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Abstract

This paper concerns the estimation of parameters in the “Vasicek Interest Rate” model under a Bayesian framework.

These popular models are challenging to fit with Markov chain Monte Carlo (McMC) methods as the structure

of the model leads to considerable autocorrelation in the chains. Accordingly, we demonstrate that a simple re-

parameterisation using the Cholesky decomposition can greatly improves the performance of the McMC algorithm

and hence lead to valid Bayesian inference on the Vasicek model.

Keywords: Vasicek interest rate model, maximum likelihood estimation, McMC method, autocorrelation, Cholesky

decomposition

1. Introduction

The “Vasicek Interest Rate” model (refereed to subsequently as the Vasicek model) is a popular example of a

stochastic differential equation that models interest rate as a function of market risk (Vasicek, 1977). The Vasicek

model remains popular and there is considerable current interest in this model; for example Chua et al. (2013)

report on approaches using Bayesian model averaging comparing high frequency and weekly data. This is despite

a potential flaw of the model as originally proposed in that it can allow for a negative interest rate. Consequently

later developments on this model include for example the Cox-Ingersoll-Ross (CIR) model and the Hull-White

model (Iacus, 2008) but as we note later these models share common features with the Vasicek model and could

benefit from the proposals demonstrated in this paper. As usual, the challenge with the Bayesian approach is

parameter estimation. We therefore use Markov chain Monte Carlo (McMC) methods to simulate from posterior

distribution of the parameters in our model (Cowles & Carlin, 1996; Gilks et al., 1996). This in turn creates a

problem in that the posterior simulations have high autocorrelation due largely to the specification of the model.

Hence we propose to use a Cholesky decomposition (Gene & Charles, 2013) to reparameterise the model in a

way that reduces this structural autocorrelation and consequently enhances the ease with which we can perform

Bayesian inference on this model.

The paper is organized as follows; in Section 2 we present the Vasicek model outlining the likelihood for the model

and indicating how we use McMC to simulate from the posterior distribution of the parameters of the model. In

Section 2.2, we show how the Cholesky decomposition can be applied to the parameters of the Vasicek model

and how we simulate from the posterior distribution of these parameters. In Section 3 we present results from

simulation studies showing that the reparameterisation does indeed reduce autocorrelation and hence we conclude

our paper in Section 4.

2. Vasicek Interest Rate Model

The Vasicek Interest Rate model was introduced by Vasieck (1977). It models the instantaneous interest rate rt by

a stochastic differential equation so that

drt = θ1(θ2 − rt)dt + θ3dWt θ1, θ2, θ3 > 0, (1)

where:
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rt is an interest rate process at continuous time t,

θ1 is a parameter describing the speed of mean reversion,

θ2 is a parameter describing the long run mean interest rate,

θ3 is a parameter describing the instantaneous short-rate volatility and

dWt is a standard Brownian motion increment over time interval dt.

We note that both the drift and volatility are assumed to be stochastic processes. Hence we wish to determine the

transition density; this relies on previous events, i.e. ϕ(rt |rt−1). Denote the likelihood function L(θ|r) in a discrete

time, with parameter θ = [θ1, θ2, θ3] and data r = (r1δ, r2δ, . . . , rnδ), which in full takes the form:

L(θ|r) =

n∏
j=1

ϕ
(
r jδ|r( j−1)δ

)

=

[
πθ3
θ1

{
1 − exp (−2θ1δ)

}]− n
2

× exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−θ1

n∑
j=1

[
r jδ − r( j−1)δ exp(−θ1δ) − θ2 {1 − exp(−2θ1δ)

}]2
θ3
{
1 − exp(−2δ)

}
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(2)

where δ has been incorporated in order to represent the Vasicek model in a discrete time; in our case we take δ = 1.

One potential disadvantage with the Vasicek model is that the interest rate will be negative if the interest rate

rt is greater than the long run mean interest rate parameter θ2, i.e., if rt > θ2. As noted in Section 1 this has

been addressed by proposing extensions to the Vasicek, for example the the CIR model mentioned above has

drt = θ1(θ2 − rt)dt + θ3
√

rtdWt so that if r0 > 0 then θ1θ2 >
1
2
θ23. In principle this is a simple extension to the basic

Vasicek model requiring no additional parameters and we suggest that the material presented in this paper would

also be relevant to this model.

