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Abstract

A multivariate measure of local dependence written in terms of copulas is proposed, which if integrated, coincides

with a population version of a multivariate global measure of Spearman’s rho. We propose nonparametric estima-

tors of this measure for independent sample data and also for time series data. Some properties of the estimators

are derived. Simulations with different copulas and sample sizes were performed to assess the theoretical findings.

Empirical applications are given for selected economic indexes of 166 countries and for the returns of the DAX,

CAC40 and FTSE indexes.
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1. Introduction

Global measures of association between two or more random variables are those that result in a single numeric

value. On the other hand, measures of local dependence between d random variables (with d ≥ 2) are those

calculated on points of a d-dimensional grid of variables’s support, thus resulting in a d-dimensional surface of

dependence. In both cases, if the random variables are continuous then some of such measures can be written in

terms of copulas, which are well known measures of dependence. It should be noted that the development of the

theory of copulas was intensified by the 1990s, and copulas provide a means for the analysis of real problems in

finance, economics, risk analysis, pattern recongnition, brain signals and many others areas.

Some familiar measures of global association between two random variables are the linear correlation of Pearson,

Spearman’s rho, Kendall’s tau, Gini’s coefficient and the Blomqvist’s beta (or medial correlation coefficient), where

the last four are also called measures of concordance, which is a form of dependence. For more than two random

variables, we can find the extensions of the global measures of concordance of Spearman’s rho in Ruymgaart

and van Zuijlen (1976), Wolff (1980), Joe (1997), Nelsen (1996, 2002), Úbeda-Flores (2005), Taylor (2007) and

Schmid and Schmidt (2007a, 2007b), of Kendall’s tau and Gini’s coefficient in Nelsen (2002) and Taylor (2007),

and of Blomqvist’s beta in Nelsen (2002), Úbeda-Flores (2005) and Taylor (2007). Furthermore, some measures

of multivariate dependence are studied by Joe (1989), Dhaene, Linders, Schoutens, and Vyncke (2013) and Tasena

and Dhompongsa (2013), for example.

Considering measures of local dependence for two random variables we mention copulas and density of copulas

(Nelsen, 2006; Joe, 1990), the function of Sibuya (1960), the correlation curve of Bjerve and Doksum (1993) and

the measure of Bairamov, Kotz, and Kozubowski (2003), besides the measure J (Sricharan, Hero, & Rajaratnam,

2011) and the local Gaussian correlation (Tjøstheim & Hufthammer, 2013), among others. For more than two

variables, copulas and density of copulas (Nelsen, 2006, among others) are measures of local dependence that we

found in the literature.

The aim of this paper is to propose a multivariate measure of local dependence that is written in terms of copulas,

and propose two simple nonparametric methods of estimation.

This paper is organized as follows. In Section 2 we establish some notation and review some concepts and results

of copulas. In Section 3 we propose a multivariate measure of local dependence written in terms of copulas, and
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discuss some of its basic properties. The inference is studied in Section 4, where empirical and smoothed non-

parametric estimators are suggested for independent samples observed from a random vector. Moreover, one

nonparametric smoothed estimator and its weakly convergence is established for data coming from a stationary

time series process. For these two types of data (independent and indexed by time), simulations and applications

were performed in Section 5 and Section 6, respectively. We finished with some conclusions and suggestions in

Section 7.

2. Background

In this section we introduce some notation and concepts about copulas.

Let X = (X1, X2, ..., Xd), d ≥ 2, be a d-dimensional vector of real random variables. We denote by F(x) and

Fi(xi), respectively, the distribution function of X and Xi, i = 1, ..., d. The generalized inverse of Fi is defined by

F−1
i (ui) = inf{xi ∈ R|Fi(xi) ≥ ui}, for all ui ∈ [0, 1], i = 1, . . . , d, using the convention inf∅ = −∞.

In this section we mainly follow Nelsen (2006). Conceptually, a copula can be described as a function which joins

or “couples” a multivariate distribution function to its univariate marginal distribution functions. Copulas can be

used to construct multivariate distributions or to study some scale-free measures of dependence (Fisher, 1997).

Formally, a d-copula is a function C from Id to I = [0, 1] with the following properties:

(i) for every u in Id, C(u) = 0 if at least one coordinate of u is 0, and C(u) = uk if all coordinates of u are equal

1 except uk;

(ii) for every a and b in Id such that ai ≤ bi for all i, VC([a,b]) ≥ 0, where VC([a,b]) is the C-volume of [a,b].

That is, considering the point (F1(x1), F2(x2), ..., Fd(xd), F(x1, x2, ..., xd)) in Id+1 for each (x1, x2, ..., xd) ∈ R̄
d =

[−∞,+∞]d, then the mapping from Id to I is a copula. It follows that a copula C is a distribution function on Id

with uniformly distributed marginals on I.

The theorem of Sklar (1959) is central to the theory of copulas and their multivariate version is given bellow.

