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Abstract

On a binary (0 − 1) string of length n the �-overlapping counting scheme of runs of 1 s of a fixed length k is

considered. According to this scheme, a run of 1s of length k which is counted may have overlapping part of

length at most �, 0 ≤ � < k ≤ n, with the previous run of 1 s of length k that has been enumerated. The numbers

of all �-overlapping runs of 1 s of length k in all 2n binary strings (linearly or circularly ordered) of length n
are examined, and simple and easy to compute closed explicit expressions are provided via the probability mass

function and the expected value of properly defined random variables. The numbers of binary strings of length n,

ordered on a line or on a circle, with a specific number of �-overlapping runs of 1s of length k are also provided via

closed expressions. The numbers which are studied, are potentially useful in several scientific areas like applied

probability, engineering and bioinformatics. The study is illustrated by extensive numerical examples.
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1. Introduction and Preliminaries

Nowadays, the increasing use of computer science in diverse applications including encoding, compression and

transmission of digital information calls for understanding the distribution of runs of 1 s or 0 s. For instance, such

knowledge helps in analyzing, and also in comparing, several techniques used in communication networks (wired

or wireless). In such networks binary data, ranging from a few bytes (e.g. e-mails) to many gigabytes of greedy

multimedia applications (e.g. video on demand), are highly processed. For details as well as for additional real-life

applications see Sinha (2007), K. Sinha and B. P. Sinha (2009, 2012) and the references therein.

Another area where the study of distribution of runs of 1 s and 0 s has become increasingly useful is the field of

bioinformatics or computational biology. For instance, in the context of hypothesis testing molecular biologists

design similarity tests between two DNA (DeoxyriboNucleic Acid) sequences where a 1 is interpreted as a match

of the sequences at a given position (Benson, 1999; Lou, 2003; Nuel et al., 2010; Makri & Psillakis, 2011a).

In such applications, as the indicative ones mentioned above, a key point is the understanding how 1 s and 0 s are

distributed and combined as elements of a binary sequence (finite or infinite, memoryless or not) and eventually

forming runs of 1 s and 0 s which are enumerated according to certain counting schemes. Each counting scheme

defines how runs of same symbols (i.e. 1 s or 0 s) are formed and consequently counted. A scheme may depend on,

among other considerations, whether overlapping counting is allowed or not as well as if the counting starts or not

from scratch when a run of a certain size has been so far enumerated. For extensive reviews of the runs literature

we refer to Balakrishnan and Koutras (2002), Fu and Lou (2003), and Koutras (2003). The topic is still active and

also attractive, because of the wide range of its application in many areas of applied probability and engineering

including hypothesis testing, quality control, system reliability, computer science and financial engineering. Some

recent contributions on the subject, among others, are the works of Eryilmaz (2011), Makri and Psillakis (2012),

Demir Atalay and Zeybek (2013), and Mytalas and Zazanis (2013).

Consider a sequence of n binary (zero-0, one-1) random variables (RVs) with values (i.e. outcomes of binary tri-

als) ordered on a line or on a circle. In the circular case we assume that the first outcome is adjacent to (and follows)
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the n-th outcome.

For integers k, �, 0 ≤ � < k ≤ n, a generalized way of counting runs of ones (1-runs) of length k, say �-overlapping,

was introduced by Aki and Hirano (2000) for the linear case (see also Han & Aki, 2000; Inoue & Aki, 2003; Makri

& Philippou, 2005; Makri et al., 2007a) and by Makri and Philippou (2005) for the circular case (see also Makri

et al., 2007a). It covers as particular cases the non-overlapping counting (� = 0; see Feller, 1968; Hirano, 1986;

Philippou & Makri, 1986 for the linear case, and Charalambidis, 1994; Makri & Philippou, 1994; Koutras et al.,

1995 for the circular case) and the overlapping counting (� = k − 1; see Ling, 1988; Hirano et al., 1991; Holst,

2009 for the linear case, and Inoue & Aki, 2010 for the the circular case).

