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Abstract

The method of principal stratification is a unifying framework for modelling cause and effect which is applicable

to adjusting for treatment noncompliance in multiple arms of a trial. Baseline covariates which predict compliance

with treatment are useful in addressing parameter identification problem associated with principal stratification.

Roy, Hogan and Marcus (RHM) (2008) proposed a principal stratification framework in which they used baseline

covariates to adjust for imperfect compliance in both arms of a two-active treatments trial. Key to the application of

this method is a defining but untestable distributional assumption whose robustness is unknown. The present work

uses statistically designed simulation studies in the framework of a clinical trial comparing two active treatments

as applied to survival data under both homogeneous and heterogeneous treatment effect assumptions to evaluate

the performance of the RHM method in terms of bias and 95% credible intervals. We first apply the standard

proportional hazard model to obtain the ITT estimate and evaluate resulting bias if viewed as estimating a causal

hazard ratio. We then compare the method’s performance in terms of stratum-specific causal relative risk for dif-

ferent specifications of a user-defined spectrum parameter. The results showed no effect of the spectrum parameter

on the ITT estimates. The RHM method performed poorly by producing significantly biased efficacy estimates in

all strata with wider corresponding 95% credible intervals under heterogeneous treatment effect assumption. The

resulting efficacy estimates varied a lot depending on the value of the unknown (user-defined) spectrum parameter.
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1. Introduction

Estimating causal effects is a primary objective in most medical studies which compare two or more interventions.

This task may be achieved in randomized clinical trials under perfect compliance with treatment assignment. But

the common phenomenon of noncompliance to treatment assignment which often manifests itself as treatment

disruption, cessation, switches or patient withdrawal from the study complicates estimation of causal effects. The

intention-to-treat (ITT) is considered the benchmark for estimating treatment efficacy under perfect compliance

with allocation owing to the fact that it preserves the treatment groups’ threshold comparability by contrasting

treatment groups as assigned. However, when there is imperfect compliance with allocation to intervention, the ITT

produces biased efficacy estimate when the effects of treatment non-compliers mixes with the effects of compliers

(White & Pocock, 1996). While simple regression techniques adjusting for noncompliance may produce valid

causal estimates under random noncompliance, the fact that noncompliance is often non-random in nature induces

complication in making causal inference. In-treatment and as-protocol analyses are mostly used to augment ITT

estimates while evaluating true treatment effects. However, these post-hoc analyses are devoid of the tenets of

randomization and are likely to produce biased estimates due to selective choices arising from the underlying

nature/pattern of arm-specific compliance (White, 2005; Little et al., 2009).

The problem of efficacy estimation is complicated more by the presence of noncompliance in two (or more) treat-

ment arms, where ITT method produces biased estimates even under homogeneous (uniform) treatment effects

assumption (Aalen, 1998; Baker & Kramer, 2005). The resulting identification problem due to noncompliance in

multiple arms presents a challenge to adjust for imperfect compliance in such trials (Brittain & Lin, 2005; Chiba,
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2009). As an example, a double-blind two-armed clinical trial comparing two active-ingredient treatments (say A

and B) may be plagued by two levels of noncompliance in the form of simple noncompliance in both arms and

additional arm-specific differential noncompliance due to possible breached/imperfect blinding or side effects from

the treatment. While pairwise efficacy comparisons are suboptimal in the presence of multiple treatments, joint

analysis may be more useful in providing additional analytical insights (Cheng & Small, 2006).

Frangakis and Rubin (2002) developed the principal stratification (PS) as a unifying framework of causal mod-

elling which permits adjustment based on posttreatment variables (e.g. noncompliance status) to produce causal

effect estimates which are properly defined. The PS is a robust framework which has been applied under different

mathematical platforms to adjust for simple or partial form of noncompliance in multiple treatment arms (Roy et

al., 2008; Long et al., 2010). Covariates which predict adherence with treatment allocation is crucial to solving pa-

rameter identification problems for the PS method. Roy, Hogan, & Marcus (RHM) (2008) introduced a PS method

for adjusting imperfect compliance in two-active treatment trials using covariates recorded at baseline and which

predict treatment compliance to mitigate such identification problem. Under all-or-nothing compliance assump-

tion, the method used a set of arm-specific predictors of compliance to produce two arm-specific prediction models

which are then combined into a causal model using a user-defined spectrum/sensitivity parameter (a function of

arm-specific compliances and the correlation between compliances with treatment) to provide principal effects for

each stratum.

The merits of comprehensive model selection have been demonstrated to be transferable to principal stratification

for causal inference (Odondi & McNamee, 2013). But a key requirement in applying the RHM method is the

plausibility of the distributional assumption positing conditional prediction, i.e. counterfactual response is assumed

statistically ignorable (independent) of the set of selected baseline variables which predict treatment compliance for

a given compliance type/stratum and treatment allocation. To assess the robustness of this defining (yet untestable)

assumption, the present work uses statistical simulation studies to evaluate the performance of RHM method in

terms of bias and 95% credible intervals in the platform of a clinical trial designed to compare two active treatments

as applied to time-to-event data under both homogenous and heterogeneous treatment effect assumptions.

The rest of the paper is organized as follows: Section 2 describes the general notation and the relevant causal

modeling assumptions implicit in the application of the RHM method. Section 3 presents a detailed description

of the simulation design (aims and set-up). Section 4 outlines the methods of analysis (ITT, compliance predic-

tion and the principal stratification method by RHM). Section 5 provide results of the simulation analysis under

both homogeneous and heterogeneous treatment effect assumptions. In Section 6 we present a discussion of the

simulation results.

