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Abstract

In this article we find exponential good approximation of the empirical neigbourhood distribution of symbolled

random graphs conditioned to a given empirical symbol distribution and empirical pair distribution. Using this

approximation we shorten or simplify the proof of (Doku-Amponsah & Morters, 2010, Theorem 2.5); the large

deviation principle (LDP) for empirical neigbourhood distribution of symbolled random graphs. We also show that

the LDP for the empirical degree measure of the classical Erdős-Rényi graph is a special case of (Doku-Amponsah

& Moerters, 2010, Theorem 2.5). From the LDP for the empirical degree measure, we derive an LDP for the the

proportion of isolated vertices in the classical Erdős-Rényi graph.
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1. Introduction

The Erdős-Rényi graph G(n, p) or G(n, nc/2) is the simplest imaginable random graph, which arises by taking n
vertices, and placing an edge between any two of distinct nodes or vertices with a fixed probability 0 < p < 1 or

inserting a fixed number nc edges at random among the n vertices (See Van Der Hofstad, 2009). Several large devi-

ation (LD) results for this graphs have been found (See, for example, O’Connell, 1998; Biggins & Penman, 2009;

Doku-Amponsah & Moerters, 2010; Doku-Amponsah, 2006; Bordenave & Caputo, 2013; Mukherjee, 2013).

O’Connell (1998) proved an LDP for the relative size of the largest connected component and the number of

isolated vertices in the random graph G(n, p) with p = O(1/n). O’Connell (1998) also presented an LDP and a

related result for the number of isolated vertices in the random graph G(n, c/n). i.e. the near-critical or sparse case.

An LDP for the proportion of edges to the number of potential vertices of the supercritical case has been found by

Biggins and Penman (2009). Doku-Amponsah and Moerters (2010) and Doku-Amponsah (2006, 2012) obtained

several LDPs, including the LDP for empirical degree distribution for near-critical or sparse case. Boucheron et al.

(2002) attempted to prove from the LDP for the empirical occupancy process an LDP for the degree distribution of

the random graphG(n, nc). But Doku-Amponsah et al. (2010) conjectured that the prove of this LDP does not hold.

Recently, Bordenave and Caputo (2013) obtained LDPs for the empirical neighbourhood distribution in G(n, c/n)

and G(n, nc/2). The LDP for the empirical degree distribution in G(n, c/n) has been proved in (Mukherjee, 2013).

Our main aim in this article is to obtain an exponential approximation result, see Lemma 4, for the empirical

Neighbourhood distribution of symbolled random graphs. Using this result we shorten or simplify the proof of

the LDP for empirical Neighbourhood distribution of symbolled random graphs conditioned on a given empirical

symbol measure and empirical pair distribution (See example, Doku-Amponsah et al., 2010 or Doku-Amponsah,

2012, Theorem 2.5.1).
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Further, we show that the large deviation principle for the empirical degree measure of G(n, nc/2) is a special case

of (Doku-Amponsah, 2012, Theorem 2.5.1). From this result we find an LDP for the proportion of isolated vertices

in the graph G(n, nc/2). Note that the LDP for the proportion of isolated vertices in the graph G(n, nc/2) is new in

the literature (See, O’Connell, 1998 for similar result).

The main technique used in this article is the method of types (see Dembo & Zeitouni, 1998, Section 2.1). The

method of types is applied to an exponential approximate model for the symbolled random graph model which we

shall obtain by randomly allocating symbolled balls in to symbolled bins.

The symbol random graphs (see Penman, 1998) or Inhomogeneous random graphs (see Van Der Hofstad, 2009),

which has Erdős-Rényi graph with one symbol as an example permit a dependence between symbol and connec-

tivity of the nodes. In the next subsection, we review the symbolled random graph model as in (Doku-Amponsah

et al., 2010).

1.1 The Symbolled Random Graph Model

We begin by fixing the following notations. Let Y be a symbol or colour set. LetV = {1, . . . , n} be a fixed set of n
vertices. Denote by E the edge set, i.e.

E ⊂ E :=
{
(e1, e2) ∈ V ×V : e1 < e2

}
,

where we have used the formal ordering of links to simply describe unoriented edges.

Let pn : Y × Y → [0, 1] be a symmetric function and μ: Y → [0, 1] a probability law. We may describe the

simply symbolled random graph Y with n vertices in the following manner: Any node v ∈ V gets symbol Y(v)

independently and identically according to the symbol law λ. Given the colours, we join any two nodes u, v ∈ V
with an edge, independently of everything else, with a edge probability pn(Y(u),Y(v)) otherwise we keep them

disconnected. We always look at Y = ((Y(v): v ∈ V), E) under the combine distribution of graph and symbol. We

interpret Y as symbolled random graph and consider Y(v) as the symbol of the node v (See Cannings & Penman,

2003; Penman, 1998).

