
γ u ≤ u′VN

γ u. By taking ui as ui j = 0 if j � i and ui j = 1 if j = i,
we can conclude that all the diagonal entries of VD

γ are less than or equal to the corresponding diagonal entries

of VN
γ . Because smaller diagonal entries indicate higher efficiency, the estimator of γ with diagnostic information

included is more efficient than that without diagnostic information included.

Similarly, it can be shown that all the diagonal entries of VD
β are less than or equal to the corresponding diagonal

entries of VN
β and, hence, the estimate of β with diagnostic information included is more efficient than that without

diagnostic information included. �
Proof of Case 2. Because ∂πi

∂γ and ∂hi
∂β are the same for all subjects when γ = (γ0) and β = (β0), denote

∂πi

∂γ
= Cγ0

and
∂hi

∂β
= Cβ0

.

Then we have

EO(I11) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

11
+ d(i)

11
ϕi(p0, p1)

] ∂πi

∂γ

∂πi

∂γ′

⎞⎟⎟⎟⎟⎟⎠ = nC2
γ0

EO
(
a(1)

11
+ d(1)

11
ϕ1(p0, p1)

)
, (26)

EO(I12) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

12
− d(i)

12
ϕi(p0, p1)

] ∂πi

∂γ

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠ = nCγ0
Cβ0

EO
(
a(1)

12
− d(1)

12
ϕ1(p0, p1)

)
, (27)

and

EO(I22) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

22
+ d(i)

22
ϕi(p0, p1)

] ∂hi

∂β

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠ = nC2
β0

EO
(
a(1)

22
+ d(1)

22
ϕ1(p0, p1)

)
. (28)

From (26), (27), and (28), we have

[
VD
γ

]−1
= EO(I11) − EO(I12)E−1

O (I22)E′O(I12) = nC2
γ0

EO
(
a(1)

11
+ d(1)

11
ϕ1(p0, p1)

)
− nC2

γ0

E2
O(a(1)

12
− d(1)

12
ϕ1(p0, p1))

EO(a(1)
22
+ d(1)

22
ϕ1(p0, p1))

.

Because EO(a(1)
11
+ d(1)

11
ϕ1(p0, p1)) and EO(a(1)

22
+ d(1)

22
ϕ1(p0, p1)) are increasing functions of p0, and decreasing

functions of p1 through their dependence on ϕ1(p0, p1), and E2
O(a(1)

12
− d(1)

12
ϕ1(p0, p1)) is a decreasing function of

p0, and an increasing function of p1 through its dependence on ϕ1(p0, p1),
[
VD
γ

]−1
is an increasing function of p0,

and a decreasing function of p1, i.e., an increasing function of p0 (sensitivity) and 1 − p1 (specificity). Larger[
VD
γ

]−1
leads to smaller VD

γ . Thus the efficiency of the estimator of γ increases as either specificity or sensitivity

increases, and the estimator of γwith diagnostic information included is more efficient than that without diagnostic

information included.

Similarly, we have

[
VD
β

]−1
= EO(I22) − E′O(I12)E−1

O (I11)EO(I12)

= nC2
β0

EO
(
a(1)

22
+ d(1)

22
ϕ1(p0, p1)

)
− nC2

β0

E2
O(a(1)

12
− d(1)

12
ϕ1(p0, p1))

EO(a(1)
11
+ d(1)

11
ϕ1(p0, p1))

.

[
VD
β

]−1
is also an increasing function of p0, and a decreasing function of p1, i.e., an increasing function of p0

(sensitivity) and 1 − p1 (specificity). Larger
[
VD
β

]−1
leads to smaller VD

β . Therefore, the efficiency of the estimator

of β increases as either specificity or sensitivity increases, and the estimator of β with diagnostic information

included is more efficient than that without diagnostic information included. �
Proof of Case 3. ∂πi

∂γ is the same for all subjects when γ = (γ0), so we can denote it as an unknown constant Cγ0
.

For β = (β0, β1)′ and xi1 being a binary variable with values of 0 and 1, ∂hi
∂β can be expressed as follows:

∂hi

∂β
= hi

[
1

xi1

]
= e0

[
1

0

]
I(xi1 = 0) + e1

[
1

1

]
I(xi1 = 1).

12
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Here e0 = exp(β0) and e1 = exp(β0 + β1) are the shorthand notations of hi = h(xi1 = 0) and hi = h(xi1 = 1),

respectively. I(·) is an indicator function.

For j = 0, 1, let

b11 j = EO
(
a(i)

11
+ d(i)

11
ϕi(p0, p1)|xi1 = j

)
,

b12 j = EO
(
a(i)

12
− d(i)

12
ϕi(p0, p1)|xi1 = j

)
,

b22 j = EO
(
a(i)

22
+ d(i)

22
ϕi(p0, p1)|xi1 = j

)
.