According to this counting scheme, the number X(α)
n,k,� of �-overlapping 1-runs of length k in n binary trials ordered

on a line (α = L) or on a circle (α = C) is the number of 1-runs of length k (k = 1, 2, . . . , n) each of which may

have overlapping (common) part of length at most � (� = 0, 1, . . . , k−1) with the previous 1-run of length k that has

been enumerated. For trials arranged on a circle if there is (at least) one 0 in the sequence the counting of 1-runs

starts from the first 1 following a 0 and if there is no 0s then it starts from any 1 in the sequence. For a given set

of n, k, � it holds X(L)
n,k,� ≤ X(C)

n,k,�. This is so, because as the n trials are bent into a circle additional 1-runs of length

k may be formed by combining 1 s at the beginning and the end of the linear sequence. Readily, X(α)
n,k,�1

≤ X(α)
n,k,�2

,

0 ≤ �1 ≤ �2 < k ≤ n, X(α)
n,k1,�
≥ X(α)

n,k2,�
, 0 ≤ � ≤ k1 − 1, 1 ≤ k1 ≤ k2 ≤ n, and the events {X(α)

n,k,� = 0}, 0 < � < k ≤ n, are

equivalent to the event {X(α)
n,k,0 = 0}, α = L,C.

Example 1. As an illustration, let us assume that n = 15 binary trials, numbered from 1 to 15, are performed and

we get the following outcomes 111111011110111. Then, the �-overlapping 1-runs of length 4 are: (a) 1, 2, 3, 4; 3,

4, 5, 6; 8, 9, 10, 11 for � = 2, and 1, 2, 3, 4; 2, 3, 4, 5; 3, 4, 5, 6; 8, 9, 10, 11 for � = 3, in the linear case and (b) 8,

9, 10, 11; 13, 14, 15, 1; 15, 1, 2, 3; 2, 3, 4, 5 for � = 2, and 8, 9, 10, 11; 13, 14, 15, 1; 14, 15, 1, 2; 15, 1, 2, 3; 1, 2,

3, 4; 2, 3, 4, 5; 3, 4, 5, 6 for � = 3, in the circular case. Hence, X(L)

15,4,2
= 3, X(L)

15,4,3
= 4 and X(C)

15,4,2
= 4, X(C)

15,4,3
= 7.

The distributions of X(α)
n,k,� defined on a sequence of Bernoulli trials (that is, a sequence of independent and identi-

cally distributed RVs with a common probability of 1 s p) ordered on a line or a circle have been called binomial

and circular binomial distributions of order k in the �-overlapping case with parameter vector (n, p), respectively

(see, Makri & Philippou, 2005). They have been denoted as B(α)
k,� (n, p) (or Bk,�(n, p) for α = L and BC

k,�(n, p) for

α = C) and cover as particular cases, the extensively studied in runs literature and been used in various applications

of runs, Type I (circular Type I) and Type III (circular Type III) distributions of order k. The latter distributions are

derived for k > 1 and for � = 0, k−1. For k = 1 and � = 0 all these distributions reduce to the well known binomial

distribution B(n, p) with parameter vector (n, p). For details see, e.g. Balakrishnan and Koutras (2002, pp. 140,

193).

According to Makri and Psillakis (2013), in order to study formally �-overlapping counting in any sequence of 0-1

RVs {Zi}ni=1
, the run statistics X(α)

n,k,�, 0 ≤ � < k ≤ n, α = L,C, can be defined as follows

X(L)
n,k,� =

n∑
j=k

I(L)
j , I(L)

j =

� j−�
k−� �∑
s=1

(

j∏
i= j−�−s(k−�)+1

Zi)(1 − Zj−�−s(k−�)), (1)

for j = k, k + 1, . . . , n, with the convention Z0 ≡ 0 and

X(C)
n,k,� =

n∑
j=1

I(C)
j , I(C)

j =

� n−1−�
k−� �∑
s=1

(

j∏
i= j−�−s(k−�)+1

Zi)(1 − Zj−�−s(k−�)) +
� n

k−� �∑
r=1

δ j,r(k−�)
n∏

i=1

Zi, (2)

for j = 1, 2, . . . , n, with the conventions Z0 ≡ Zn,Z−i ≡ Zn−i, 1 ≤ i ≤ n − 1. The supports (range sets) of X(L)
n,k,� and

X(C)
n,k,� are

S (L)
n,k,� = {0, 1, . . . , �

n − �
k − � �} and S (C)

n,k,� = {0, 1, . . . , �
n − � − 1

k − � �, �
n

k − � �}, (3)

respectively. In the above formulae, as well as in the whole article �x� stands for the greatest integer less than or

equal to a real number x and δi, j denotes the Kronecker delta function of the integer arguments i and j. Also, we

apply the conventions
∑s

i=r ai = 0,
∏s

i=r ai = 1, for r > s.