2. Notation and Assumptions

Let us consider two generic treatments: an active control A and a new treatment B. In a clinical trial setup

consisting of two arms, let W ∈ {0, 1} denote a randomization indicator where W = 1 indicate randomization

to the new treatment B and W = 0 indicates randomization to the active control A. We define the response as

Y ∈ {0, 1} (e.g. mycardial reinfarction or death). We let C ∈ {0, 1} denote all-or-nothing compliance with assigned

treatment. Under the potential outcome framework, every patient has two counterfactual compliance status C0

and C1 (comply with treatment A and B respectively) and two counterfactual responses Y0 and Y1 (response under

A and B intervention respectively). However, the respective compliance and responses observed are represented

by C = WC1 + (1 − W)C0 and Y = WY1 + (1 − W)Y0. By assumption, each patient belongs to one of four

mutually exclusive (basic) principal strata which are defined by distinctive combinations of (C0,C1) where the

principal strata comprise the set S = {(0, 0), (1, 0), (0, 1), (1, 1)}. Of principal interest for causality is the common

distributions [(Y0,Y1)|S = s] ∀ s ∈ S which provides stratum-specific treatment effects in terms of causal relative

risks.

Data analysis under the PS framework uses demographic (and environmental etc) variables X recorded at baseline

together with the standard assumptions (i)-(v) for causal modelling (Angrist et al., 1996; Jin & Rubin, 2008) and

the additional conditional (distributional) prediction assumption (vi) proposed by Roy et al. (2008):

(i) Randomization: W ⊥ {Y0,Y1,C0,C1, X} which posits statistical independence between treatment allocation

and potential outcomes, potential treatment received and baseline covariates, i.e. W is randomly assigned.

(ii) No interference (interaction) between treatment units, i.e. the stable unit-treatment value assumption (SUTVA).

(iii) The exclusion restriction: Pr(Y1|CW , X) = Pr(Y0|CW , X), i.e. no direct effect of treatment allocation on

response except through treatment actually received.
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(iv) Monotonicity: Pr(C1 = 1|C0 = 1, X) ≥ Pr(C1 = 1|C0 = 0, X), i.e. there is no access to treatment for subjects

randomized to the control arm of the trial.

(v) Restricted access to treatment, i.e. no subject switches treatment.

(vi) Selective prediction: Y⊥X|S ,W, i.e potential response is ignorable of the selected baseline variables which

predict propensity to comply with treatment for a selected compliance type (principal stratum) and allocation.

The version of monotonicity assumption as applied in this framework ensures the type of compliance is observable

for W � C, i.e. assuming no treatment defiers helps provide stable bounds of causal estimates (Taylor & Zhou,

2009). The RHM method additionally assumes admissibility of the ‘compound’ monotonicity assumption which

posits no difference in the pattern/nature of compliance in both arms of intervention. This assumption will be

reflected in our simulations by specifying a positive correlation (spectrum parameter φ) between C0 and C1. The

selective prediction assumption (vi) is key to identification of parameters for the RHM method. Although the

assumption is untestable, a simulation study evaluating the performance of the method may provide an indication

of its robustness.

3. Simulations Design

3.1 Aims of the Simulations

We use statistically designed simulation studies in the framework of a randomized controlled trial to compare two

active treatments in terms of survival to evaluate possible bias due to noncompliance in the two treatment arms.

First we evaluate the effect on the intention-to-treat (ITT) hazard ratio due to allocation to treatment B relative

to treatment A where there may be noncompliance in either arm. As a check on the simulations, we evaluate the

ITT effects for each stratum. Next we apply RHM method for survival data whose analysis requires specification

of a spectrum parameter φ (positive and user-defined) chosen as a function of arm-specific compliances and the

correlation between compliances with treatment, i.e. parameter φ is not estimated from data. With two factors

separately assumed predictive of compliance, we first construct arm-specific prediction models of compliance

using logistic models from which we estimate the probabilities of compliance with treatment in each arm. We use

φ to combine the two arm-specific compliance models into one causal model which then provide stratum-specific

treatment effects in terms of causal relative risks estimated from the means of posterior median relative risks of

experiencing event within each subgroup: (i) risk arising from compliance with treatment B relative to compliance

with treatment A, (ii) risk arising from compliance with treatment A only relative to baseline risk, and (iii) risk

arising from compliance with treatment B only relative to baseline risk. We use Bayesian methods to estimate

mean of the posterior median relative risks and their respective mean 95% credible intervals of experiencing event

in three different strata defined by their corresponding compliance types (compliance with A and B, A only and

B only) while assuming non-random compliance under both homogeneous and heterogeneous treatment effects

assumptions. We use death as the generic outcome of interest.

3.2 Simulations Set-Up

The simulation study mimics a two-armed randomized trial with active treatments A and B lasting 24 months. There

were 2000 replications for each scenario to ensure coverage lies within two standard errors of the nominal 95%

coverage probability. Each simulation assumed a sample size of 1000 with equal probability of being randomly

assigned to either treatment arm (to mimic Esprit data (Cherry et al., 2002; Odondi & McNamee, 2013)).