Assume that there are n0 observations with xi1 = 0, and n1 observations with xi1 = 1. By the independent and

identically distributed (i.i.d.) property when the covariates are the same, we have

EO(I11) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

11
+ d(i)

11
ϕi(p0, p1)

] ∂πi

∂γ

∂πi

∂γ′

⎞⎟⎟⎟⎟⎟⎠ = C2
γ0

(n1b111 + n0b110), (29)

EO(I12) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

12
− d(i)

12
ϕi(p0, p1)

] ∂πi

∂γ

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠
= Cγ0

[n1b121e1(1, 1) + n0b120e0(1, 0)]

= Cγ0
(n1b121e1 + n0b120e0, n1b121e1), (30)

and

EO(I22) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

22
+ d(i)

22
ϕi(p0, p1)

] ∂hi

∂β

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠
= n1b221e2

1

[
1 1

1 1

]
+ n0b220e2

0

[
1 0

0 0

]

=

[
n1b221e2

1 + n0b220e2
0 n1b221e2

1

n1b221e2
1 n1b221e2

1

]
.

As a result, the inverse of EO(I22) is

E−1
O (I22) =

⎡⎢⎢⎢⎢⎢⎣
1

n0b220e2
0

− 1
n0b220e2

0− 1
n0b220e2

0

1
n0b220e2

0

+ 1
n1b221e2

1

⎤⎥⎥⎥⎥⎥⎦ . (31)

From (29), (30), and (31), the inverse of VD
γ is as follows:

[
VD
γ

]−1
= EO(I11) − EO(I12)E−1

O (I22)E′O(I12)

= C2
γ0

(n1b111 + n0b110)

−C2
γ0

(n1b121e1 + n0b120e0, n1b121e1)

⎡⎢⎢⎢⎢⎢⎣
1

n0b220e2
0

− 1
n0b220e2

0− 1
n0b220e2

0

1
n0b220e2

0

+ 1
n1b221e2

1

⎤⎥⎥⎥⎥⎥⎦
[

n1b121e1 + n0b120e0

n1b121e1

]

= C2
γ0

⎡⎢⎢⎢⎢⎣n1b111 + n0b110 − (n0b120e0)2

n0b220e2
0

− (n1b121e1)2

n1b221e2
1

⎤⎥⎥⎥⎥⎦
= C2

γ0

⎛⎜⎜⎜⎜⎝n1b111 + n0b110 −
n0b2

120

b220

− n1b2
121

b221

⎞⎟⎟⎟⎟⎠ .
Because b111, b110, b220, and b221 are increasing functions of p0, and decreasing functions of p1 through their

dependence on ϕi(p0, p1), and b121 and b120 are decreasing functions of p0, and increasing functions of p1 through

their dependence on ϕi(p0, p1),
[
VD
γ

]−1
is an increasing function of p0, and a decreasing function of p1, i.e., an

increasing function of p0 (sensitivity) and 1 − p1 (specificity). Larger
[
VD
γ

]−1
leads to smaller VD

γ . Consequently,

the efficiency of the estimator of γ increases as either specificity or sensitivity increases, and the estimator of γ
with diagnostic information included is more efficient than that without diagnostic information included.

13
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For VD
β , we have

1

G

[
V11 V12

V12 V22

]
,

where

G = (n1b221e2
1)(n0b220e2

0)(n1b111 + n0b110) − (n1b221e2
1)(n0b120e0)2 − (n0b220e2

0)(n1b121e1)2,

V11 = (n1b221e2
1)(n1b111 + n0b110) − (n1b121e1)2,

V22 = (n1b221e2
1 + n0b220e2

0)(n1b111 + n0b110) − (n1b121e1 + n0b120e0)2,

V12 = −(n1b221e2
1)(n1b111 + n0b110) + (n1b121e1 + n0b120e0)(n1b121e1).

For the asymptotic variance of the MLE of β0 with diagnostic information included, we have

VD
β0
=

(n1b221e2
1)(n1b111 + n0b110) − (n1b121e1)2

(n1b221e2
1
)(n0b220e2

0
)(n1b111 + n0b110) − (n1b221e2

1
)(n0b120e0)2 − (n0b220e2

0
)(n1b121e1)2

=
1

n0b220e2
0
− (n1b221e2

1
)(n0b120e0)2

(n1b221e2
1
)(n1b111+n0b110)−(n1b121e1)2

=
1

n0b220e2
0
− (n0b120e0)2

n1b111+n0b110− (n1b121e1)2

n1b221e2
1

.