Sklar’s Theorem Let F be a joint distribution function with margins Fi, i = 1, 2, ..., d. Then there exists a copula
C such that for all x ∈ R̄d,

F(x1, x2, ..., xd) = C(F1(x1), F2(x2), ..., Fd(xd)).

If Fi, i = 1, 2, ..., d, are continuous, then C is unique; otherwise, C is uniquely determined on RanF1× RanF2× ...×
RanFd, where RanFk is the range of Fk. Conversely, if C is a copula and Fi, i = 1, 2, ..., d are distribution functions,
then the function F is a joint distribution function with margins Fi, i = 1, 2, ..., d.

By this theorem, there exists an unique d-copula C given by F(x1, ..., xd) = C(F1(x1), ..., Fd(xd)) for all x =
(x1, ..., xd) in R̄

d and, conversely, if C is a d-copula then the function F is a d-dimensional distribution function

with margins F1, ..., Fd. That is, the univariate margins Fi, i = 1, ..., d are coupled by the copula C resulting in a

multivariate distribution function F, or a multivariate distribution F can be decomposed in their univariate margins

Fi, i = 1, ..., d, and also a dependence structure represented by the copula C.

It is observed that for u = (u1, ..., ud) in Id, the copula C of F can be rewritten as C(u1, ..., ud) = F(F−1
1 (u1), ...,

F−1
d (ud)).

The next result gives bounds (called Fréchet-Hoeffding bounds) for any copula C:

W(u) ≤ C(u) ≤ M(u), (1)

where W = max(u1+u2+ ...+ud −d+1, 0) and M = min(u1, u2, ..., ud). Moreover, M is a copula for d ≥ 2 whereas

W is a copula for d = 2 but it is not for any d ≥ 3.

Other copula commonly used is the product copula defined by Π(u) = u1 × ... × ud.

We now provide some useful properties of copulas. Let X = (X1, X2, ..., Xd) be a d-dimensional random vector of

continuous values with copula C. Then:

(1) if αi, i = 1, 2, ..., d are strictly increasing on RanXi, i = 1, 2, ..., d, respectively, then the copula of (α1(X1),
α2(X2), . . . , αd(Xd)) is equal to C. That is, C is invariant under strictly increasing transformations of Xi, i =
1, 2, ..., d;

(2) X1, X2, ..., Xd are independent if and only if C = Π;
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(3) (X1, X2, ..., Xd) is comonotonic if and only if C = M; that is, each of the random variables X1, X2, ..., Xd is

almost surely a strictly increasing function of any of the others if and only if C = M; this can be interpreted

as the extension of the concept of perfect positive correlation;

(4) if C1 and C2 are copulas, we say that C1 is smaller (or less concordant) than C2, denoted by C1 ≺C C2 , if

C1(u) ≤ C2(u) and C̄1(u) ≤ C̄2(u), for all u in Id (here, C̄i = Pi[U > u] denotes the survival function).

This is because we want to assess whether X1, X2, ..., Xd are all both “large simultaneously” and “small

simultaneously”. For example, W is smaller than every copula, and M is larger than every copula. This

partial ordering of the set of copulas is called the concordance ordering;

(5) the d-volume between the graphs of M andΠ and of W andΠ are ad =
∫ ∫
...

∫
Id [M(u)−Π(u)] du1du2...dud =

1
d+1
− 1

2d and bd =
∫ ∫
...

∫
Id [W(u)−Π(u)] du1du2...dud =

1
(d+1)!

− 1
2d , respectively, and hence limd→∞ bd

ad
= 0.

That is, as d increases, the graphs of W(u) and Π(u) are much closer to each other than those of M(u) and

Π(u). The equality between ad and bd occur only for d = 2 (Nešlehová, 2004).

3. Spearman-Type Multivariate Measure of Local Dependence

From the Inequality (1) we have that

W(u) − Π(u)

M(u) − Π(u)
≤ C(u) − Π(u)

M(u) − Π(u)
≤ 1,

from which, we propose a local measure of dependence

δ(u) =
C(u) − Π(u)

M(u) − Π(u)
, (2)

for all u ∈ (0, 1)d, which can be interpreted as a type of normalized version of the difference between copula and

product copula.

This suggestion can be further supported considering two multivariate global measures of Spearman’s rho. Firstly,

Schmid and Schmidt (2007a) provide the following representation for the bivariate global measure of Spearman’s

rho

ρ =
Cov(U,V)√

Var[U]Var[V]
=

∫
[0,1]2 (C(u, v) − Π(u, v))dudv∫
[0,1]2 (M(u, v) − Π(u, v))dudv

,

and also their straightforward d-variate extension

ρ =

∫
[0,1]d (C(u) − Π(u))du∫
[0,1]d (M(u) − Π(u))du

,

which can be considered locally if we abandon the aspect of volume in the numerator and denominator represented

by the integration.