Each subject had three potential hazard rates: λ0i, λAi and λBi corresponding to baseline risk under no treatment

and under treatment A and B respectively. The effects of both treatments are assumed better than no treatment at

all in all cases. The time-invariant hazard rates {λ0i} were generated from Gamma distribution with shape and scale

parameters 2 and 0.006 respectively so as to have mean 0.012 and variance 7.2 × 10−5. Each stratum assumed

constant risk of death over time for both treatments A and B. The simulation model considered events in each

month separately. For a given month the probability of dying if a specific treatment is taken in any stratum were

taken as equal to 1 − exp(−λAi) and 1 − exp(−λBi) for treatment A and B respectively. Random numbers from the

uniform distribution were used to decide which subjects actually died from either treatment arm. Time to death

was taken as the end of each month: the minimum time is 1 month for those who died in the first month while the

maximum time is taken as 24. Subjects were allocated to treatment arms at random and risks chosen according to

arm and potential compliance type. We assume no switching of subjects between the treatment arms.

We considered all-or-nothing compliance to allocation for both treatments A and B up to 24 months. Compliance

with treatment allocation is assumed to be predictable from two binary (0/1) baseline covariates. To mimic the

Esprit data, we first specified two binary covariates to represent smoking status and diabetes risks. Each subject
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belonged to one of four complier type (principal stratum): type 3 (S = (1, 1)) represent potential compliers to

either treatment, type 0 (S = (0, 0)) represent people who would comply with neither treatment, types 1 (S = (1, 0))

and 2 (S = (0, 1)) represent compliers to treatment A only and B only respectively. The compliance types were

determined independently by a subject’s associated risk factors X and her baseline risk of death. We set the actual

prevalence rates of history of smoking status and risk of diabetes at 25% and 60% respectively.

Next we describe the relationship between probabilities of compliance and the pair of covariates predicting com-

pliance in terms of odds ratio. To link the risk factors and compliance, for each treatment arm, we specified three

sets of statistics: (a) the probability of compliance to treatment allocation in the absence of both risk factors; this

was set as 0.55 for treatment A and 0.30 for treatment B, (b) a compliance odds ratio for smoking: 2 for treatment

A and 5 for treatment B and (c) a compliance odds ratio for diabetes: 4 for treatment A and 3 for treatment B.

The joint effect of both factors on compliance was assumed to be multiplicative on the odds ratio scale. This is

the same as using a logistic model with no interaction term to obtain actual compliance probabilities for individual

cells. These assumptions imply that the probabilities of compliance given a set of covariates X, μA(x) and μB(x),

say for groups A and B are such that μA(x)>μB(x) as specified in the RHM model.

Finally we link the compliance type with the baseline hazard. We assume that potential compliance to treatment

A and to B are positively correlated. Following Roy et al. (2008), we introduce non-random compliance in

each stratum in the form of a spectrum parameter φ which was chosen as a positive function of arm-specific

compliances and a correlation ρ between compliances to treatment. We compared results for different values of

φ = 0, 0.2, 0.5, 0.8. To allocate subject to compliance types, we specifically assigned highest ranked values of

baseline risk λ0i to represent those subjects who would comply with neither of the treatment allocations (type 0)

while the lowest ranked values of λ0i are assigned to compliers of either treatment (type 3). From the remaining

middle set, we assign subjects at random to either compliance to treatment A only (type 1) or treatment B only (type

2) according to their respective weighted proportions as set for simulation model. We then worked out probability

that compliance to A is i and compliance to B is j, given x1 and x2, i.e. μi j(x1, x2) for a given value of φ. We use

random numbers and the multinomial probabilities μi j(x1, x2) to determine the actual number of compliers for each

of the four compliance types in a given simulation.

The simulations setup considered both homogeneous and heterogeneous treatment effects. An homogenous treat-

ment effect corresponded to scenario when potential treatment effects were assumed same for all principal strata.

The heterogeneous treatment effects assumption was reflected by setting the potential treatment effects among

non-compliers with treatment A and B to be relatively smaller than potential effects among compliers for a specific

stratum. For the homogeneous case λBi = [exp(ψ)]λAi, where exp(ψ) is the true causal hazard ratio (THR), which

was set at 0.667 for each stratum. For the heterogeneous case, the potential treatment effects among non-compliers

to treatment A and B were set to be smaller than potential effects among compliers. Specifically we set the causal

hazard ratio at 0.667, 0.750, 0.778 and 0.800 for stratum 3, 2, 1 and 0 respectively, i.e. we set best benefit from

treatment B relative to A for patients of type 3 (1, 1), with the hazard ratio the same as in the homogenous case

(THR(1,1)=0.667). The hazard rates for non-compliers among type 2 (0, 1) patients were set to be relatively lower

(λAi =
2
3
λ0i) compared to hazard rates for non-compliers among type 3 patients. Conversely the hazard rates for

non-compliers among type 1 (1, 0) patients was set to be relatively higher (λBi =
7
12
λ0i) compared to hazard rates

for those classified to belong to type 3 (see Table 1). We used the ratio λBi
λAi

to obtain causal effects of treatment B
relative to A for the subgroup who would comply with either treatment.

Table 1. Stratum-specific hazard rates (among patient compliers)

Type Homogeneous effects Heterogeneous effects

(stratum) λ̄A λ̄B THR †TRR λ̄A λ̄B THR †TRR

3 (1,1) 0.009 0.006 0.667 0.729 0.009 0.006 0.667 0.729

2 (0,1) 0.009 0.006 0.667 0.594 0.008 0.006 0.750 0.594

1 (1,0) 0.009 0.006 0.667 0.815 0.009 0.007 0.778 0.815

0 (0,0) 0.009 0.006 0.667 1.000 0.010 0.008 0.800 1.000

†TRR calculated according to Equation (1).
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Using the RHM model, we obtain the true (causal) relative risk (TRR) calculated as the ratio of average risk

estimates of experiencing event in each treatment arm within a stratum. Specifically we use moment generating

function results of Gamma distribution, i.e. λi ∼ Gamma(α, β):

TRR=
[1 − (1 + 24λ̄B)−β]
[1 − (1 + 24λ̄A)−β]

, (1)

so that for β=2, TRR(1,1) =0.729, TRR(0,1) =0.594 and TRR(1,0) =0.815 for stratum S =3, 2 and 1 respectively as

shown in Table 1 (for λ0i=0.012, λAi=0.009, λBi=0.006).