Because b111, b110, b220, and b221 are increasing functions of p0, and decreasing functions of p1 through their

dependence on ϕi(p0, p1), and b121 and b120 are decreasing functions of p0, and increasing functions of p1 through

their dependence on ϕi(p0, p1), (n1b121e1)2

n1b221e2
1

is a decreasing function of p0 and an increasing function of p1 and, hence,

n1b111 + n0b110 − (n1b121e1)2

n1b221e2
1

is an increasing function of p0 and a decreasing function of p1. This implies that

(n0b120e0)2

n1b111+n0b110− (n1b121e1)2

n1b221e2
1

is a decreasing function of p0 and an increasing function of p1, n0b220e2
0 − (n0b120e0)2

n1b111+n0b110− (n1b121e1)2

n1b221e2
1

is an increasing function of p0 and a decreasing function of p1, and VD
β0

is a decreasing function of p0 and an

increasing function of p1, i.e., a decreasing function of p0 (sensitivity) and 1 − p1 (specificity). Therefore, the

efficiency of the estimator of β0 increases as either specificity or sensitivity increases. Because the estimator of

β0 without diagnostic information included corresponds to the case here sensitivity is the same as 1 - specificity

(p0 = p1), the estimator of β0 with diagnostic information included (with p0 > p1) is more efficient than that

without diagnostic information included. �
Proof of Case 4. When β = (β0), because ∂hi

∂β is the same for all subjects, it is denoted as an unknown constant Cβ0
.

For γ = (γ0, γ1)′, we can express ∂πi
∂γ as

∂πi

∂γ
=

eγ
′zi

(1 + eγ′zi )2

[
1

zi1

]
= g0

[
1

0

]
I(zi1 = 0) + g1

[
1

1

]
I(zi1 = 1),

where g0 =
eγ0

(1+eγ0 )2 when zi1 = 0 and g1 =
eγ0+γ1

(1+eγ0+γ1 )2 when zi1 = 1.

For j = 0, 1, let

c11 j = EO
(
a(i)

11
+ d(i)

11
ϕi(p0, p1)|zi1 = j

)
,

c12 j = EO
(
a(i)

12
− d(i)

12
ϕi(p0, p1)|zi1 = j

)
,

c22 j = EO
(
a(i)

22
+ d(i)

22
ϕi(p0, p1)|zi1 = j

)
.

Suppose there are n∗0 observations with zi1 = 0 and n∗1 observations with zi1 = 1. It then can be obtained with the

14
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i.i.d. property when the covariates are the same that

EO(I11) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

11
+ d(i)

11
ϕi(p0, p1)

] ∂πi

∂γ

∂πi

∂γ′

⎞⎟⎟⎟⎟⎟⎠
= n∗1c111g2

1

[
1 1

1 1

]
+ n∗0c110g2

0

[
1 0

0 0

]

=

[
n∗1c111g2

1 + n∗0c110g2
0 n∗1c111g2

1

n∗1c111g2
1 n∗1c111g2

1

]
,

which implies that

E−1
O (I11) =

⎡⎢⎢⎢⎢⎢⎣
1

n∗
0
c110g2

0

− 1
n∗

0
c110g2

0− 1
n∗

0
c110g2

0

1
n∗

0
c110g2

0

+ 1
n∗

1
c111g2

1

⎤⎥⎥⎥⎥⎥⎦ . (32)

Because

EO(I12) = EO

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

[
a(i)

12
− d(i)

12
ϕi(p0, p1)

] ∂πi

∂γ

∂hi

∂β′

⎫⎪⎪⎬⎪⎪⎭
= Cβ0

{
n∗1c121g1

[
1

1

]
+ n∗0c120g0

[
1

0

]}

= Cβ0

[
n∗1c121g1 + n∗0c120g0

n∗1c121g1

]
(33)

and

EO(I22) = EO

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

[
a(i)

22
+ d(i)

22
ϕi(p0, p1)

] ∂hi

∂β

∂hi

∂β′

⎞⎟⎟⎟⎟⎟⎠ = C2
β0

(n∗1c221 + n∗0c220). (34)

From (32), (33), and (34), we have[
VD
β

]−1
= EO(I22) − E′O(I12)E−1

O (I11)EO(I12)

= C2
β0

(n∗1c221 + n∗0c220)

−C2
β0

(n∗1c121g1 + n∗0c120g0, n∗1c121g1)

⎡⎢⎢⎢⎢⎢⎣
1

n∗
0
c110g2

0

− 1
n∗

0
c110g2

0− 1
n∗

0
c110g2

0

1
n∗

0
c110g2

0

+ 1
n∗

1
c111g2

1

⎤⎥⎥⎥⎥⎥⎦
[

n∗1c121g1 + n∗0c120g0

n∗1c121g1

]

= C2
β0

⎡⎢⎢⎢⎢⎣n∗1c221 + n∗0c220 −
(n∗0c120g0)2

n∗
0
c110g2

0

− (n∗1c121g1)2

n∗
1
c111g2

1

⎤⎥⎥⎥⎥⎦
= C2

β0

⎛⎜⎜⎜⎜⎝n∗1c221 + n∗0c220 −
n∗0c2

120

c110

− n∗1c2
121

c111

⎞⎟⎟⎟⎟⎠ .
c111, c110, c220, and c221 are increasing functions of p0, and decreasing functions of p1 through their dependence on