The setup of indicators I(α)
j in (1) and (2) holds true for any 0 − 1 sequence {Zi}ni=1

and it is the main tool to derive

the expected value, E(X(α)
n,k,�), of X(α)

n,k,�, α = L,C for such a sequence. Furthermore, it is useful to determine numeric
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values of X(α)
n,k,� and therefore empirical frequencies and moments in studies concerning applications like processing

of computer files or DNA sequences.

In this point we should mention that the �-overlapping counting scheme, as a natural generalization of both Feller’s

and Ling’s counting, differs in concept from the other fundamental counting scheme in runs literature; specifically

the Mood’s (1940) counting scheme (see, also Koutras, 2003; Makri et al., 2007b; Eryilmaz, 2008; K. Sinha & B.

P. Sinha, 2009; Makri & Psillakis, 2011a, 2011b). According to the latter scheme, a run of 1 s (1-run) is defined

to be a sequence of consecutive 1 s preceded and succeeded by 0s or by nothing. The number of 1s in a 1-run is

referred to as its length (or size). For integers n and k with n ≥ k ≥ 1, let Y (β,α)

n,k denote the numbers of 1-runs

of length [exactly equal to k (β = E), greater than or equal to k (β = G)] in n binary trials {Zi}ni=1
ordered on a

line (α = L) or on a circle (α = C). These run statistics can be formulated (see, also Makri et al., 2007b) by the

indicators

I(E,α)
j = (1 − Zj−k)(1 − Zj+1)

j∏
i= j−k+1

Zi (4)

for 1 ≤ k ≤ n if α = L and for 1 ≤ k ≤ n − 2 if α = C. For k = n − 1, I(E,C)
j = (1 − Zj−k)

∏ j
i= j−k+1

Zi. (Conventions:

Z0 = Zn+1 ≡ 0 for α = L and Z0 = Zn, Z−i = Zn−i, Zn+1 = Z1 for α = C). Then, the statistics Y (E,α)
n,k can be expressed

as

Y (E,L)
n,k =

n∑
j=k

I(E,L)
j , 1 ≤ k ≤ n, Y (E,C)

n,k =

n∑
j=1

I(E,C)
j , 1 ≤ k ≤ n − 1, (5)

and Y (E,C)
n,n =

∏n
i=1 Zi. Consequently, the statistics Y (G,α)

n,k can be expressed as

Y (G,α)
n,k =

n∑
i=k

Y (E,α)
n,i . (6)

Readily it holds

Y (E,α)
n,k ≤ Y (G,α)

n,k ≤ X(α)
n,k,0 ≤ X(α)

n,k,� ≤ X(α)
n,k,k−1

, 0 ≤ � < k ≤ n, α = L,C. (7)

Example 2. In order to make the distinction among the run statistics X(α)
n,k,� and Y (β,α)

n,k for β = E,G, α = L,C clear,

let us consider the following 0 − 1 sequence of 21 outcomes, numbered from 1 to 21, 111011001111110101111.

Then for k = 3 there is one 1-run of length exactly equal to 3, i.e. the run 1, 2, 3 in the linear case whereas there

are no such 1-runs in the circular case. Consequently, Y (E,L)
21,3 = 1 and Y (E,C)

21,3 = 0. Furthermore, the 1-runs of length

greater than or equal to 3 are the runs 1, 2, 3; 9, 10, 11, 12, 13, 14; 18, 19, 20, 21 in the linear case and the runs

9, 10, 11, 12, 13, 14; 18, 19, 20, 21, 1, 2, 3 in the circular case. Hence, Y (G,L)
21,3 = 3 and Y (G,C)

21,3 = 2. Finally, using

�-overlapping counting we find that X(L)
21,3,0 = 4, X(L)

21,3,1 = 4, X(L)
21,3,2 = 7 and X(C)

21,3,0 = 4, X(C)
21,3,1 = 5, X(C)

21,3,2 = 9.

In real-life applications like the interesting ones proposed by K. Sinha and B. P. Sinha (2009, 2012), which con-

sidered processing of computer files of various formats commonly encountered for computing and communication

purposes, the replacement of Y (E,L)
n,k with X(L)

n,k,� might offer a useful alternative. The same rather holds for circularly

connected networks.

The use of X(α)
n,k,� instead of Y (β,α)

n,k possibly offers a more informative testing, via (7), whereas the selection of

the overlapping parameter � provides, in turns, flexibility depending on the testing requirements of such files.