4. Methods of Analysis

4.1 Intention-to-Treat

We begin the analysis with checks for the parameters as setup in the simulations. Next we obtain the ITT estimate

by applying the Cox proportional hazards model ignoring treatment compliance in order to evaluate its bias (if any)

for estimation of ψ. Specifically we evaluate the hazard ratio of death due to allocation to treatment B relative to

treatment A for both homogeneous and heterogeneous treatment effects cases using the Cox proportional hazards

model

h(t|Wi)=h0(t) exp[ψWi] : W=

⎧⎪⎪⎨⎪⎪⎩ 1; if treatment B

0; if treatment A,
(2)

where h(t|Wi) denotes the hazard rate for experiencing event at time t given exposure, h0(t) is the baseline hazard

for a subject allocated to treatment A and the ITT is estimated by exp(ψ̂).

All ITT results were assumed to provide an estimate ψ̂ of ψ, the log causal hazard ratio in the simulation model;

then the mean of the estimators, ¯̂ψ, and their corresponding root mean squared errors (RMSE) are calculated:

RMSE( ¯̂ψ) =

√
[ ¯̂ψ−ψ]2+var(ψ̂). In the table we show mean effect on the HR scale calculated as exp( ¯̂ψ). We use

a one-sided t-test with α = 0.05 to test for bias with t-statistic
¯̂ψ−ψ

s/
√

2000
, where s is the standard deviation of {ψ̂i}.

Assuming that s= 0.50 or less, the simulation study was large enough to give 90% power to detect a bias of 0.01

or more on the ψ scale (i.e. ¯̂ψ−ψ) for any statistical method. A non-significant test was taken as evidence of no

important bias.

4.2 Predicting Compliance With Treatment Allocation

For a specified set of baseline predictors of compliance X, we can use logistic models to separately model the

arm-specific likelihood to comply with treatment allocation:

logit
[
μ j(x)

]
=

⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

γ jixi

⎞⎟⎟⎟⎟⎟⎠ , j=0, 1, (3)

where μ j(x) provides the propensity (probability) to comply with allocation to intervention j (A/B) for selected

baseline variables X. To mimic the Esprit study in our simulations, the two covariates represent smoking status and

history of diabetes. The arm-specific probability of fidelity with treatment allocation may then be estimated by

μ̂ j(x)=

⎡⎢⎢⎢⎢⎢⎣1 + exp

⎛⎜⎜⎜⎜⎜⎝− n∑
i=0

γ̂ jixi

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
−1

, j=0, 1, (4)

where γ is log of the odds ratio estimates of compliance with treatment.

Crucial to applying the RHM method is nature/form of correlation between the two compliance behaviours. By

RHM’s formulation, we define a positive spectrum parameter φ to capture the correlation ρ among compliances

with treatment allocation (0/1) such that if μ̂A(x) > μ̂B(x) then

φ=ρ

√
¯̂μA(x)[1 − ¯̂μB(x)]

¯̂μB(x)[1 − ¯̂μA(x)]
. (5)

4.3 Causal Inference: Causal Relative Risk

The cause-effect inference of principal significance can be obtained from the common distributions [(Y0,Y1)|S = s].

By reparameterizing the causal model in terms of π and θ = f (γ, φ), respectively representing the probability
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of experiencing event and the logarithm of the odds ratio of complying with treatment for a specified spectrum

parameter value, Roy et al. (2008) proved the likelihood for observable data obtainable as

L(π, θ|Y,C,W, X)=

3∑
s=0

[πS=s
W ]Y [1 − πS=s

W ]1−Y Pr(S = s|X, θ) G(s,C,W), (6)

where πS=s
W is the probability of observed event Y=1, given S = s and arm of allocation W, and

G(s,C,W) = I(s=0){1 −C} + I(s=1){C(1 −W) + (1 −C)W}
+ I(s=2){CW + (1 −C)(1 −W)} + I(s=3)C.

By the the exclusion restriction assumption, the hazard of suffering phenomenon of interest/outcome is assumed

statistically ignorable of the assignment arm for the subset of patients not likely to comply with either treatment as-

signment, i.e. πs=(0,0)
1

=πs=(0,0)
0

. Using logistic models, the resulting likelihoods provide 7 parameters captured by π.
Analysis using the RHM method then produce the causal relative risk calculated as risk ratios of experiencing

event in each stratum s:

τ11=
πs=(1,1)

1

πs=(1,1)
0

=
π̂2

π̂6

, τ01 =
πs=(0,1)

1

πs=(0,1)
0

=
π̂1

π̂7

, τ10=
πs=(1,0)

1

πs=(1,0)
0

=
π̂4

π̂5

. (7)

Solution to (7) provide stratum-specific causal relative risk τi j calculated as ratio of risks of relevant mean posterior

medians: (i) τ11: causal relative risk of experiencing phenomenon for those complying with treatment B relative

to treatment A in the subset of patients likely to comply with either one or the other treatment assignment, i.e.