Secondly, the conditional multivariate version of Spearman’s rho was studied by Schmid and Schmidt (2007b),

and it is given by

ρ =

∫
[0,1]d (C(u) − Π(u))g(u)du∫
[0,1]d (M(u) − Π(u))g(u)du

,

where g ≥ 0 is some measurable weighting function such that the integrals exist. In our analysis, g can be thought

as having positive weight only on u ± ε = ([u1 − ε1; u1 + ε1], ..., [ud − εd; ud + εd]) ⊂ (0, 1)d with εi > 0, such that

εi → 0 for i = 1, 2, ..., d, and zero weight otherwise. This concept describes a measure evaluated locally around u.

In what follows, we give some properties of the local measure δ(u) for each u ∈ (0, 1)d:

(1) δ(u) is defined for every random vector whose components are all continuous;

(2)
W(u) − Π(u)

M(u) − Π(u)
≤ δ(u) ≤ 1;

(3) C(u) = Π(u) if and only if δ(u) = 0;

(4) C(u) = M(u) if and only if δ(u) = 1;
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(5) if αi, i = 1, 2, ..., d, are strictly increasing functions of X1, X2, ..., Xd, denoted by α(X), then δ calculated on

both α(X) and X are the same;

(6) if Cn(u)→ C(u) uniformly, then δCn (u)→ δC(u) as n→ ∞.

As an example, the behavior of the multivariate measure of local dependence given by Formula (2), considering

d = 3 and Gaussian copula with parameters (0.723, 0.702, 0.704), is shown in Figure 1, which is composed by one

bivariate contour plot for each of the following values of the third component: 0.05, 0.25, 0.50, 0.75 and 0.95. It

can be seen that as the third component goes from 0.05 to 0.95, the greater dependence (contour curves with value

0.8, for example) moves from the upper right quadrant to the both sides of the main diagonal.

Figure 1. Contour plots for some levels (0.05, 0.25, 0.50, 0.75 and 0.95) of the third component of the trivariate

Spearman-type measure of local dependence δ (Formula (2)), considering a Gaussian copula with parameters

(0.723, 0.702, 0.704)

4. Estimation of the Local Measure

Copulas may be estimated by nonparametric, semiparametric and parametric methods, and so the same holds for

the proposed measure. As it is known, for the last two methods we firstly must choose a suitable family of copulas

which may not be a simple task, while for the nonparametric methods no copulas’s family must be imposed

in advance. For this reason, in this section we will deal with methods that use the empirical copula or copula

smoothed by kernel for data observed independently and over time.

4.1 Independent Sample Data

Let {X j = (X1 j, ..., Xd j), j = 1, ..., n} be a random sample of size n observed from the continuous random vector X.

Consider the following empirical estimators of the joint and marginal distributions of X1, ..., Xd :

Fn(x1, ..., xd) =
1

n

n∑
j=1

I(X1 j ≤ x1, ..., Xd j ≤ xd),

and

Fin(xi) =
1

n

n∑
j=1

I(Xi j ≤ xi) , i = 1, ..., d.

Then, the empirical copula is given by Cn(u) = Fn(F−1
1n (u1), ..., F−1

dn (ud)), ∀(u) ∈ [0, 1]d, where F−1
in (ui) are the

empirical quantiles with probability levels ui, i = 1, ..., d.
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Thus, using the plug-in method, we obtain the following empirical estimator for δ:

δn(u) =
Cn(u) − Π(u)

M(u) − Π(u)
, ∀u ∈ (0, 1)d, (3)

where we have excluded the extremes of the d-dimensional cube.

The asymptotic behavior of the copula process
√

n(Cn(u) − C(u)) was investigated by Rüchendorf (1976), Stute

(1984), GänBler and Stute (1987) and Fermanian, Radulovic, and Wegkamp (2004), besides Tsukahara (2005),

Schmid and Schmidt (2007b) and Segers (2012), for example.

The following theorem can be found in Schmid and Schmidt (2007b), and it was used in the proof of Theorem 2,

that brings the weak convergence of the estimator given by Formula (3).

Theorem 1 Let F be a continuous d-dimensional distribution function with copula C. Under the additional as-
sumption that the ith partial derivatives ∂iC(u) exist and are continuous for i = 1, ..., d, we have

√
n(Cn −C)(u)

W−→ GC(u), ∀u ∈ [0, 1]d,

where GC(u) is a centered Gaussian process. Weak convergence takes place in l∞([0, 1]d) and

GC(u) = BC(u) −
d∑

i=1

∂iC(u)BC(u(i)).

The vector u(i) denotes the vector where all coordinates, except the ith coordinate of u, are replaced by 1. The
process BC is a tight centered Gaussian process on [0, 1]d with covariance function

E[BC(u)BC(v)] = C(u ∧ v) −C(u)C(v),

i.e., BC is a d-dimensional Brownian bridge.