Our interest in this article is on the symbolled random graph models in the near-critical regimes. Thus, we look at

cases when the edge probability pn(a, b) satisfies npn(a, b)→ C(a, b), for all a, b ∈ Y, and C : Y ×Y → [0, ∞).

By W(X) we denote the space of probability measures on a finite or countable set X, and by W̃(X) we denote

the subspace of finite measures defined on X, and we endow both with the weak topology. Further, we denote by

W̃∗(X × X) the subspace of symmetric measures. By convection, we write

N = {0, 1, 2, ...}.
For any symbolled graph Y = ((Y(v): v ∈ V), E) with n nodes we recall from (Doku-Amponsah & Moerters,

2010), the definition of the empirical symbol distribution L1
Y ∈ W(Y), by

L1
Y (a) :=

1

n

∑

u∈V
δY(u)(a), for a ∈ Y,

and the empirical pair distribution L2
Y ∈ W̃∗(Y ×Y), by

L2
Y (b, a) :=

1

n

∑

(e1,e2)∈E
[δ(Y(e2), Y(e1)) + δ(Y(e1),Y(e2))](b, a), for a, b ∈ Y.

We observe that by definition L2
Y is finite symmetric measure with total mass ‖L2

Y‖ equal to 2|E|/n. Finally we

recall the definition of the empirical Neighbourhood distribution MY ∈ W(Y × NY), by

MY (a, �) :=
1

n

∑

u∈V
δ(Y(u),L(u))(a, l), for (a, l) ∈ Y × NY,

where L(u) = (�u(b), b ∈ Y) and �u(b) is the number of nodes of symbol b linked to node v. For any μ ∈
W(Y × N

Y)we denote by μ1 the Y− marginal of μ and for every (b, a) ∈ Y × Y, let μ2 be the law of the pair

(a, l(b)) under the measure μ. Define the measure (finite), 〈μ(·, �), l(·)〉 ∈ W̃(Y ×Y) by

Δ2(μ)(b, a) :=
∑

l(b)∈N
μ2(a, l(b))l(b), for a, b ∈ Y

111



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 2; 2014

and write Δ1(μ) = μ1.We define the function Δ : W(Y×NY)→W(Y)×W̃(Y×Y) by Δ(μ) = (Δ1(μ),Δ2(μ)) and

note that Δ(MX) = (L1
Y , L

2
Y ). Observe that Δ1 is a continuous function but Δ2 is discontinuous in the weak topology.

In particular, in the summation
∑

l(b)∈N
μ2(a, l(b))l(b) the function l(b) may be unbounded and so the functional μ →

Δ2(μ) would not be continuous in the weak topology. We call a pair of measures (π, μ) ∈ W̃(Y×Y)×W(Y×NY)

sub-consistent if

Δ2(μ)(b, a) ≤ π(b, a), for all a, b ∈ Y, (1)

and consistent if equality holds in (1). For any n ∈ N we define the following sets:

Wn(Y) :=
{
ν ∈ W(Y) : nν(b) ∈ N for all b ∈ Y},

W̃n(Y ×Y) :=
{
π ∈ W̃∗(Y ×Y) : n

1+1l{a=b} π(b, a) ∈ N for all b, a ∈ Y} .
1.2 The Conditional Symbolled Random Graph Models

In the remaining part of this article we may assume that ν(a) > 0 for all a ∈ Y. Note that the law of the symbolled

random graph given the empirical symbol distribution νn and empirical pair distribution πn,

P(νn,πn) = P{ · |Δ(MY ) = (νn, πn)},
may be described as follows:

•We assign symbols to the nodes by drawing from the pool of n symbols which contains any symbol a ∈ Y, nνn(a)

times without replacement;

• For each unordered pair {a, b} of symbols we construct (exactly) mn(b, a) edges by drawing without replacement

from the collection of potential edges linking nodes of symbol a and b, where

mn(b, a) :=

⎧⎪⎪⎨⎪⎪⎩
n πn(b, a), if a � b,

n
2
πn(b, a), if a = b.

By Yn we denote the conditional symbolled random graph with empirical symbol measure νn and empirical pair

measure πn.