S = (1, 1), (ii) τ01: causal relative risk of experiencing phenomenon for those complying with treatment B only

among the subset of patients likely to comply if allocated to it relative to baseline risk, i.e. S = (0, 1), and (iii) τ10:

causal relative risk of experiencing event for those complying with treatment A only among the subset of patients

likely to comply if allocated to it relative to baseline risk, i.e. S = (1, 0).

We used Bayesian methods with suitable priors to estimate the parameters given by Equation (7). Specifically we

used uniform (0, 1) as priors for the probabilities of risks event in each stratum given the arm of allocation and

compare results for different specified spectrum parameter values φ = 0, 0.2, 0.5 and 0.8. The use diffuse priors

such as π ∼ U(0, 1) in our analyses may be considered plausible given the fact that a regular data from a trial is

likely to monopolize corresponding priors and also that randomized clinical trials are often mainly constructed to

provide definite evidence (Heitjan et al., 1991). We considered both homogeneous and heterogeneous treatment

effect assumptions and ran three chains: chain one had null starting values while chains two and three had the

arithmetic mean and median respectively from an initial trial run. To assess convergence, we conducted simulation

for 1.1 × 104 iterations for every individual chain while excluding the first 1, 000 for burn-in.

The causal relative risk estimates for each stratum τi j are calculated as ratio of probabilities of event among

potential compliers to treatment B relative to A for each stratum given the arm of allocation. To evaluate their

performance, we use the corresponding standard deviation (SD) of the median of the estimators, ˜̂τ, to calculate

RMSE(˜̂τ)=
√

[ ˜̂τ − τ]2 + var(τ̂) and used a one-sided t-test with α= 0.05 to test for bias with t-statistic
˜̂τ−τ

S D/
√

30,000
,

where SD is the standard deviation of {τi j}. Assuming that SD= 2 or less, the simulation study was large enough

to give 90% power to detect a bias of 0.01 or more on the τ scale for any statistical method. Also a non-significant

test was taken as evidence of no important bias.

When applying the RHM method for survival data, we use relative risks to approximate hazard ratios. This may be

justifiable for our simulation given that under short follow-up time and small event rates conditions, relative risk

has been shown to be an algebraic approximation of hazard ratio, i.e. exp( ¯̂ψ) � ˜̂τ (Symons & Moore, 2002).

5. Results

5.1 Checking the Simulations

We obtained odds ratio estimates by fitting a logistic model to each simulation. For a moderate value of the

spectrum parameter φ=0.5, the mean compliance odds ratios for smoking status were 2.015 and 5.105 for treatment

A and B respectively, and the compliance odds ratios for risk to diabetes were 4.041 and 3.025 respectively for

treatment A and B. In general, these results and simulation results for other values of φ were in agreement with the

odds ratios pre-specified in the simulation design.
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Table 2. Estimates of mean compliance proportion per stratum for different φ values

Homogeneous hazard rates Heterogeneous hazard rates

Stratum φ φ
(type) 0 0.2 0.5 0.8 0 0.2 0.5 0.8

¯̂μA 0.744 0.745 0.747 0.749 0.745 0.746 0.746 0.746

¯̂μB 0.542 0.543 0.543 0.544 0.541 0.542 0.542 0.541

¯̂μ11 (3) 0.426 0.449 0.484 0.518 0.425 0.449 0.483 0.518

¯̂μ01 (2) 0.115 0.092 0.057 0.023 0.116 0.092 0.058 0.023

¯̂μ10 (1) 0.319 0.296 0.261 0.227 0.320 0.297 0.262 0.228

¯̂μ00 (0) 0.139 0.162 0.197 0.231 0.139 0.162 0.197 0.231

¯̂μA= ¯̂μ11 + ¯̂μ10 and ¯̂μB= ¯̂μ11 + ¯̂μ01.

Table 2 shows the mean (overall) proportion of compliance per stratum at different values of the spectrum parameter

φ for both homogeneous and heterogeneous hazard rates. On average, the compliance proportion results were

similar to the pre-specified probabilities in the simulation design, for example while for our set-up μ11 = 0.483,

the mean for the simulations was μ̂11 = 0.478. The mean proportions of compliance per stratum were similar

for both homogeneous and heterogenous cases: the mean proportion of compliance to treatment A was higher

compared to mean compliance to treatment B (e.g. ¯̂μA = 75% and ¯̂μB = 54% when φ = 0.5). As per our setup,

the simulations ensured that potential compliers to either treatment (type 3) were the most frequent type while

potential compliers to treatment B only (type 2) would be the least frequent for all chosen values of φ. Overall, the

mean proportion of compliance to either treatment (type 3) and neither treatment (type 0) dominated (increased)

as the sensitivity parameter φ increased. On the other hand, the mean compliance proportion reduced as φ values

increased among those patients likely to comply with one treatment only (type 1 and 2). We note the small

proportion of potential compliers to treatment B only (type 2) which approached total noncompliance as φ gets

close to 1 (perfect correlation). In general, all the proportions of compliance were comparable to the expected

weighted compliances proportions of the preset values. Overall, the general trend of proportion of compliance was

the same under both homogeneous and heterogeneous treatment effect assumptions.

5.2 Effect Due to Intention-to-Treat

Table 3 provide the overall ITT estimates for both homogeneous and heterogeneous cases. The ITT hazard ratio

0.675 for the homogeneous treatment effects case model suggested that overall, the risk of event would reduce

by 32% for those randomized to treatment B compared to those randomized to treatment A. The resulting small

bias (0.008) for the ITT estimate was however statistically significant. On the other hand under the heterogeneous

treatment effects assumption, the ITT hazard ratio 0.762 indicated an overall reduction of risk of event death by

24% for those randomized to treatment B compared to treatment A. The resulting bias (0.031) here for the hetero-

geneous ITT estimate was also statistically significant. We observe a bias-precision tradeoff where as expected the

bias due to homogeneous hazard was negligible (relatively smaller) compared to bias from using heterogeneous

hazard rates but the later had relatively smaller standard error compared to the former. However, in general we

note that a study population is more likely to be heterogeneous than homogeneous.