Theorem 2 Under the assumptions and notation of Theorem 1,

√
n(δn − δ)(u)

W−→ Gδ(u), ∀u ∈ (0, 1)d,

where Gδ(u) is a centered Gaussian process given by

Gδ(u) =
1

g(u)

⎛⎜⎜⎜⎜⎜⎜⎝BC(u) −
d∑

i=1

∂iC(u)BC(u(i))

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with g(u) = M(u) − Π(u).

Proof. Under the assumptions that F is a continuous d-dimensional distribution function with copula C and such

that the ith partial derivatives of ∂iC(u) exist and are continuous for i = 1, ..., d, Theorem 1 is valid. Because δ(u)

(Formula (2)) can be obtained as C → (C,C1, ...,Cd) → C ◦ (C1, ...,Cd), where C j = C(1, ..., u j, ..., 1) = u j, for

j = 1, 2, ..., d, we can see that the first map is linear and continuous, hence Hadamard-differentiable (see the proof

of Lemma 3.9.38 in van der Vaart & Wellner, 1996), and the second map is Hadamard-differentiable on the non

null points in the domain of the function (see the section 3.9.4.3 of van der Vaart & Wellner, 1996). Then, by the

functional delta-method, the process of the empirical multivariate measure of local dependence converges weakly

to a centered Gaussian process Gδ(u). �
Another estimator, smoothed by kernel functions is given by:

δ̂(u) =
Ĉ(u) − Π(u)

M(u) − Π(u)
, ∀u ∈ (0, 1)d, (4)

where

Ĉ(u) = F̂(F̂−1
1 (u1), ..., F̂−1

d (ud)),

F̂−1
j (u j) = inf{x j : F̂ j(x j) ≥ u j}, j = 1, ..., d,
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F̂(x) =
1

n

n∑
i=1

K
(

x1 − X1i

h1

, ...,
xd − Xdi

hd

)
,

F̂ j(x j) =
1

n

n∑
i=1

Kj

(
x j − Xji

h j

)
, j = 1, ..., d,

with K(x) =
∫ x1

−∞ ...
∫ xd

−∞ k(u1, ..., ud)du1...dud for
∫
...

∫
k(u1, ..., ud)du1...dud = 1 and k : Rd → R. Also Kj(w) =∫ w

−∞ k j(u)du where the real kernel functions k j(.), j = 1, ..., d are bounded and symmetric such that
∫

k j(u)du = 1.

As usual, h j > 0, j = 1, ..., d, are bandwidths (functions of n) such that h j → 0 as n→ ∞, K(x1, ..., xd; h1, ..., hd) =

K
(

x1

h1
, ..., xd

hd

)
, k(x1, ..., xd; h1, ..., hd) = 1

h1...hd
k
(

x1

h1
, ..., xd

hd

)
and k j(u j; h j) =

1
h j

k j

(
u j

h j

)
.

Let us assume that the following regularity conditions hold, with h = h1 = ... = hd for simplicity.

(C1) F has a bounded derivative of order q;

(C2) F j, j = 1, ..., d, are Lipschitz;

(C3) h→ 0 as n→ ∞;

(C4) lim
n→∞
√

nhq = 0;

(C5)
∫
R
...

∫
R

xk1

1
...xkd

d k(x1, ..., xd)dx1...dxd = 0, 1 ≤ k1 + ... + kd < q;

(C6)
∫
R
...

∫
R
|x1|k1 ...|xd |kd |k(x1, ..., xd)|dx1...dxd < ∞, 1 ≤ k1 + ... + kd ≤ q;

(C7)
∫
R
...

∫
R

(|x1| + ... + |xd |)dK(x1, ..., xd) < ∞.
Theorem 3 Considering (C1) to (C7) valid and C having continuous partial derivatives, then

{WC(u) ≡ √n(δ̂ − δ)(u),∀u ∈ (0, 1)d}
converges weakly to a centered Gaussian process {GδC (u),∀u ∈ (0, 1)d} in l∞((0, 1)d).

Proof. Considering (C1) to (C7) valid and C having continuous partial derivatives, then Theorem 10 of Fermanian

et al. (2004) is valid for the d-dimensional case, that is, the smoothed copula process { √n(Ĉ(u) − C(u)),∀u ∈
[0, 1]d} converges weakly to a Gaussian process {GC(u),∀u ∈ [0, 1]d}, in l∞[0, 1]d. By the continuous mapping

theorem, we have that the smoothed process {WC(u) ≡ √n(δ̂ − δ)(u),∀u ∈ (0, 1)d} converges weakly to a centered