2.1 Model Fitting with Metropolis-Hastings Algorithm

For now, we note that in order to define the posterior distribution of the three parameters p(θ|r) we need both the

likelihood given above as well as a prior distribution p(θ) so that

p(θ|r) ∝ L(θ|r)p(θ) (3)

This posterior density is analytically intractable but it is simple to define a simulation from this distribution using

McMC methodology. We use the Metropolis Hastings algorithm (Robert & Casella, 2009) which requires that we:

1) Simulate a candidate value θ∗j from a proposal density K(θ∗j |θ(t−1)
j ) for j = 1, 2, 3.

2) Compute the ratio.

R =
p(θ∗j |r, θ− j)K(θ(t−1)

j |θ∗j)
p(θ(t−1)

j |r, θ− j)K(θ∗j |θ(t−1)
j )

(We use the θ j notation to indicate that we compute the acceptance probability conditional for θ j conditional on

the other currently accepted values of θ. This is done cyclically, for example we calculate the posterior for θ∗1
conditional on θt−1

2
and θt−1

3
, we calculate the posterior for θ∗

2
conditional on θt

1
and θt−1

3
and then θ∗

3
conditional on

θt
1

and θt
2
).

3) Compute the acceptance probability α = min [R, 1].

4) Sample a value θ(t)j such that θ(t)j = θ
∗
j with probability α; otherwise set θ(t)j = θ

t−1
j .

The challenge here is that because of the nature of our model, we necessarily induce a high autocorrelation between

successive simulated values of θ1, θ2 and θ3. One solution is to use a Cholesky decomposition to reparameterise the

model so that we have three parameters that are no longer themselves correlated thus reducing the autocorrelation

in the posterior simulations.
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2.2 The Cholesky Decomposition

Our goal is to reduce the correlation between successive simulations from the posterior distribution, which is

challenging to achieve given that the posterior distribution of the parameters is itself correlated. Denote an estimate

of the posterior variance-covariance matrix of θ.

v̂ar[[θ]|r] = V

where [θ] = [θ1, θ2, θ3]. For some suitable matrix M, we have that

v̂ar [M[θ]|r] = MV MT .

Hence, if we select M such that MV MT = I and then fit a model to M[θ] we have defined a posterior distri-

bution for the parameters which is uncorrelated. One specific solution to this problem is to use the Cholesky

decomposition such that UT U = V and hence we use M = (UT )−1 so that:

MV MT = MUT UMT

= (UT )−1UT U((UT )−1)T

= (UT )−1UT UU−1

= I (4)

Therefore, we apply this method to the Vasicek model as follows:

1) Estimate the parameters [θ] and their variance-covariance matrix V.

2) Compute transformed parameters [β] = [β1, β2, β3] using

[β] = V−1[θ] (5)

where [β] = [β1, β2, β3] are new parameters formed by rotating the original parameters [θ] = [θ1, θ2, θ3].

To apply to our model, we can proceed as follows:

1) Estimate θ0 and V0 using maximum likelihood.

2) Find the new parameters β using Equation (5).

3) Simulate independent candidate value β∗j from a proposal density K(β∗j |β(t−1)
j ) for j = 1, 2, 3.

4) Compute the new proposal for model parameters θ∗ = Uβ given a proposal for one of the β j’s but leaving the

other two β j’s unchanged.

5) Compute the ratio.

R =
p(θ∗|r)K(β(t−1)

j |β∗j)
p(θ(t−1)|r)K(β∗j |β(t−1)

j )

6) Accept the parameters β j with probability α = min [R, 1].

3. Simulation Study

For the standard Vasicek algorithm we select candidate values of θ1, θ2 from a log-normal distribution, and candi-

date values of θ3 from an inverse-gamma distribution. Likewise, for the transformed parameter algorithm we select

candidate values for β1 and β2 from a log-Normal distribution and β3 also from an inverse-gamma distribution.