Table 3. ITT estimates (hazard ratio) for homogeneous and heterogeneous hazard rates

†THR exp( ¯̂ψ) SE(ψ̂i) RMSE(ψ̂i) p-value

Homogeneous 0.667 0.675 0.161 0.162 0.001

Heterogeneous 0.731‡ 0.762 0.155 0.160 < 0.001

†True hazard ratio, Table 1 (‡weighted using proportions in Table 2).

Table 4 shows performance of the ITT estimates for each stratum in terms of hazard ratio under both homogeneous

and heterogenous treatment effect assumptions for various specifications of the spectrum parameter φ. All selected

values of φ produced essentially unbiased hazard ratio estimate of efficacy for patients complying with treatment

B compared to compliers with treatment A among those patients likely to comply with either one treatment or the

other (S = (1, 1)). This may be discernable from usual expectation of high compliance rates with treatment for this
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subgroup which is likely to reveal true effects of both treatments. For a chosen value of φ in this stratum we also

note similarity in the standard errors for the corresponding causal hazard ratio estimates under both homogeneous

and heterogeneous treatment effect assumptions.

Table 4. Performance of ITT effects (hazard ratio) in each stratum

Homogeneous hazard rates Heterogeneous hazard rates

φ exp( ¯̂ψ) SE(ψ̂i) RMSE(ψ̂i) p-value exp( ¯̂ψ) SE(ψ̂i) RMSE(ψ̂i) p-value

†THR(1,1)=0.667 THR(1,1)=0.667

0 0.660 0.356 0.356 0.212 0.660 0.356 0.356 0.214

0.2 0.660 0.339 0.340 0.142 0.660 0.339 0.339 0.144

0.5 0.660 0.323 0.323 0.143 0.660 0.323 0.323 0.143

0.8 0.661 0.303 0.303 0.212 0.661 0.303 0.303 0.212

THR(0,1)=0.667 THR(0,1)=0.750

0 0.654 0.493 0.493 0.083 0.740 0.505 0.505 0.241

0.2 0.625 1.314 1.315 0.026 0.708 1.323 1.325 0.052

0.5 0.341 5.336 5.377 < 0.001 0.408 5.544 5.577 < 0.001

0.8 0.018 17.742 18.105 < 0.001 0.041 18.446 18.675 < 0.001

THR(1,0)=0.667 THR(1,0)=0.778

0 0.668 0.274 0.274 0.820 0.779 0.263 0.2636 0.851

0.2 0.670 0.286 0.286 0.472 0.782 0.275 0.275 0.450

0.5 0.667 0.307 0.307 0.981 0.778 0.296 0.296 0.954

0.8 0.664 0.329 0.329 0.537 0.777 0.317 0.317 0.811

†True hazard ratio (see Table 1).

From Table 4 we observed inconsistency in results for the subgroup of patients who would comply with only

one of either treatments. Under both homogeneous and heterogenous treatment effect assumptions, we obtained

unbiased ITT estimates for those patients likely to comply with treatment A only for all specified values of the

spectrum parameter φ. These ITT estimates were, on average, invariant to the values of φ for this stratum. On

the other hand, for those patients likely to comply with treatment B only the ITT estimates were significantly

biased at higher values (φ = 0.5 and 0.8) of the spectrum parameters under both homogeneous and heterogenous

treatment effect assumptions. We also observed relatively large standard errors corresponding to the estimates

which increased with increase in spectrum parameter for this subgroup. The large standard errors (standard errors

dominate corresponding RMSE) may be a manifestation of sparseness due to near ‘total’ noncompliance as φ
approaches 1 (perfect correlation).

5.3 Performance of the RHM Method

Table 5 provides results from simulation evaluating the performance of the RHM method. The results show a

comparison of stratum-specific causal relative risk estimates (calculated from posterior median relative risks) for

different specifications of spectrum parameter φ values under both homogeneous and heterogeneous treatment ef-

fect assumptions. The resulting biases in the estimates for causal relative risks were all statistically significant in

all strata at all values of φ under both homogeneous and heterogenous treatment effect assumptions. We observe

that only the causal relative risk estimate of efficacy among patients likely to comply with treatment B only com-

pared to baseline was unbiased at the highest selected value of sensitivity parameter (φ=0.8) under homogeneous

100



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 4; 2013

treatment effect assumption. However, the corresponding standard error for this estimate was relatively very large

compared to others in the same stratum. This may be considered a non representative (isolated) result given that

compliance in the two arms is unlikely to be (nearly) perfectly correlated.

