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Abstract

In this paper the problem of the proper construction of the average rate of return (ARR) of pension (or investment)

funds is considered, using a chain price index approach. Some known formulas of the ARR can be expressed by

chain indices. The paper proposes and discusses a continuous-time formula. The prices and the number of the

participating units are assumed to be continuous-time stochastic processes. Using the Ito theorem (Ito, 1951) it

is proved that the relative change in net assets of funds equals a product of relative changes in unit prices and

number of fund clients. Simulation study compares the discrete time formulas and the continuous formula in some

illustrative case.

Keywords: investment funds, pension funds, average rate of return of funds, price index theory, continuous time
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1. Introduction

Efficiency of pension or investment funds is measured in many different ways (Białek, 2008, 2009). These mea-

sures should be properly defined. Efficiency in this context is meant to indicate changes of fund assets connected

with any investment. The information about the average return of a group of funds is very important both for fund

clients and fund managers. Firstly, it allows to compare the financial outcome of the given fund to the rest of

funds. It helps customers in making a decision about money allocation. Secondly, the average return of investment

funds from different sectors (manufacturing, agricultural, service etc.) provides important information about the

financial situation within these sectors. And thirdly, for pension funds, we can find legal regulations defining the

minimal rate of return of funds based on the average rate of return. For example, in the Polish legal regulations

(Polish Pension Reform Package, 1997) the minimal rate of return is defined as a half of the average return of a

group of funds or the average return minus four percentage points (depending on which of these values is higher).

In case of deficit the corresponding fund has to cover it. It is always a very dangerous situation for the fund (Note

1). Under the Polish law the average rate of return (ARR) of a group of pension funds is defined as follows:

r̄0(T1,T2) =

n∑

i=1

1

2
ri(T1,T2) · ( Ai(T1)∑n

i=1 Ai(T1)
+

Ai(T2)∑n
i=1 Ai(T2)

) (1)

where ri(T1, T2) denotes the rate of return of the ith fund during a given time period [T1,T2] and Ai(t) denotes

the value of ith fund assets at time t. Since 2004 the results of funds for the last 36 months are verified twice a

year. There are may arguments for searching new definitions of the ARR of a group of funds (Gajek & Kałuszka,

2000), our propositions for a discrete time can be found in (Białek, 2009). The paper is organized as follows:

Section 2 gives the economic postulates for the ARR and presents some discrete formulas. It is shown that the

discrete measures can be expressed by chain indices. Section 3 presents and discusses an analogical formula for

the continuous time, where the prices and the number of the participating units are assumed to be continuous-time

stochastic processes. Simulation study results are given in Section 4, where it is shown that presented discrete

formulas and the continuous formula approximate each other.

2. Economic Postulates and Discrete Formulas of the ARR

At first sight the problem of constructing the ARR of funds seems to be straightforward. But if we look at postulates
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of Gajek and Kałuszka propose seven economic postulates (Białek, 2005) and they prove that the Polish measure

violates four of these postulates. Moreover, Gajek and Kałuszka (2001) propose their own definition of the average

rate of return of funds:

r̄GK(T1,T2) =

T2−1∏

t=T1

(1 +

n∑

i=1

A∗i (t)ri(t, t + 1)) − 1, (2)

where

A∗i (t) =
Ai(t)∑n

i=1 Ai(t)
=

pi(t)qi(t)∑n
i=1 pi(t)qi(t)

, (3)

and pi(t) denotes the value of the participation unit of the ith fund at time t and qi(t) denotes the number of units

of the ith fund at time t. In this Section, a group of funds is considered as an aggregate containing n commodities

(funds) with prices pi(t) and quantities qi(t), where t ∈ [T1,T2]. Let us denote by PL(t, t + 1) the Laspeyres price

index, where

PL(t, t + 1) =

∑n
i=1 qi(t)pi(t + 1)∑n

i=1 qi(t)pi(t)
, (4)

and the logarithmic Laspeyres price index as follows (Lippe, 2007):

PLL(t, t + 1) =

n∏

i=1

(
pi(t + 1)

pi(t)
)A∗i (t), (5)