2. Main Results

The main theorem in this section is an LDP for the proportion of isolated nodes in the random graph G(n, nc/2).
We recall from (Doku-Amponsah & Moerters, 2010), the empirical degree measure DY ∈ W(N) of the symbolled

random as

DY (k) =
∑

b∈Y

∑

l∈NY
δk
(∑

a∈Yl(a)
)

MY (b, l), for k ∈ N.

Theorem 1 Suppose DY is the empirical degree measure of the random graph G(n, nc/2). Then, as n → ∞, the
proportion of isolated nodes DY (0), obeys an LDP with good, convex rate function

η(x) =

⎧⎪⎪⎨⎪⎪⎩
x log x

e−c + (1 − x) log (1−x)
(1−e−c)

+ c log λ − c log c, if x ≥ 1 − c,

∞ if x < 1 − c,
(2)

where λ = λ(x, c) is the unique root of 1−e−λ
λ
= 1−x

c .

Theorem 2 below and the contraction principle imply the LDP for the proportion of isolated vertices, i.e. Theorem

1. O’Connell (1998) obtained similar large deviation result for the number of isolated nodes in the random graph

G(n, c/n).

Theorem 2 (Doku-Amponsah, 2006, 2012) Suppose DY is the empirical degree measure of the random graph
G(n, nc/2). Then, as n→ ∞, DY obeys an LDP in the spaceW(N) with good, convex rate function

δ(d) =

⎧⎪⎪⎨⎪⎪⎩
H(d ‖ qc), if 〈d〉 = c,

∞, otherwise.
(3)

where qx is a Poisson distribution with parameter x.
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Here we remark, that the LDP result of Boucheron et al. (2002, Theorem 7.1) holds and the conjecture that

Boucheron et al. (2002, Lemma 7.2) does not hold is false. In fact the coupling argument of Boucheron et al.

(2002) and Bennetts inequality (see Bennett, 1962), proves Theorem 7.1 of (Boucheron et al., 2002). Recently,

Bordenave et al. (2002, Corollary 1.9) and Mukherjee (2013) confirm 2.

Note, the degree distribution DY is a continuous function of MY , and so Theorem 3 below and the contraction

principle gives the LDP for DY . In fact the LDP for DY (above) is a special case of Theorem 3 which was first

proved in Doku-Amponsah and Moerters (2010) or Doku-Amponsah (2012) by approximating a given symbolled

random graph from below by another symbolled random graphs with the degree of each nodes growing in order

of o(n1/3) (See Doku-Amponsah & Moerters, 2010, Lemma 4.10, pp. 26-29). Note, that in the special case of

classical Erdős-Rényi graph G(n, nc/2) we have that M = D, the degree distribution and

〈Δ(MY )〉 = 2|E|/n = c.

Theorem 3 (Doku-Amponsah & Moerters, 2010) Suppose the sequence (νn, πn) inWn(Y) × W̃n(Y × Y) posses
a limit (ν, π) inW(Y) × W̃∗(Y × Y). Let Y be a symbolled random graph with n nodes conditioned on the event
{Δ(MY ) = (νn, πn)}. Then, as n→ ∞, the empirical Neighbourhood distribution MY obeys an LDP inW(Y ×NY)

with good rate function

J̃(ν,π)(μ) =

⎧⎪⎪⎨⎪⎪⎩
H(μ ‖ Poi), if (π, μ) is sub-consistent and μ1 = ν,

∞, otherwise,
(4)

Poi(a , l) := μ1(a)
∏

b∈Y
e−

π(b,a)
μ1(a)

1

l(b)!

(π(b, a)

μ1(a)

)l(b)
, for a ∈ Y, l ∈ NY.

3. Proof of Main Results

3.1 Proof of Theorem 3: Exponential Approximation by Random Allocation

In order to improve (shorten) the proof of Theorem 3, we pass to a simple random allocation model, which turns

out to be equivalent. This model is best described in term of symbolled balls being placed randomly into symbolled

bins.

Fix n ≥ 1, a symbol law νn ∈ Wn(Y) and an edge law πn ∈ W̃n(Y × Y). The bins V = {1, . . . , n} are now

symbolled by drawing without replacement from the pool of symbols, which contains the symbol a ∈ Y exactly

nνn(a) times. For each ordered pair (b, a) ∈ Y × Y of symbols, we independently and identically place nmn(b, a)

balls of symbol b into the nνn(a) bins of symbol a by drawing without replacement. We denote by P̃(νn,πn) the

distribution of the random allocation model with symbol law νn ∈ Wn(Y) and an edge law πn ∈ W̃n(Y ×Y).