Table 5. Performance of the RHM method in terms of causal relative risk per stratum

Homogeneous hazard rates Heterogeneous hazard rates

φ ˜̂τ (RR) SE(τ̂i j) RMSE(τ̂i j) ˜̂τ (RR) SE(τ̂i j) RMSE(τ̂i j)

‡TRR(1,1)=0.729
(
λ̄B
λ̄A

)
TRR(1,1)=0.729

(
λ̄B
λ̄A

)
0 0.688 0.153 0.158 0.837 0.211 0.237

0.2 0.676 0.146 0.155 0.804 0.186 0.201

0.5 0.653 0.128 0.149 0.764 0.151 0.155

0.8 0.710 0.114 0.116 0.797 0.176 0.189

TRR(0,1)=0.594
(
λ̄B
λ̄0

)
TRR(0,1)=0.594

(
λ̄B
λ̄0

)
0 0.476 0.291 0.314 0.530 0.302 0.309

0.2 0.579 0.290 0.290 0.485 0.305 0.329

0.5 0.641 0.292 0.296 0.529 0.319 0.326

0.8 0.593§ 0.311 0.311 0.573 0.803 0.803

TRR(1,0)=0.815
(
λ̄A
λ̄0

)
TRR(1,0)=0.815

(
λ̄A
λ̄0

)
0 0.995 0.091 0.202 0.913 0.256 0.274

0.2 0.989 0.129 0.217 0.841 0.285 0.286

0.5 0.874 0.246 0.253 0.553 2.300 2.315

0.8 0.567 0.428 0.495 0.713 0.720 0.727

‡True relative risk (see Equation 1 and Table 1): λ0i=0.012; λAi=0.009; λBi=0.006;§unbiased.

For the homogeneous case, the causal relative risk estimate of efficacy for those complying with treatment B as

contrasted to A in the subset of those patients likely to comply with either of the two treatments (type 3) consistently

produced smaller biases for all φ values considered. Specifically the resulting bias in the causal relative risk

estimate was smallest (−0.019) for higher values of φ = 0.8. Also at a moderate spectrum value (φ = 0.5) for

the heterogeneous case, the causal relative risk of efficacy for patients complying with treatment B compared to

treatment A in the subset of potential compliers with either treatment produced small bias (0.035), although the bias

was statistically significant. In general compared to homogeneous case, we observe substantial increase in standard

error corresponding to causal risk ratio estimates for the subgroup which would comply with either treatment under

heterogeneous treatment effect assumption.

Results comparing efficacy estimates among patients likely to comply with one particular treatment only were

less biased for the subgroup who would comply with treatment B only relative to those who would comply with

treatment A only. But we also observe a bias-variance tradeoff in which the corresponding standard errors for

the causal relative risk estimates of efficacy for patients likely to comply only with treatment B were relatively

larger compared to those for compliance with treatment A only for all values of φ considered. Overall, causal

relative risk estimates of efficacy among patients likely to comply only with treatment B compared to baseline

risks were less biased (although statistically significant) under homogeneous treatment effect assumption than

under heterogeneous case.

We note the fact that results presented in Table 5 were obtained after using the same value of spectrum parameter φ
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for both data generation and analysis. An implication here is the likelihood of the simulations to give an optimistic

view of the RHM method, i.e. the method’s defining (distributional) selective compliance assumption introduced

as φ may be over represented by first specifying a φ value to link the two marginal compliance model for each

treatment arm during data generation and using the same value again for compliance models for each stratum in

analysis.

Table 6. Comparing stratum-specific causal relative risks (mean 95% CI) for different values of φ (πS
Z = Pr[Y =

1|S ,Z]≡probability of death in a stratum given treatment allocation): (a) Homogeneous hazard rates (b) Heteroge-

neous hazard rates

Comply with A and B Comply with B only Comply with A only

φ ‡π̂2 τ11 π̂6 π̂1 τ01 π̂7 π̂4 τ10 π̂5

(a) TRR(1,1)=0.729 TRR(0,1)=0.594 TRR(1,0)=0.815

0 0.161 0.238 0.114 0.243 0.238 0.240

0.688 0.476 0.995

(0.420,1.007) (0.028,1.010) (0.808,1.195)

0.2 0.158 0.238 0.139 0.243 0.233 0.236

0.676 0.579 0.989

(0.423,0.993) (0.039,1.023) (0.722,1.258)

0.5 0.154 0.240 0.153 0.242 0.201 0.235

0.653 0.641 0.874

(0.429,0.928) (0.050,1.055) (0.260,1.240)

0.8 0.168 0.240 0.138 0.237 0.123 0.226

0.710 0.593 0.567

(0.509,0.956) (0.038,1.106) (0.029,1.311)

(b) TRR(1,1)=0.729 TRR(0,1)=0.594 TRR(1,0)=0.815

0 0.181 0.221 0.125 0.241 0.199 0.221

0.837 0.530 0.913

(0.531, 1.355) (0.030, 1.040) (0.433, 1.464)

0.2 0.178 0.226 0.114 0.240 0.185 0.224

0.804 0.485 0.841

(0.524, 1.241) (0.023, 1.035) (0.266, 1.393)

0.5 0.172 0.230 0.122 0.237 0.117 0.221

0.764 0.529 0.553

(0.528, 1.119) (0.028, 1.095) (0.030, 1.318)

0.8 0.174 0.223 0.119 0.220 0.146 0.215

0.797 0.573 0.713

(0.567, 1.250) (0.029, 1.600) (0.047, 1.695)

‡τ11=
πS=(1,1)

1

πS=(1,1)
0

= π̂2

π̂6
; τ01=

πS=(0,1)
1

πS=(0,1)
0

= π̂1

π̂7
; τ10=

πS=(1,0)
1

πS=(1,0)
0

= π̂4

π̂5
(see Equation 7).

Table 6 shows results comparing causal relative risk estimates (calculated from mean posterior median relative

risks) and corresponding mean 95% credible intervals for each stratum under both homogeneous and heteroge-

neous treatment effect assumptions for various specifications of spectrum parameter φ. A relative risk was calcu-

lated as proportion of the mean posterior median probability of suffering a phenomenon/event to that of survival

within same stratum. Generally we observed lower median probabilities of experiencing event in those patients

likely to comply only with treatment B compared to those who would comply only with treatment A under both

homogeneous and heterogeneous treatment effect assumptions.