Equation (2) could be incorporated with Equation (5), using the Laspeyres chain index (Białek, 2012) as follows:

T2−1∏

t=T1

PL(t, t + 1) − 1 =

T2−1∏

t=T1

(1 +

n∑

i=1

qi(t)pi(t)∑n
i=1 qi(t)pi(t)

· pi(t + 1) − pi(t)
pi(t)

) − 1 = r̄GK(T1,T2). (6)

Białek proposes another definition of the ARR, where r̄B can be written using Equation (5) as follows (Białek,

2012):

r̄B(T1,T2) =

T2−1∏

t=T1

PLL(t, t + 1) − 1 =

T2−1∏

t=T1

n∏

i=1

(
pi(t + 1)

pi(t)
)A∗i (t) − 1 =

T2−1∏

t=T1

exp(

n∑

i=1

A∗i (t) ln
pi(t + 1)

pi(t)
) − 1. (7)

The two measures r̄GK and r̄B satisfy all the postulates from Gajek and Kałuszka, 2000). It can be shown that

r̄B(T1,T2) ≤ r̄GK(T1,T2). Moreover, if pi(t + 1) ≈ pi(t) for each iand t ∈ [T1,T2], then r̄B(T1,T2) ≈ r̄GK(T1,T2).

Gajek and Kałuszka claim that the Polish measure defined in (1) overestimates the real value of the average rate

of return of funds. Gajek and Kałuszka consider not only the discrete stochastic model but they also propose

continuous (deterministic and stochastic) measures (Gajek & Kałuszka, 2002). In the next Section, an original,

stochastic and continuous measure of the average return is presented. It seems to be a natural next step in using the

chain index theory for constructing the average rate of return of funds.

3. Continuous Time Stochastic Model

Let {pi(t): t ≥ 0} denote the stochastic process of the price of unit of ith fund (i = 1, 2, ..., n) defined on a probability

space (Ω,�, P) and let {qi(t): t ≥ 0} denote the stochastic process of the number of units of ith fund defined on

the same probability space. Let F = {�t: t = 0, 1, 2, ...} be a filtration, i.e. each �t is an algebra of Ω with

�0 ⊆ �s ⊆ �t ⊆ � for anys < t. Without loss of generality, �0 = {Ø,Ω} is assumed. The filtration F describes

how the information about the market is revealed to the observer. Processes pi(t) and qi(t) are assumed to be

progressively measurable with respect to the family {�t: t ≥ 0}. In practice, the price and quantity processes

have positive values. Thus in finance, the processes of share prices are often described by the geometric Brownian

(Wiener) motion (Note 2) (also known as exponential Brownian motion) as follows (Koo, 1998):

dpi(t) = αi pi(t)dt + βi pi(t)dWi(t), i ∈ {1, 2, ..., n}, (8)

where the percentage drift αi and the percentage volatility βi are constants, Wi(t) denotes the standard Wiener

process. For an arbitrary initial real value pi(0) the stochastic differential Equation (8) has the analytic solution

(under Ito’s interpretation: (Ito, 1951)),

pi(t) = pi(0) exp((αi −
β2

i

2
)t + βiWi(t)), i ∈ {1, 2, ..., n}. (9)
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Thus the price processes described in (9) have always positive values and additionally pi(t) is log-normally dis-

tributed (Oksendal, 2002).

Let us assume that not only prices of units are described by the geometric Wiener process but also processes of

number of units of funds are described as follows:

dqi(t) = γiqi(t)dt + θiqi(t)dWi(t), i ∈ {1, 2, ..., n}, (10)

where the percentage drift γi and the percentage volatility θi are constants. Hence,

qi(t) = qi(0) exp((γi −
θ2i
2

)t + θiWi(t)), i ∈ {1, 2, ..., n}. (11)

Under above assumptions the following definition of the ARR of a group of funds on a time interval [T1,T2] is

proposed:

RP(T1,T2) = exp[
∫ T2

T1
(
∑n

i=1 A∗i (t)αi +
1
2

∑n
i=1 A∗i (t)βiθi − 1

2

∑n
i=1(A∗i (t))2β2

i −
− 1

2

∑n
i=1(A∗i (t))2βiθi)dt +

∑n
i=1

∫ T2

T1
A∗i (t)βidWi(t)] − 1,

(12)

where, A∗i (t), αi , βi, θi, Wi(t)as defined above, and the integral on the right side of formula (12) is the Ito integral

(Karatzas & Shreve, 1991). In Equation (12), reducing the random factor connected with the Wiener process to

equal zero, i.e., βi(t) = 0 and assuming αi = dpi(t)/dt, we obtain,

RP(T1,T2) = exp(

∫ T2

T1

n∑

i=1

A∗i (t)αidt) − 1 = exp(

∫ T2

T1

n∑

i=1

A∗i (t)dpi(t)) − 1 = PDiv(T1,T2) − 1, (13)

where PDiv denotes the continuous Divisia price index (Banerjee, 1979; Hulten, 1973).

When βi(t) = 0 Equation (9) becomes:

pi(T2)

pi(T1)
= exp[αi(T2 − T1)]. (14)

Using Equation (14), Equation (13) is reduced to:

Rp(T1,T2) =

n∏

i=1

(
pi(T2)

pi(T1)
)wi − 1 = PCD − 1, (15)

where,

wi =

∫ T2

T1
A∗i (t)dt

T2 − T1

,

and
n∑

i=1

wi =
1

T2 − T1

n∑

i=1

∫ T2

T1

A∗i (t)dt =
1

T2 − T1

∫ T2

T1

n∑

i=1

A∗i (t)dt =
1

T2 − T1

∫ T2

T1

dt = 1. (16)

and PCD is the well known Cobb-Douglas price index (Lippe, 2007). From (6), (7), (13) and (15) we conclude that

the stochastic proposition of the ARR is well-constructed. It has been proved (see Appendix) that in the stochastic

case one of the most important postulates of Gajek and Kałuszka holds, namely:

RA(T1,T2) + 1 = (RP(T1,T2) + 1)(RQ(T1,T2) + 1), (17)

where RA(T1,T2) and RQ(T1,T2) denote respectively the relative change in net assets and the number of clients of

funds.

4. Simulation Study

A group of n = 4 funds were considered, the time horizon of observations T = 1 and the following parameters of

prices of units and numbers of units processes were assumed (Note 3):

(a) Prices of units:

α1 = 0, 3, β1 = 0, 25, α2 = −0, 12, β2 = 0, 05,

58



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 4; 2013

α3 = 0, 55, β3 = 0, 3, α4 = −0, 45, β4 = 0, 07,

(b) Numbers of units:

γ1 = 0, 25, θ1 = 0, 05, γ2 = −0, 45, θ2 = 0, 1,

γ3 = 0, 7, θ3 = 0, 25, γ4 = 0, 3, θ4 = 0, 03.

Without loss of generality, it is assumed that pi(0) = qi(0) = 1 for each i ∈ {1, 2, ..., 4}. Some realizations of prices

and numbers of units proccesses are presented in Figure 1 and Figure 2.

Figure 1. Some realizations of prices of units processes p1(t), p2(t), p3(t) and p4(t)

Figure 2. Some realizations of numbers of units processes q1(t), q2(t), q3(t) and q4(t)
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Some realization of the average return rate RP(0, t) for t ∈ [0, 1] is presented in Figure 3. The generated values of

index RP(0, 1) for each of ith realization of price and quantity processes (RPi(0, 1): i = 1, 2, ..., 100) are presented

in Figure 4.

Figure 3. Realization of RP(0, t) process Figure 4. Generated values of index RP(0, 1)

The stochastic version of the average rate of return of funds RP(0, 1) is then compared with average rates of return

r̄GK(0, 1) and r̄B(0, 1) for which we divide the time interval [0, 1] into ten subintervals of the same length. It is

found that, for n = 10000 generated realizations of prices of units and numbers of units processes are presented

in Table 1 (to read more about estimation of mean value and variance and the bias of this estimation see Ża̧dło

(2006), Małecka (2011) or Papież and Śmiech (2013).