The initial values of the parameters are θ = [3, 1, 2] and the initial value of the interest rate is 10, in the original

model. The initial values of the parameters are θ = [3.834, 0.7533, 1.3695] and the initial value of the interest rate

is 6.22, in the modified model. The prior distributions of θ1 and β1 are a gamma distribution, for θ2 and β2 are

a normal distribution and for θ3 and β3 are an inverse gamma. We noticed that our chosen prior is the best prior

distributions for all parameter because these distributions give us the best results. We will choose some values of

σ = [σ1, σ2, σ3] in the interval [0, 1].We noticed that our values of σ is the best choice because a small values of

σ is to converge to the correct parameters values as shown in (Everitt, 2009).

We therefore simulate realizations θ and β from their posterior distribution using 10, 000 iterations of the Metropolis-

Hastings algorithm. Our results are presented graphically using time series plots of the parameter, autocorrelation

functions, and scatter-plots of simulated parameter values in Figure 1 for the original model and Figure 2 for the

modified model. There is a clear indication of the reduction in autocorrelation using the reparameterised models

from these visual results.

24



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 4; 2013

Figure 1. Results from a MCMC algorithm for sampling from the posterior p(θ|r) where θ = [θ1, θ2, θ3]. The first

column shows time sereis plots of sampled values θ(t)
1
, θ(t)

2
and θ(t)

3
. The vertical lines separates the burn-in

phase(left) from the samples that used for future inference(right). Partial autocorrelation function are shown in

the second column. Finally, θ(t)
1

against θ(t)
2

, θ(t)
3

against θ(t)
1

, θ(t)
3

against θ(t)
2

are shown in the the third column
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Figure 2. Results from a MCMC algorithm for sampling from the posterior p(β|r) where β = [β1, β2, β3]. The first

column shows time sereis plots of sampled values β(t)
1
, β(t)

2
and β(t)

3
. The vertical lines separates the burn-in

phase(left) from the samples that used for future inference(right). Partial autocorrelation function are shown in

the second column. Finally, β(t)
1

against β(t)
2

, β(t)
3

against β(t)
1

, β(t)
3

against β(t)
2

are shown in the third column

We provide summary statistics for the simulated posterior distributions of our models in Table 1.

Table 1. Summary of values of the mean, median, 25% and 75% quantile for two methods that we have considered

McMC method θ1 θ2 θ3
Mean 2.977 0.988 1.931

Median 2.977 0.983 1.932

25% quantile 2.847 0.945 1.892

75% quantile 3.123 1.0325 1.9708

Cholesky decomposition method β1 β2 β3

Mean 11.829 3.697 30.040

Median 11.764 3.723 30.044

25% quantile 11.183 3.057 29.339

75% quantile 12.739 4.305 30.728

To indicate the value of the transformation we provide figures for the effective sample size (Morita et al., 2008) as
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well as the Iterative autocorrelation function (Sudhakar et al., 2003) and the acceptance rate for each parameter in

both models in Table 2. This provides clear evidence that the transformation provides a considerable improvement

in the effectiveness of the posterior simulation.

Table 2. Summary of values of effective sample size, iterative autocorrelation function and acceptance rate for the

transformed proposals and the untransformed proposals

McMC method θ1 θ2 θ3
Effective sample size 250.76 257.95 380.91

Iterative autocorrelation function 39.87 38.77 26.25

Acceptance rate 0.0916 0.1575 0.1625

Cholesky decomposition method β1 β2 β3

Effective sample size 1568.28 1155.48 1273.411

Iterative autocorrelation function 6.376 8.654 7.852

Acceptance rate 0.37 0.230 0.233

4. Conclusion

We have shown how the a Cholesky decomposition applied to the three parameters of the Vasicek model can lead

to a more efficient McMC estimation algorithm than simply estimating from the original formulation. It is clearly

that the autocorrelation is the less than for the original parameters θ = [θ1, θ2, θ3] and consequently the effective

sample size of the posterior simulation is considerable larger. This is a simple reparameterisation to apply, and can

readily lead to better inference on the model. We believe that it would be could extend this work into the other

models such as the CIR model which has a similar parameter structure.
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