The risk of experiencing event was lowest among potential compliers with treatment B only (π̂1) for all selected

values of φ but the risk increased with increase in φ. In contrast, risk of experiencing event for those patients likely

to comply only with treatment A (π̂4) decreased as the specified values of φ increased. As we would expect, the

probability of experiencing event among potential compliers to either treatment (π̂2) was intermediate between the
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two risks of events for those patients likely to comply with only one particular treatment (A or B). On the whole,

for potential compliers to either treatment we observe increased risks of death under heterogeneous treatment effect

assumptions compared to the homogeneous treatment scenario.

At low or moderate values of φ under homogeneous treatment effect assumptions, the causal relative risk estimates

of efficacy for patients complying with treatment B compared to A for the subgroup likely to comply with either

treatment to which they were allocated were the least biased (although statistically significant). The resulting

biases increased with increase in φ values. The corresponding 95% credible intervals for the causal relative risk

estimates became narrower (smaller) as φ increased for this subgroup, indicating gain in precision. Moreover the

causal relative risk estimates had relatively larger biases under heterogeneous treatment effect assumptions for all

values of φ. In general, the mean 95% credible intervals for the causal relative risk estimates of efficacy for patients

likely to comply with only one treatment (A or B) were generally wider compared to those for the subgroup likely

to comply with either of the two treatments. These 95% credible intervals for causal relative risk estimates became

wider with increase in φ values.

6. Discussion

The user-defined spectrum parameter φ had no effect on the ITT results and neither on the overall nor stratum-

specific mean proportion of compliance for either treatment. This is not unusual and is expected since ITT esti-

mation of efficacy ignores any form of (non-random) compliance information introduced by use of φ. While the

principal effects of treatment for those patients likely to comply with their respective (either) treatment alloca-

tion were smaller than the ITT estimates under the assumption of homogeneous (constant) treatment effects, the

effects were larger than ITT for the heterogenous case. Overall, the principal effects of treatment for subset of

patients complying only with treatment B allocation were smaller than ITT estimate under both homogeneous and

heterogeneous treatment effect assumptions.

In general, causal relative risks estimating effects among potential compliers with treatment B compared to A in

the subset of patients likely to comply with either of the two treatments produced the least bias (albeit statistically

significant) compared to other strata. The corresponding 95% credible intervals for these estimates became nar-

rower as the specified spectrum parameter φ values increased. In addition causal relative risk estimates of efficacy

for patients likely to comply with one only treatment produced larger biases and corresponding wider 95% mean

credible intervals which became even wider with increase in φ values. The proportion of potential compliers to

treatment B only approached total noncompliance as φ approached perfect correlation. Such a phenomenon may

be encountered in situations where a new treatment B produces unpleasant side effects likely to induce noncom-

pliance among those randomized to it, i.e. resulting in dominance by the highly compliant type (S = (1, 1)) at the

expense of those complying with treatment B only S = (0, 1)) since μB=μ11 + μ01.

Overall, the RHM method of principal stratification performed poorly and the causal relative risk estimates varied a

lot depending on the (unknown) specified value of the spectrum parameter. Inference from the biased results of the

simulation studies suggests that the RHM method may only be applicable when we have sufficient knowledge about

the nature/pattern of compliance (e.g correlation) between the individual treatment arms. Given such knowledge,

subgroup (stratum-specific) analyses may be useful towards understanding the nature of ITT bias by utilizing

compliance information which would augment ITT results in efficacy estimation. Choosing non-compliers for a

known inferior treatment from the tail of hazard rates’ distribution may provide a practical and effective evaluation

of of principal effects, i.e. it may be considered more meaningful to associate noncompliance with a lower set of

ranked baseline hazard rates and corresponding risk factors.

The restrictive nature of all-or-nothing compliance assumption may be a contributory factor in the method’s poor

performance. In general application of the RHM method may be limited to intermediates with fewer categories

and extending the method to the more prevalent continuous compliance may suffer the problem of tractability

(VanderWeele, 2011). Although Ma et al. (2011) extended the method to continuous compliance in which the

joint distribution of the observed and latent/counterfactual compliance are specified by using copula to link the

two arm-specific compliance distributions, we note that the underlying spectrum parameter remain unidentified. In

addition to loss of information, principal stratification often coarsens data whose analysis is then likely to produce

invalid or even contradicting estimates of causal effect for a variable used in stratification which is truly continuous

but coarsened for analysis (Robins et al., 2007). In particular the exclusion restriction assumption may not be

plausible if we condition on a coarsened simple surrogate version of the true compliance due to possible residual

association. As a caveat, given that principal strata themselves are unidentified, any policy based on results from

principal stratification method should be cautiously implemented because as Imai et al. (2011) points out there is

103



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 4; 2013

no statistical method with the ability to recover information that is not present in the observed data.

And finally the suitability of the applicability of the RHM method depends on admissibility of the strong but

unverifiable distributional assumption positing selective compliance. It assumes that the response is statistically

ignorable (independent) of the set of covariables recorded at baseline which predict propensity to comply with

treatment given type of compliance type and treatment allocation. However, in practice risk factors which are

strongly predictive of outcome are most likely to be related with the likelihood to comply with treatment allocation.

In addition selection of suitable predictors of compliance is rarely a primary objective in trials and may only be

feasible by exploiting data from pilot studies which ordinarily require more time and resources.
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