Table 1. Basic parameters of average return rates

Parameter RP(0, 1) r̄B(0, 1) r̄GK(0, 1)

Mean 0,233 0,432 0,479

Standard deviation 0,020 0,216 0,238

Median 0,232 0,241 0,273
Median deviation 0,014 0,141 0,130

5. Conclusions

The form of the Rp measure seems to be proper–in the deterministic case, where βi(t) = 0, it can be expressed

by using some known chain indices (Divisia, Cobb-Douglas). The known r̄GK and r̄B measures have the same

property in a discrete version. Moreover, the stochastic Rp measure takes into account the volatility of unit prices

and number of units (βi and θi parameters). In the simulation study only RP(0, 1) rate has small standard deviation

and median deviation. The distribution of RP(0, 1) is quasi-symmetric (mean and median are almost equal), no

extreme realizations exist, while in the other two distributions of r̄B(0, 1) and r̄GK(0, 1) the mean is higher than the

median and thus these distributions are skewed to the right. We conclude that some extreme realizations of price or

(and) quantity processes lead to extreme values of the considered chain indices. Using medians, instead of means,

for our comparison and thus ruling out these extreme realizations we obtain smaller differences between compared

measures (for example: 0,232 in case of RP(0, 1) and 0,241 in case of r̄B(0, 1)).

Apart from measuring fund return rates, the proposed formula could be used to measure the mean efficiency of any

class of investable assets, and in particular mutual funds. If the class is too broad to be completely enumerated,

a representative sample might be chosen according to various criteria of representativeness discussed by Kruskal

(1979) and Gamrot (2008).
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Białek, J. (2005). Jak mierzyć rentowność grupy funduszy emerytalnych? Model stochastyczny. In: Mode-

lowanie Preferencji a Ryzyko’05, Praca zbiorowa pod redakcja̧ naukowa̧ Tadeusza Trzaskalika, Wydawnictwo

Akademii Ekonomicznej w Katowicach, Katowice, 329-343.

Białek, J. (2008). New definition of the average rate of return of a group of pension funds. In Financial Markets:
Principles of Modelling, Forecasting and Decision-Making, Łódź, 126-135.
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Appendix

Theorem
RA(T1,T2) + 1 = (RP(T1,T2) + 1)(RQ(T1,T2) + 1)

Proof. Let us signify the relative changes of assets, prices and numbers of units as follows

Ã = RA(T1, T2) + 1, P̃ = Rp(T1,T2) + 1, Q̃ = RQ(T1,T2) + 1, (A − 1)

to prove that Ã = P̃Q̃.

Let us assume the following:

αi(t) = αi pi(t), βi(t) = βi pi(t), γi(t) = γiqi(t) and θi(t) = θiqi(t). (A − 2)

Thus, from Equations (8) and (10), we get:

dpi(t) = αi(t)dt + βi(t)dWi(t), (A − 3)

dqi(t) = γi(t)dt + θi(t)dWi(t). (A − 4)

Firstly, from the Ito theorem (Ito, 1951) we have:

dA(t) = d(

n∑

i=1

pi(t)qi(t)) =
n∑

i=1

d(pi(t)qi(t)) =
n∑

i=1

pi(t)dqi(t) +
n∑

i=1

qi(t)dpi(t) +
n∑

i=1

βi(t)θi(t)dt. (A − 5)

From (A − 3), (A − 4) and (A − 5) we obtain:

dA(t) =

n∑

i=1

pi(t)(γi(t)dt + θi(t)dWi(t)) +
n∑

i=1

qi(t)(αi(t)dt + βi(t)dWi(t)) +
n∑

i=1

βi(t)θi(t)dt

= (

n∑

i=1

pi(t)γi(t) +
n∑

i=1

qi(t)αi(t) +
n∑

i=1

βi(t)θi(t))dt +
n∑

i=1

(pi(t)θi(t) + qi(t)βi(t)dWi(t)