In the resulting constellation we denote, for any bin v ∈ {1, . . . , n}, by Ỹ(v) its symbol, and by lv(b) the number of

balls of symbol b ∈ Y it contains. Now define the empirical occupancy measure of the constellation by

MỸ (b, l) =
1

n

∑

u∈V
δ(Ỹ(u),L̃(u))(b, l), for (b, l) ∈ Y × NY,

where L̃(u) = (�u(a), a ∈ Y) is the symbol distribution in bin v. In our first theorem we establish exponential

equivalence of the law of the empirical occupancy measure MỸ under the random allocation model P̃(νn,πn) and the

law of the empirical Neighbourhood distribution M under

P(νn,πn) = P{ · |Δ(MY ) = (νn, πn)},

the law of the symbolled random graph conditioned to have symbol law νn and edge distribution πn. Recall the

definition of exponential equivalence (see Dembo & Zeitouni, 1998, Definition 4.2.10).

Lemma 4 The law of MỸ under P̃(νn,πn) is exponentially equivalent to the law of MY under P(νn,πn).

Proof. Define the metric d of total variation by

d(μ, μ̃) = 1
2

∑

(a,l)∈Y×NY
|μ(a, l) − μ̃(a, l)|, for μ, μ̃ ∈ W(Y × NY).
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As this metric produces the weak topology, the proof of Lemma 4 is equivalent to showing that for every ε > 0,

lim
n→∞

1
n logP

{
d(MỸ , MY ) ≥ ε} = −∞, (5)

where P indicates a suitable coupling between the random allocation model and the symbolled graph.

To begin, denote by V(a) the collection of nodes(bins) which have symbol a ∈ Y and observe that

	V(a) = nνn(a).

For every a, b ∈ Y, begin: At each step k = 1, . . . ,mn(b, a), we randomly pick two nodes Vk
1
∈ V(a) and Vk

2
∈ V(b).

Drop one ball of symbol b in bin Vk
1

and one ball of symbol a in Vk
2
, and link Vk

1
to Vk

2
by an edge unless Vk

1
= Vk

2

or the two nodes are already linked. If one of these two things happen, then we simply choose an edge randomly

from the set of all potential edges linking symbols a and b, which are not yet present in the graph. This completes

the construction of a graph with L1
Y = νn, L2

Y = πn and

d(MY , MỸ ) ≤ 2
n

∑

a,b∈Y
Bn(b, a) , (6)

where Bn(b, a) is the total number of steps k ∈ {1, . . . ,mn(b, a)} at which there is discrepancy between the vertices

Vk
1
, Vk

2
drawn and the nodes which formed the kth edge connecting a and b in the random graph construction.

Given a, b ∈ Y,the probability that Vk
1
= Vk

2
or the two nodes are already linked is equal to

p[k](b, a) := 1
mn(b,a)

1l{b=a} +
(
1 − 1

mn(b,a)
1l{b=a}

) (k−1)

(mn(b,a))2 .

Bn(b, a) is a sum of independent Bernoulli random variables X1, ..., Xnmn(b,a) with ‘success’ probabilities equal to

p[1](b, a), . . . , p[nmn(b,a)](b, a). Note that E[Xk] = p[k](b, a) and

Var[Xk] = p[k](b, a)(1 − p[k](b, a)).

Now, we have

EBn(b, a) =

n(b,a)∑

k=1

p[k](b, a) = 1l{b=a} + 1
2

(
1 − 1l{b=a} 1

mn(b,a)

)(
1 − 1

mn(b,a)

) ≤ 1
2
+ 1l{b=a}.

We write

σ2
n(b, a) := 1

mn(b,a)

mn(b,a)∑

k=1

Var[Xk]

and observe that

lim
n→∞E(Bn(b, a)) = lim

n→∞Var(Bn(b, a)) = lim
n→∞mn(b, a)σ2

n(b, a) = 1l{b=a} + 1
2
.

We Define h(x) = (1 + x) log(1 + x) − x, for x ≥ 0 and use Bennett’s inequality (see Bennett, 1962), to obtain, for

sufficiently large n

P
{ Bn(b,a)

n ≥ 1l{b=a}+
1
2

n + δ1
} ≤ exp

[
− mn(b, a)σ2

n(b, a)h( nδ1
n(b,a)σ2

n(b,a)
)
]
,

for any δ1 > 0. Let ε ≥ 0 and choose δ1 =
ε

2m2 . Suppose that we have Bn(b, a) ≤ δ. Then, by (6),

d(MY , μn) ≤ 2δ1m2 = ε.