ϕi(p0, p1), and c121 and c120 are decreasing functions of p0, and increasing functions of p1 through their dependence

on ϕi(p0, p1), so
[
VD
β

]−1
is an increasing function of p0, and a decreasing function of p1, i.e., an increasing function

of p0 (sensitivity) and 1 − p1 (specificity). Larger
[
VD
β

]−1
leads to smaller VD

β . Consequently, the efficiency of

the estimator of β increases as either specificity or sensitivity increases, and the estimator of β with diagnostic

information included is more efficient than that without diagnostic information included.

For VD
γ , it can be computed as

1

G∗

[
V∗11 V∗12

V∗12 V∗22

]
,

where

G∗ = (n∗1c111g2
1)(n∗0c110g2

0)(n∗1c221 + n∗0c220) − (n∗1c111g2
1)(n∗0c120g0)2 − (n∗0c110g2

0)(n∗1c121g1)2,

V∗11 = (n∗1c111g2
1)(n∗1c221 + n∗0c220) − (n∗1c121g1)2,

V∗22 = (n∗1c111g2
1 + n∗0c110g2

0)(n∗1c221 + n∗0c220) − (n∗1c121g1 + n∗0c120g0)2,

V∗12 = −(n∗1c111g2
1)(n∗1c221 + n∗0c220) + (n∗1c121g1 + n∗0c120g0)(n∗1c121g1),
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so the asymptotic variance of the MLE of γ0 with diagnostic information included is as follows:

VD
γ0
=

(n∗1c111g2
1)(n∗1c221 + n∗0c220) − (n∗1c121g1)2

(n∗
1
c111g2

1
)(n∗

0
c110g2

0
)(n∗

1
c221 + n∗

0
c220) − (n∗

1
c111g2

1
)(n∗

0
c120g0)2 − (n∗

0
c110g2

0
)(n∗

1
c121g1)2

=
1

n∗
0
c110g2

0
− (n∗

1
c111g2

1
)(n∗

0
c120g0)2

(n∗
1
c111g2

1
)(n∗

1
c221+n∗

0
c220)−(n∗

1
c121g1)2

=
1

n∗
0
c110g2

0
− (n∗

0
c120g0)2

n∗
1
c221+n∗

0
c220− (n∗

1
c121g1)2

n∗
1

c111g2
1

.

Because c111, c110, c220, and c221 are increasing functions of p0, and decreasing functions of p1 through their

dependence on ϕi(p0, p1), and c121 and c120 are decreasing functions of p0, and increasing functions of p1 through

their dependence on ϕi(p0, p1), we can draw an inference as follows:
(n∗

1
c121g1)2

n∗
1
c111g2

1

is a decreasing function of p0 and

an increasing function of p1 and, hence, n∗1c221 + n∗0c220 − (n∗
1
c121g1)2

n∗
1
c111g2

1

is an increasing function of p0 and a decreasing

function of p1. This can imply that
(n∗

0
c120g0)2

n∗
1
c221+n∗

0
c220− (n∗

1
c121g1)2

n∗
1

c111g2
1

is a decreasing function of p0 and an increasing function of

p1, and n∗0c110g2
0 −

(n∗
0
c120g0)2

n∗
1
c221+n∗

0
c220− (n∗

1
c121g1)2

n∗
1

c111g2
1

is an increasing function of p0 and a decreasing function of p1. It turns out

that VD
γ0

is a decreasing function of p0 and an increasing function of p1, i.e., a decreasing function of p0 (sensitivity)

and 1 − p1 (specificity). Therefore, the efficiency of the estimator of γ0 increases as either specificity or sensitivity

increases. Because the estimate of γ0 without diagnostic information included corresponds to the case where

sensitivity is the same as 1 - specificity (p0 = p1), the estimator of γ0 with diagnostic information included (with

p0 > p1) is more efficient than that without diagnostic information included. �
4. Summary and Discussion

An extended cure model incorporated with additional diagnostic information about cured status is very useful to

model the failure time data where some individuals could eventually experience, and others never experience, the

event of interest when their diagnostic information is available. In this paper, we have shown theoretically that the

MLEs for the parameters in the extended exponential cure model are asymptotically more efficient than the MLEs

for those in the classical exponential cure model. Specifically we showed for some special cases that the asymptotic

efficiency increases as the sensitivity and the specificity of diagnostic procedures increase. In conclusion, based on

the results provided in this paper, we highly recommend that when additional cure information is available, even

only partially, we should incorporate this information into the model. It is also recommended that investigators

should devise diagnostic procedures of cure and collect available cure information when we design and conduct

studies.
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