= Ψ(t)dt +
∑N

i=1 Bi(t)dWi(t),

(A − 6)

where

Ψ(t) =
N∑

i=1

pi(t)γi(t) +
N∑

i=1

qi(t)αi(t) +
N∑

i=1

βi(t)θi(t), (A − 7)

and,

Bi(t) = pi(t)θi(t) + qi(t)βi(t). (A − 8)

Using the Ito theorem for the function f (t, x) = ln x and formula (A − 6) we get

d(ln A(t)) = (
Ψ(t)
A(t)
−
∑n

i=1 B2
i (t)

2A2(t)
)dt +

∑n
i=1 Bi(t)dWi(t)

A(t)
. (A − 9)

Since (Note 4)

Ã =
A(T2)

A(T1)
= exp(

∫ T2

T1

d(ln A(t)), (A − 10)

from (A − 10) we get

Ã = exp(

∫ T2

T1

(
Ψ(t)
A(t)
−
∑n

i=1 B2
i (t)

2A2(t)
)dt +

n∑

i=1

∫ T2

T1

Bi(t)dWi(t)
A(t)

). (A − 11)
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From Equations (A − 7), (A − 8) and (A − 11), we obtain

Ã = exp[

∫ T2

T 1

(

∑n
i=1 pi(t)γi(t) +

∑n
i=1 qi(t)αi(t) +

∑n
i=1 βi(t)θi(t)

A(t)
−

−
∑n

i=1(p2
i (t)θ2i (t) + q2

i (t)β2
i (t) + 2Ai(t)θi(t)βi(t)

2A2(t)
)dt]×

× exp[

n∑

i=1

∫ T2

T1

pi(t)θi(t)
A(t)

dWi(t) +
n∑

i=1

∫ T2

T1

qi(t)βi(t)
A(t)

dWi(t)]

= exp(

∫ T2

T1

(

∑n
i=1 qi(t)αi(t)

A(t)
+

∑n
i=1 βi(t)θi(t)

2A(t)
−
∑n

i=1 q2
i (t)β2

i (t)
2A2(t)

−
∑n

i=1 Ai(t)βi(t)θi(t)
2A2(t)

)dt

+

n∑

i=1

∫ T2

T1

qi(t)βi(t)
A(t)

dWi(t)) × exp(

∫ T2

T1

(

∑n
i=1 pi(t)γi(t)

A(t)
+

∑n
i=1 βi(t)θi(t)

2A(t)
−
∑n

i=1 p2
i (t)θ2i (t)

2A2(t)
−

−
∑n

i=1 Ai(t)βi(t)θi(t)
2A2(t)

)dt +
n∑

i=1

∫ T2

T1

pi(t)θi(t)
A(t)

dWi(t)).

(A − 12)

From (A − 1) and (A − 12) we get

Ã = exp(

∫ T2

T1

(

∑n
i=1 Ai(t)αi

A(t)
+

∑n
i=1 Ai(t)βiθi

2A(t)
−
∑n

i=1 A2
i (t)β2

i

2A2(t)
−
∑n

i=1 A2
i (t)βiθi

2A2(t)
)dt +

n∑

i=1

∫ T2

T1

Ai(t)βi

A(t)
dWi(t))×

× exp(

∫ T2

T1

(

∑n
i=1 Ai(t)γi

A(t)
+

∑n
i=1 Ai(t)βiθi

2A(t)
−
∑n

i=1 A2
i (t)θ2i

2A2(t)
−
∑n

i=1 A2
i (t)βiθi

2A2(t)
)dt +

n∑

i=1

∫ T2

T1

Ai(t)θi
A(t)

dWi(t))

= P̃ · Q̃.
(A − 13)

Notes

Note 1. In Poland, in 2001 and 2002 Bankowy Fund did not reach the minimal rate of return.

Note 2. Geometric Brownian Motion is used to model stock prices in the BlackCScholes model and is the most

widely used model of stock price behavior (Hull, 2009).

Note 3. The chosen parameters of prices of units and numbers of units describe many of funds condition variants:

increasing or decreasing prices of units and number of units with small or high volatility. Nevertheless, the simu-

lation study plays a role of some illustration of the presented measures and all conclusions from that study can not

be general.

Note 4. In (27) we use Ito integral.
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