Hence,

P
{
d(MY ,MỸ ) > ε

} ≤
∑

a,b∈Y
P
{
Bn(b, a) ≥ nδ1

} ≤ m2 sup
a,b∈Y

P
{
Bn(b, a) ≥ 1l{b=a} + 1

2
+ (nδ1)/2

}

≤ m2 sup
a,b∈Y

exp
[
− mn(b, a)σ2

n(b, a)h( nδ1
mn(b,a)σ2

n(b,a)
)
]
.
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Let 0 ≤ δ2 ≤ 1. Then, for sufficiently large n we have

1

n
logP

{
d(MY ,MỸ ) > ε

}
≤ −(1 − δ2)h( nδ1

2(1+δ2)
)

= −(1l{b=a} + 1
2
− δ2)

[
( 1

n +
δ1

2(1l{b=a}+
1
2
+δ2)

) log(1 + nδ1
2(1l{b=a}+

1
2
+δ2)

) − δ1

2(1l{b=a}+
1
2
+δ2)

]
.

(7)

This completes the proof of the lemma. �
3.2 Proof of Theorem 3: Large Deviation Probabilities by the Method of Types

Now Lemma 4 and the large deviation principle for MỸ under P̃(νn,πn) implies the same large deviation princi-

ple for MY under P(νn,πn) in the weak topology (See, for example, Dembo & Zeitouni, 1998, Theorem 4.2.13).

Consequently, the proof of Theorem 3 is equivalent to showing that for every Σ ⊂ W(Y × NY),

Lemma 5

− inf
μ∈int(Σ)

J̃(ν,π)(μ) ≤ lim inf
n→∞

1
n log P̃

{
MỸ ∈ Σ

∣∣∣Δ(MỸ ) = (νn, πn)
}

≤ lim sup
n→∞

1
n log P̃

{
MỸ ∈ Σ

∣∣∣Δ(MỸ ) = (νn, πn)
}
≤ − inf

μ∈cl(Σ)
J̃(ν,π)(μ).

We begin the proof of Lemma 5 by recalling the definition of Δ a function onW(Y × NY) given by

μ �→ (Δ1(μ),Δ2(μ)).

Let (νn, πn)→ (ν, π) ∈ W(Y) ×W(Y ×Y) and write

K (n)(νn, πn) =
{
μn : μn = M, Δ(μn) = (νn, πn), f or some random allocations process on n bins

}
.

We denote by S(μ) the support of μ and write for μn ∈ K (n)(νn, πn),

ϑ(n)
1

(πn, μn) = nα(n)
1

(νn, πn) − nβ(n)
1

(μn) − 1
2n |S(μn)| log 2πn,

where

α(n)
1

(νn, πn) = − 1
n log |K (n)(νn, πn)| + 1

n

∑

a,b∈Y
log πn(b, a) + 1

2n
(|Y| + |Y|2) log 2πn

+ 1
n2

∑

a∈Y
1

12νn(a)+1/n +
1
n

∑

a∈Y
log νn(a) + 1

n2

∑

a,b∈Y
1

12πn(b,a)+1/n ,

β(n)
1

(μn) = 1
n

∑

(a,l)∈Y×NY
μn (a,l)>0

log μn(a, l) + 1
n2

∑

(a,l)∈Y×NY
μn (a,l)>0

1
12μn(a,l)+1/n .

We write ϑ(n)
2

(πn, μn) = nα(n)
2

(νn, πn) − nβ(n)
2

(μn), where

α(n)
2

(νn, πn) = 1
n log |K (n)(νn, πn)| + 1

n2

∑

a,b∈Y
1

12πn(b,a)
+ 1

n2

∑

a∈Y
νn (a)>0

1
12νn(a)

+ 1
n

∑

a,b∈Y
log πn(b, a) + 1

2n
(|Y| + |Y|2) log 2πn + 1

n

∑

a∈Y
log νn(a),

β(n)
2

(μn) = 1
n

∑

(a,l)∈Y×NY
μn (a,l)>0

log μn(a, l)
)
+ 1

n

∑

(a,l)∈Y×NY
μn (a,l)>0

1
12μn(a,l)

We prove Lemma 5 above from the following lemma which uses the the idea of the method of types (see Dembo

& Zeitouni, 1998, Chapter 2).