Gaussian process {GδC (u),∀u ∈ (0, 1)d} in l∞((0, 1)d). �

Table 1. Biases and mean square errors of δ̂ for the Gaussian copula with parameters (0.723, 0.702, 0.704), calcu-

lated from 1,000 independent samples with sizes 250, 500 and 1,000

Grid 0.01 0.05 0.25 0.50 0.75 0.95 0.99
Actual 0.135 0.236 0.414 0.502 0.524 0.441 0.351

n=250
Estimated 0.030 0.191 0.408 0.500 0.516 0.399 0.185

Bias 0.105 0.044 0.006 0.003 0.007 0.044 0.146

MSE 0.012 0.007 0.003 0.002 0.002 0.007 0.025

n=500
Estimated 0.039 0.208 0.413 0.500 0.519 0.415 0.210

Bias 0.096 0.028 0.001 0.002 0.005 0.028 0.121

MSE 0.010 0.004 0.001 0.001 0.001 0.003 0.017

n=1,000
Estimated 0.050 0.220 0.411 0.503 0.521 0.425 0.233

Bias 0.085 0.016 0.003 0.000 0.002 0.017 0.098

MSE 0.008 0.002 0.001 0.001 0.001 0.002 0.011

4.2 Time Series Data

Consider a d-variate strictly stationary process with continuous values represented by {(X1t, ..., Xdt), t ∈ Z} whose

joint distribution, marginal distributions and copula function are represented by F(x1, ..., xd), F1(x1), ..., Fd(xd) and

6
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C(u1, ..., ud), respectively. Then the measure given by Formula (2) and their properties are also valid here, and it

will be denoted by δ0(u), where the index value 0 represents the contemporary aspect.

A smoothed estimator for this measure is the same of Formula (4) with (X1i, ..., Xdi), i = 1, ..., n replaced by

(X1t, ..., Xdt), t = 1, ..., T , and δ̂(u) by δ̂0(u).

The following regularity conditions are assumed, with h∗ = max(h1, ..., hd) with hi → 0, i = 1, ..., d, as T → ∞.

(C1) Th2∗ → 0 as T → ∞;

(C1’) Th4∗ → 0 as T → ∞, and the d-variate kernel k is even;

(C2) the kernel k has a compact support;

(C3) the process (X1t, ..., Xdt) is α-mixing with coefficients αT = o(T−a) for some a > 1, as T → ∞;

(C4) the marginal distributions F j, j = 1, ..., d, are continuous differentiable on the intervals [F−1
j (a)−ε; F−1

j (b)+ε],
for every 0 < a < b < 1 and some ε > 0, with positive derivatives f j. Moreover, the first partial derivatives of F
exist and are Lipschitz continuous on the product of these intervals.

Theorem 4 Let {(X1t, ..., Xdt), t ∈ Z} be a strictly stationary process with continuous values. With (C1) (or (C1’))
to (C4) valid

{WC(u) ≡ √T (δ̂0 − δ0)(u),∀u ∈ (0, 1)d}
converges weakly to a centered Gaussian process in l∞((0, 1)d).

Proof. Considering (C1) (or (C1’)) to (C4) valid, then Theorem 3 of Fermanian and Scaillet (2003) is valid, that

is, the process { √T (Ĉ(u) −C(u)),∀u ∈ (0, 1)d} tends weakly to a centered Gaussian process {GC(u),∀u ∈ (0, 1)d},
in l∞(0, 1)d. By the continuous mapping theorem, the process { √T (δ̂0 − δ0)(u),∀u ∈ (0, 1)d} converges weakly to

a centered Gaussian process {Gδ0C (u),∀u ∈ (0, 1)d} in l∞((0, 1)d). �
5. Simulations

To investigate the performance of the smoothed estimator (Formula (4)) for independent samples (denoted by δ̂)
and time series data (denoted by δ̂0), we conduct simulations for the trivariate case on some grid points with equal

components given by 0.01, 0.05, 0.25, 0.50, 0.75, 0.95 and 0.99, using 1,000 replications of samples with sizes 250,

500 and 1,000, trivariate multiplicative kernel k(x1, x2, x3) = k1(x1)k1(x2)k1(x3), Gaussian kernel, and bandwidths

of Azzalini (1981) given by 0.5σn−1/3. The parameter σ was estimated by the sample standard deviation. The R

package version 3.0.1 was used.

5.1 Independent Sample Data

We considered 1,000 replications of independent samples with different sizes for the following trivariate copulas:

Gaussian, with null correlations between their components and also with correlations equal to (0.723, 0.702, 0.704);

Student’s t, with correlations (0.8, 0.5, 0.8) and 8 degrees of freedom; and Gumbel, with parameter 2.