Lemma 6 For any μn ∈ K (n)(νn, πn),

e−nH(μn ‖ Poin)+ϑ(n)
1

(πn,μn) ≤ P̃
{
MỸ = μn

∣∣∣Δ(MỸ ) = (νn, πn)
} ≤ |K (n)(νn, πn)|−1e−nH(μn ‖ Poin)+ϑ(n)

2
(πn,μn),
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where

Poin(a , l) = νn(a)
∏

b∈Y

e−πn(b,a)/νn(a)[πn(b, a)/νn(a)]l(b)

l(b)!
, for l ∈ NY

lim
n→∞ϑ

(n)
2

(πn, μn) = lim
n→∞ϑ

(n)
1

(πn, μn) = 0

Proof. The proof of this lemma uses the idea of the method of types (see Dembo & Zeitouni, 1998, Chapter 2),

combinatoric argument and good estimates from refined Stirling’s formula.

We denote by Ỹ the random allocation process and observe that for any μn ∈ K (n)(νn, πn) we have

P̃
{
MỸ = μn

∣∣∣Δ(MỸ ) = (νn, πn)
}
=
	
{
Ỹ : MỸ = μn, Δ(MỸ ) = (νn, πn)

}

	
{
Ỹ : (L1

Ỹ
, L2

Ỹ
) = (νn, πn)

} . (8)

Now, the right side of (8) may be evaluated in the following way:

• For a given empirical measure μn with Δ(μn) = (νn, πn) there are

∏

a∈Y

( nνn(a)

nμn(a, l), l ∈ NY
) ∏

a,b∈Y

( nπn(b, a)

l( j)
a (b), j = 1, ..., nνn(a)

)

equally likely random allocation processes and

• for every empirical and empirical pair measure Δ(μn) = (νn, πn) there are
∏

a,b∈Y
(
nνn(a)

)nπn(b,a)
equally likely

random allocation processes.

Therefore, (8) is equivalent to

P̃
{
M̃ = μn

∣∣∣Δ(M̃) = (νn, πn)
}

(9)

=
∏

a∈Y

( nνn(a)

nμn(a, l), l ∈ NY
) ∏

a,b∈Y

( nπn(b, a)

l( j)
a (b), j = 1, ..., nνn(a)

)( 1

nνn(a)

)nπn(b,a)
, (10)

while P̃
{
M̃ = μn

∣∣∣Δ(M̃) = (νn, πn)
}
= 0 when Δ(μn) � (νn, πn) by convention.

Suppose πn(b, a) = 0, for some a, b ∈ Y then

( nπn(b, a)

l( j)
a (b), j = 1, ..., nνn(a)

)
= 1. (11)

Suppose πn(b, a) > 0, a good estimate of (nπn(b, a))! can be obtained from the refined Stirling’s approximation, as

exp
(
nπn(b, a) log nπn(b, a) − nπn(b, a) + 1

2
log πn(b, a) + 1

12nπn(b,a)+1
+ 1

2
log 2nπ

)
≤ (nπn(b, a))!

≤ exp
(
nπn(b, a) log nπn(b, a) − nπn(b, a) + 1

2
log πn(b, a) + 1

12nπn(b,a)
+ 1

2
log 2πn).

Similarly, from the refined Stirling’s approximation (see Feller, 1971, p. 52), we have

exp
(
n
∑

a∈Y
νn(a) log νn(a) − n

∑

(a,l)

μn(a, l) log μn(a, l) + 1
n

∑

a∈Y
1

12νn(a)+1/n +
|Y|−|S(μn)|

2
log 2πn

)

× exp
(
− 1

n

∑

(a,l)∈Y×NY
μn (a,l)>0

1
12μn(a,l)+1/n

)
≤
∏

a∈Y

( nνn(a)

nμn(a, l), l ∈ NY
)
≤ exp

(
n
∑

a∈Y
νn(a) log νn(a)

)

× exp
(
− n
∑

(a,l)

μn(a, l) log μn(a, l) − 1
n

∑

(a,l)∈Y×NY
μn (a,l)>0

1
12μn(a,l) +

|Y|−|S(μn)|
2

log 2πn + 1
n

∑

a∈Y
1

12νn(a)

)
. (12)
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We observe that
∏

a,b∈Y
∏nνn(a)

j=1
l( j)
a (b)! =

∏
b∈Y exp

(
n
∑

(a,l)(log l(b)!)μn(b, a)
)
, and hence

exp
(∑

b∈Y

[
n
∑

a∈Y
πn(b, a) log πn(b, a) − n

∑

a∈Y
πn(b, a) − n

∑

a∈Y
πn(b, a) log νn(a)

]
+ 1

2

∑

a,b∈Y
log πn(b, a)

)

× exp
(
n
∑

b∈Y

∑

(a,l)

(log l(b)!)μn(a, l) + |Y|
2

2
log 2πn +

∑

a,b∈Y
1

12nπn(b,a)+1

)

≤
∏

a,b∈Y

( nπn(b, a)

l( j)
a (b), j = 1, ..., nνn(a)

)( 1

nνn(a)

)nπn(b,a)

≤ exp
(
n
∑

b∈Y

∑

(a,l)

(log l(b)!)μn(a, l) + 1
2

∑

a,b∈Y
log πn(b, a)

)

× exp
(∑

b∈Y

[
n
∑

a∈Y
πn(b, a) log

∑

a∈Y
πn(b, a) − n

∑

a∈Y
πn(b, a) − n

∑

a∈Y
πn(b, a) log νn(a)

]
+
∑

a,b∈Y
1

12nπn(b,a)

)

× exp
( |Y|2

2
log 2πn

)
.

Putting everything together and choosing ϑ(n)
1

(πn, μn) and ϑ(n)
2

(πn, μn) appropriately, we have that

exp
(
nH(μn) +

∑

b∈Y

[
n
∑

a∈Y
πn(b, a) log

∑

a∈Y
πn(b, a) − n

∑

a∈Y
πn(b, a) − n

∑

a∈Y
πn(b, a) log νn(a)

])

× exp
(
− nH(ν) − n

∑

b∈Y

∑

(a,l)

(log l(b)!)μn(a, l) + ϑ(n)
1

(πn, μn)
)
≤ P̃
{
M = μn

∣∣∣Δ(M) = (νn, πn)
}

≤ exp
(
− nH(ν) −

∑

b∈Y

[
n
∑

(a,l)

(log l(b)!)μn(a, l) − n
∑

a∈Y
πn(b, a) − n

∑

a∈Y
πn(b, a) log νn(a)

])

× exp
(
nH(μn) + n

∑

b∈Y

∑

a∈Y
πn(b, a) log

∑

a∈Y
πn(b, a) − log |K (n)(νn, πn)| + ϑ(n)

2
(πn, μn)

)
.

Collecting and rearranging terms properly and using Δ(μn) = (νn, πn), we have that

H(νn) − H(μn) −
∑

b∈Y

[∑

(a,l)

l(b)μn(a, l) log
∑

(a,l)

l(b)μn(a, l) −
∑

(a,l)

l(b)μn(a, l)

−
∑

(a,l)

l(b)μn(a, l) log νn(a) −
∑

(a,l)

(log l(b)!)μn(a, l)
]

=
∑

(a,l)

μn(a, l)
[

log μn(a, l) − log νn(a) −
∑

b∈Y

(
log
( πn(b,a)
νn(a)

)l(b) − πn(b,a)
νn(a)

− log
∑

l

(log l(b)!)
)]

=
∑

(a,l)

μn(a, l)
[

log μn(a, l) − log
(
νn(a)

∏

b∈Y

(πn(b,a)/νn(a))l(b) exp(−πn(b,a)/νn(a))

l(b)!

)]

=H(μn ‖ Poin)

which completes the proof of Lemma 6. �
We prove from Lemma 6 and Doku-Amponsah and Moerters (2010, Lemmas 4.1 and 4.4), upper bounds and lower

bounds in the large deviation principle for all finite n. Let Σ ⊂ W(Y×NY). Then Lemma 6 gives the upper bound

P̃

{
MỸ ∈ Σ

∣∣∣Δ(MỸ ) = (νn, πn)
}
=

∑

μn∈Σ∩K (n)(νn,πn)

P̃
{
MỸ = μn

∣∣∣Δ(MỸ ) = (νn, πn)
}

≤
∑

μn∈Σ∩K (n)(νn,πn)

|K (n)(νn, πn)|−1e−nH(μn ‖ Poin)+nϑ(n)
2

(νn,πn)

≤ e−n infμn∈Σ∩K(n) (νn ,πn ) H(μn ‖ Poin)+nϑ(n)
2

(νn,πn). (13)
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The corresponding lower bound is

P̃

{
MỸ ∈ Σ

∣∣∣Δ(MỸ ) = (νn, πn)
}
=

∑

μn∈Σ∩K (n)(νn,πn)

P̃
{
MỸ = μn

∣∣∣Δ(MỸ ) = (νn, πn)
}

≥ e−n infμn∈Σ∩K(n) (νn ,πn ) H(μn ‖ Poin)
∑

μn∈Σ∩K (n)(νn,πn)

eϑ
(n)
1

(νn,πn)