The simulation results of δ̂ for the Gaussian copula with null correlations, show biases and mean squared errors

generally lower than 0.001. For the Gaussian copula with nonzero correlations, Table 1 presents on each considered

grid point, the theoretical and estimated values of the local measure, and the biases and mean squared errors. We

notice that the values of these statistics are usually small, except at the end points of the grid and they decrease

with the increase of sample size (usual behavior for all studied copulas). Table 2 presents the simulation results for

the t copula, where the biases and the mean squared errors are sligthly greater when compared with the previous

simulations. For the Gumbel copula (larger dependence on the upper right side of the support), analyzing the

results of Table 3, we see that the biases and the mean squared errors are more pronounced mainly on the grid

point 0.99.
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Table 2. Biases and mean square errors of δ̂ for the t copula with correlations (0.8, 0.5, 0.8) and 8 degrees of

freedom, calculated from 1,000 independent samples with sizes 250, 500 and 1,000

Grid 0.01 0.05 0.25 0.50 0.75 0.95 0.99
Actual 0.195 0.267 0.417 0.505 0.541 0.510 0.480

n=250
Estimated 0.038 0.216 0.410 0.501 0.538 0.448 0.222

Bias 0.158 0.051 0.006 0.004 0.004 0.063 0.238

MSE 0.026 0.008 0.003 0.002 0.002 0.008 0.060

n=500
Estimated 0.052 0.239 0.413 0.501 0.536 0.466 0.255

Bias 0.144 0.027 0.003 0.004 0.005 0.044 0.206

MSE 0.022 0.004 0.002 0.001 0.001 0.004 0.045

n=1,000
Estimated 0.067 0.247 0.415 0.504 0.540 0.486 0.288

Bias 0.129 0.019 0.001 0.001 0.001 0.025 0.173

MSE 0.018 0.003 0.001 0.000 0.000 0.002 0.031

Table 3. Biases and mean square errors of δ̂ for the Gumbel copula with parameter 2, calculated from 1,000

independent samples with sizes 250, 500 and 1,000

Grid 0.01 0.05 0.25 0.50 0.75 0.95 0.99
Actual 0.034 0.109 0.320 0.469 0.566 0.622 0.632

n=250
Estimated 0.010 0.090 0.317 0.470 0.562 0.550 0.298

Bias 0.024 0.019 0.003 0.000 0.004 0.072 0.334

MSE 0.001 0.003 0.003 0.002 0.002 0.010 0.116

n=500
Estimated 0.013 0.100 0.317 0.467 0.564 0.572 0.347

Bias 0.021 0.010 0.003 0.002 0.002 0.050 0.285

MSE 0.001 0.002 0.001 0.001 0.001 0.005 0.084

n=1,000
Estimated 0.016 0.103 0.319 0.470 0.565 0.593 0.393

Bias 0.018 0.007 0.001 0.000 0.001 0.029 0.238

MSE 0.001 0.001 0.001 0.001 0.001 0.002 0.059

The behavior of the estimator’s distributions on the three central grid points for the above simulations with sample

size 1,000 is shown in Figure 2 through normal quantile plots (where the axis’s labels tq and sq means theoretical

quantiles and sample quantiles) and in Figure 3 through histograms. We conclude that the limiting Gaussian

approximation of the estimator looks acceptable for these chosen points.
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Figure 2. Normal quantile plots of the measure on the grid points u = (u, u, u) for u = 0.25, u = 0.50 and u = 0.75

considering simulations with 1,000 samples observed from a Gaussian copula with null correlations, Gaussian

copula with correlations equal to (0.723, 0.702, 0.704), t copula with correlations (0.8, 0.5, 0.8) and 8 dregrees of

freedom, and finally the Gumbel copula with parameter 2
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Figure 3. Histograms of the measure on the grid points u = (u, u, u) for u = 0.25, u = 0.50 and u = 0.75

considering simulations with 1,000 samples observed from a Gaussian copula with null correlations, Gaussian

copula with correlations equal to (0.723, 0.702, 0.704), t copula with correlations (0.8, 0.5, 0.8) and 8 degrees of

freedom, and finally the Gumbel copula with parameter 2

5.2 Time Series Data

Firstly, we consider the trivariate stationary VAR(1) process represented by

Yt = Φ0 +Φ1Yt−1 + εt,

where Yt = (Y1t,Y2t,Y3t)
′, Φ0 = (1, 1, 1)′, vec(Φ1) = (0.3, 0, 0, 0, 0.5, 0, 0, 0, 0.8)′ and εt ∼ N(0,Σ) with vec(Σ) =

(1.0, 0, 0, 0, 1.5, 0, 0, 0, 2.1)′. The eigenvalues ofΦ1 are in modulus smaller than one and then the Gaussian process

referred as Yt is stationary. Also, the parameters are μ = (1.43, 2, 5)′ and vec(Γ(0)) = (1.1, 0, 0, 0, 2, 0, 0, 0, 5.83)′
with vec(ρ(0)) = (1, 0, 0, 0, 1, 0, 0, 0, 1)

′
. The behavior of the estimator δ̂0 was very similar to that of Gaussian
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copula with null correlations of the previous subsection, that is, the biases and mean squared errors are very small

(generally less than 0.001).

Secondly, we study a trivariate stationary VAR(1) process with correlated components where Φ0 = (1, 1, 1)′,
vec(Φ1) = (0.3, 0.1, 0.1, 0.1, 0.5, 0.1, 0.1, 0.1, 0.8)′ (eigenvalues equal to 0.86, 0.49 and 0.25) and vec(Σ) = (1.0, 0.7,
0.8, 0.7, 1.5, 0.9, 0.8, 0.9, 2.1)′. Then, μ = (3.33, 4.44, 8.89)′ and vec(Γ(0)) = (1.58, 1.54, 2.6, 1.54, 2.89, 3.54,
2.61, 3.54, 8.78)′ with vec(ρ(0)) = (1, 0.723, 0.702, 0.723, 1, 0.704, 0.702, 0.704, 1)′. In this case, the biases and

mean squared errors are generally lower than that of the Gaussian copula with nonzero correlations studied in the

previous subsection. See Table 4.

Table 4. Biases and mean square errors of δ̂0 calculated from 1,000 time series data with sizes 250, 500 and 1,000,

generated from the VAR(1) model with parameters φ0 = (1, 1, 1)′, vec(φ1) = (0.3, 0.1, 0.1, 0.1, 0.5, 0.1, 0.1, 0.1, 0.8)′
and vec(Σ) = (1.0, 0.7, 0.8, 0.7, 1.5, 0.9, 0.8, 0.9, 2.1)′, considering the Gaussian copula with correlations (0.723,

0.702, 0.704)′

Grid 0.01 0.05 0.25 0.50 0.75 0.95 0.99
Actual 0.135 0.236 0.414 0.502 0.523 0.442 0.340

T=250
Estimated 0.081 0.209 0.405 0.490 0.510 0.411 0.256

Bias 0.054 0.027 0.010 0.013 0.016 0.030 0.074

MSE 0.023 0.014 0.005 0.003 0.004 0.012 0.036

T=500
Estimated 0.099 0.220 0.404 0.494 0.516 0.425 0.300

Bias 0.035 0.016 0.010 0.008 0.007 0.015 0.030

MSE 0.018 0.008 0.002 0.002 0.002 0.006 0.021

T=1,000
Estimated 0.119 0.226 0.410 0.499 0.519 0.432 0.314

Bias 0.016 0.010 0.004 0.003 0.004 0.008 0.017

MSE 0.011 0.004 0.001 0.001 0.001 0.003 0.013

Figure 4. Normal quantile plots of the measure on the grid points u = (u, u, u) for u = 0.25, u = 0.50 and u = 0.75

considering simulations with 1,000 time series from a normal distribution with null correlations, and normal

distribution with correlations equal to (0.723,0.702,0.704)
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Figure 5. Histograms of the measure on the grid points u = (u, u, u) for u = 0.25, u = 0.50 and u = 0.75

considering simulations with 1,000 time series from a normal distribution with null correlations, and normal

distribution with correlations equal to (0.723,0.702,0.704)

Figures 4 and 5 show some normal quantile plots and histograms for the estimator, showing that the Gaussian

approximation is good. We conclude that the results of this section support the corresponding theoretical findings

of the previous section.

6. Applications

To analyze actual data we use 90% of the central data (to avoid bad estimations on the boundaries) and bandwidths

according to Azzalini (1981) given by 1.3σn−1/3, although the bandwidth of the previous section brings very

similar results for the data considered in this section. As before, the parameter σ is estimated by the standard

deviation of the samples.

6.1 Independent Sample Data

Economic indexes of the GDP (gross domestic product) annual growth rate, the interest rate, and the inflation rate

of 166 countries, denoted respectively by X, Y and Z, were accessed from the website www.tradingeconomics.com

on April 2, 2013.

The scatter plots between the pairs (X,Y), (X,Z) and (Y,Z) are shown at the top panel of Figure 6, where only the

last one indicates positive linear relationship, with Pearson’s correlation coefficient given by 0.618. To search for

any type of dependence structure between these pairs of variables, we can get their bivariate empirical copula cal-

culating the normalized ranks (ranks divided by n+ 1 instead of n, to avoid estimation problems at the boundaries)

of X, Y and Z, which are denoted by U1, U2 and U3, respectively. The corresponding scatter plots can be seen at

the bottom panel of Figure 6, where the two first show some positive dependence and the latter show an important

positive dependence mainly between greater values of the variables. These behaviors were confirmed by the values

0.400, 0.314 and 0.632 of their respective correlation of Spearman’s rho.