≥ e−n infμn∈Σ∩K(n) (νn ,πn ) H(μn ‖ Poin)+nϑ(n)
1

(νn,πn). (14)

Since lim supn→∞
1
nϑ

(n)
2

(νn, πn) = 0 and lim infn→∞ 1
nϑ

(n)
1

(νn, πn) = 0 (by Doku-Amponsah & Moerters, 2010,

Lemmas 4.1 and 4.4), the normalized logarithmic limits of (13) and (14) gives

lim sup
n→∞

1
n log P̃

{
MỸ ∈ Σ

∣∣∣Δ(MỸ ) = (νn, πn)
}
= − lim inf

n→∞
{

inf
μn∈Σ∩K (n)(νn,πn)

H(μn ‖ Poin)
}

(15)

and

lim inf
n→∞

1
n log P̃

{
MỸ ∈ Σ

∣∣∣Δ(MỸ ) = (νn, πn)
}
= − lim sup

n→∞
{

inf
μn∈Σ∩K (n)(νn,πn)

H(μn ‖ Poin)
}

(16)

The upper bound in Lemma 6 follows from (15), as Σ ∩ K (n)(νn, πn) ⊂ Σ for all n.

Now fix μ ∈ W(Y × N
Y). Then, by Doku-Amponsah and Moerters (2010, Lemma 4.9), there exists a sequence

μn ∈ Σ ∩ K (n)(νn, πn) such that μn → μ as n → ∞. Therefore, by continuity of entropy (see, example Doku-

Amponsah & Moerters, 2010, p. 19, Equation (14)), we have that

lim sup
n→∞

{
inf

μ
′ ∈Σ∩K (n)(νn,πn)

H(μ
′ ‖ Poin)

} ≤ lim
n→∞H(μn ‖ Poin) = H(μ ‖ Poi).

Recall that H(μ ‖Q) = ∞ whenever, for some (b, l) ∈ Y × N
Y, μ(b, l) > 0 while Poi(b, l) = 0. Hence, by the

preceding inequality we have

lim sup
n→∞

{
inf

μ
′ ∈Σ∩K (n)(νn,πn)

H(μ
′ ‖ Poin)

} ≤ inf
μ∈int(Σ)

H(μ ‖ Poi),

which gives the lower bound in Lemma 6, for μ satisfying Δ(μ) = (ν, π). To conclude the prove of the lower bound

we note that by Doku-Amponsah and Moerters, (2010, Lemma 4.6) for any μ ∈ Σ with μ1 = ν and Δ2(μ) ≤ π there

exists μn ∈ K (n)(νn, πn) converging weakly to μ such that H(μn ‖ Poin) converges to H(μ ‖ Poi).

3.3 Proof of Theorem 1

We obtain this corollary from Theorem 2 by the application of the contraction principle, Dembo and Zeitouni

(1998, Theorem 4.2.1) to the linear map F:W(N)→ [0, 1] given by F(d) = d(0).

In fact Theorem 2 implies an LDP for random variable F(DY ) = DY (0) with good, convex rate function

η(x) = inf
{
H(d ‖ qc) : d ∈ W(N), d(0) = x,

∞∑

k=0

kd(k) = c
}
.

Note that, for a general x the class of distributions satisfying the two constraints might be non empty. Since we

have

c =
∞∑

k=1

kd(k) ≥
∞∑

k=1

d(k) = 1 − x,

the class is necessarily empty if c < 1− x. If c ≥ 1− x, a Lagrangian calculation gives that the mininum is attained

at p, defined by p(0) = x, p(k) := Z(x, c)−1 (λ(x,c))k

k!
where λ(x, c) is the unique root of

eλ − 1

λ
=

1 − x
c

and Z(x, c) := eλ−1

1−x . Therefore we have that

η(x) = x log
x

qc(0)
+ (1 − x) log

(1 − x)

1 − qc(0)
+ (1 − x)

∞∑

k=1

dx(k) log dx(k)
q̂c(k)
.

= x log
x

qc(0)
+ (1 − x) log

(1 − x)

1 − qc(0)
+ c log λc

(17)
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if c ≥ 1 − x and ∞ otherwise. In particular if x = e−c then λ(x, c) = c, which gives η(e−c) = 0. This completes the

proof of the theorem.
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Notes

Note 1. (2π)
1
2 nn+ 1

2 e−n+1/(12n+1) < n! < (2π)
1
2 nn+ 1

2 e−n+1/(12n) (see Feller, 1971, p. 52).
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