The estimates of δ̂ are shown in Table 5 for ten grid points with equal components, and the corresponding bivariate

local measure estimates on the grid points 0.05, 0.25, 0.50, 0.75 and 0.95 of the third component U3 are shown in

Figure 7, where the local dependence between U1 (X) and U2 (Y) goes from the upper right side to the bottom right

side as U3 goes from 0.05 to 0.95. That is, when the values of inflation rate are low then the dependence between

GDP annual growth rate and interest rate is greater between their higher values, and for high values of inflation

rate then the dependence is greater between the higher values of GDP annual growth rate and the lower values of

interest rate.
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Figure 6. The first three plots are the scatter plots of the GDP annual growth rate (X), the interest rate (Y) and the

inflation rate (Z) of 166 countries. The last three plots are scatter plots of their normalized ranks, that is, the

bivariate empirical copula densities

Figure 7. Cconsidering the GDP annual growth rate (X), the interest rate (Y) and the inflation rate (Z) of 166

countries, the estimation of the trivariate Spearman-type measure of local dependence δ̂ (Formula (4)) is showed

by bivariate contour plots on some grid points (0.05, 0.25, 0.50, 0.75, 0.95) of the third component

13
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Table 5. Estimates of δ using the GDP annual growth rate, the interest rate and the inflation rate

Grid 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Values 0.11 0.081 0.186 0.261 0.306 0.321 0.307 0.283 0.301 0.296

6.2 Time Series Data

The German, French and English stock indexes abbreviated as DAX, CAC40 and FTSE were observed from

January 2nd, 2001 to March 27, 2013 (3,064 observations) in the website www.inventing.com/indexes (on March

28, 2013), and their log-returns (briefly returns) are represented by Xt, Yt and Zt in this order.

Estimates of δ̂0 are given in Table 6 for ten central grid points with equal components, and Figure 8 shows the

bivariate scatter plots of (Xt,Yt), (Xt,Zt) and (Yt,Zt), which exhibit strong positive linear associations. The corre-

sponding coefficients of Pearson’s linear correlation are 0.891, 0.820 and 0.900 and of Spearman’s rho are 0.893,

0.807 and 0.868. All of these series are stationary as indicated by the autocorrelation functions in Figure 9.

Table 6. Estimates of δ0 using the returns of DAX, CAC40 and FTSE from January 2nd, 2001 to March 27, 2013

Grid 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Values 0.549 0.623 0.631 0.634 0.651 0.669 0.686 0.699 0.697 0.697

Figure 8. Scatter plots of the returns of the DAX, CAC40 and FTSE stock indexes (Xt, Yt and Zt, in this order)

from January 3nd, 2001 to March 27, 2013

Figure 9. Autocorrelation functions of the returns of the DAX, CAC40 and FTSE stock indexes (Xt, Yt and Zt, in

this order)

From Figure 10, we can see that as the grid value of FTSE goes from 0.05 to 0.95 then the local dependence (δ̂0)

between DAX and CAC40 goes from their higher values to their off-diagonal values.
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Figure 10. Considering the returns of the DAX, CAC40 and FTSE stock indexes (Xt, Yt and Zt, in this order), the

estimation of the trivariate Spearman-type measure of local dependence δ̂0) (Formula (4)) is showed by bivariate

contour plots on some grid points (0.05, 0.25, 0.50, 0.75, 0.95) of the third component

7. Conclusions

This work proposes a multivariate measure of local dependence, called Spearman-type and denoted by δ, which

is derived from the inequality of Fréchet-Hoeffding bounds for copulas, which coincides with the local feature of

both a version of the global multivariate measure of Spearman’s rho given by Schmid and Schmidt (2007b) and

a version of the conditional multivariate measure of Sperman’s rho as proposed by Schmid and Schmidt (2007a).

It is written in terms of copulas and it satisfies common properties of a measure of dependence, like the upper

bound of +1, the zero value if and only if their components are independent, the scale-invariance and the pointwise

convergence.

We suggest an empirical estimator for independent sample data, and a smoothed estimator by kernel for both

independent sample data and time series data. For these cases, the weak convergence to a Gaussian process were

obtained.

To verify the behavior of the smoothed estimators, we conduct simulations with 1,000 replications and samples

of sizes 250, 500 and 1,000, considering the Gaussian, t and Gumbel copulas for independent sample data and

Gaussian copulas for time series data. We observe that the biases and the mean squared errors are very small (except

on the analyzed grid points 0.01 and 0.99, which was expected), and their values decrease with the increasing

of sample sizes. For samples of size 1,000, the distribution of the estimator is approximately normal except,

sometimes, in the lower and/or upper points of the grid.

Applications of the Spearman-type multivariate measure of local dependence to actual data were made using the

GDP annual growth rate, interest rate and inflation rate of countries and also using the contemporary returns of the

DAX, CAC40 and FTSE from January 3nd, 2001 to March 27, 2013.

Research is needed to propose other estimators with less boundary bias, and also to study test of hypothesis and

the theoretical behavior of estimators for stationary lagged time series. Moreover, the study of a multivariate local

version of the global measures of Kendall’s tau and Blomqvist’s beta can also be interesting.
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Sklar, A. (1959). Fonctions de répartition à n dimensions e leurs marges. Publications de l’Institut de Statistique
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