Specifically, in stringent testing of binary sequences � could be made as big as k − 1 and then almost all the binary

digits participating in 1-runs of length k are tested more than once. Readily, � could be made as low as 0, and then

all the binary digits will be tested for 1-runs only once. The latter fact corresponds to less demanding testing of the

binary sequences.

Associated with Y (β,α)

n,k , β = E,G and α = L,C are the numbers Q(β,α)

n,k of all 1-runs (in the Mood’s sense) of length

(equal, greater than or equal to) k in all 2n possible binary strings (that is, symmetric Bernoulli sequences; p = 1/2)

of length n ordered on a line or on a circle. Recently, Makri and Psillakis (2011b) and Makri et al. (2012) provided

explicit expressions for the numbers Q(β,L)

n,k , β = E,G. These works simplify, extend and unify too, the results of K.

Sinha and B. P. Sinha (2009, 2012) referring to Q(E,L)
n,k .

In the present paper we consider, in all 2n binary strings of length n ordered on a line or on a circle, first the number

N(α)
x;n,k,�, of all binary strings of length n which contain, x, x ∈ S (α)

n,k,�, �-overlapping 1-runs of length k, and second

the number R(α)
n,k,� of all �-overlapping 1-runs of length k.
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Example 3. To clarify S (α)
n,k,�, N(α)

x;n,k,� and R(α)
n,k,� let us consider α = L, n = 4, k = 2 and � = 1. Then all 24 binary

strings ordered on a line and numbered from (0) to (15) are: (0) 0000, (1) 0001, (2) 0010, (3) 0011, (4) 0100, (5)

0101, (6) 0110, (7) 0111, (8) 1000, (9) 1001, (10) 1010, (11) 1011, (12) 1100, (13) 1101, (14) 1110, (15) 1111.

Hence, S (L)
4,2,1 = {0, 1, 2, 3} and the number of all 1-overlapping runs of length 2 is R(L)

4,2,1 = 12 which appear in

strings (3), (6), (7), (11), (12), (13), (14) and (15). The strings (3), (6), (11), (12) and (13) contain one (i.e. x = 1)

1-overlapping run of length 2 and therefore N(L)
1;4,2,1 = 5.

Additional numerics illustrating the numbers N(α)
x;n,k,� and R(α)

n,k,� are computed and presented in the forthcoming

Tables 1 to 4 as well as in the Examples 4 and 5.

The rest of the paper is organized as follows. In Section 2, we state the problem and we develop closed expressions

for the numbers N(α)
x;n,k,� and R(α)

n,k,� for α = L,C. The expressions so provided are relied on a new interpretation

of recent results for the statistic X(α)
n,k,� of Makri et al. (2007a) and Makri and Psillakis (2013). However, the

introduction and study of the numbers N(α)
x;n,k,� and R(α)

n,k,�, have not been addressed previously. In Section 3, we

summarize our main results and we discuss the methodology used to derive them.

2. Mathematical Formulation

In this Section we present our main results. In Section 2.1 we consider Bernoulli sequences whereas in Section 2.2

we restrict our study to symmetric Bernoulli sequences.

2.1 Bernoulli Sequences

We consider a sequence {Zi}ni=1
of length n of independent (i.e. derived by a memoryless source) and identically

distributed 0 − 1 RVs with a common probability of 1 s p; i.e. p = P(Zi = 1) = 1 − P(Zi = 0) = 1 − q,

i = 1, 2, . . . , n. Such a sequence, called a finite Bernoulli sequence, is of particular importance in studies of applied

probability because of its simplicity and its help in understanding the notion of randomness, and also since it may

be considered as a special case of a sequence with dependent elements; e.g. a Markovian or an exchangeable one

(see, e.g. Makri & Psillakis, 2012). The latter feature also serves as a valuable crosscheck of results referring to

several random sources and obtained by various methods.

For a Bernoulli sequence of length n the expected value of X(α)
n,k,�, E(X(α)

n,k,�; p), n ≥ k > � ≥ 0, α = L,C, is

determined, via the indicators in (1) and (2), as follows.

Let A = {k, � + 2(k − �), . . . , � + � n−�
k−� �(k − �)} and B = {k − �, 2(k − �), . . . , � n

k−� �(k − �)}. Since the expected values,

E(I(α)
j ), of the indicators I(α)

j , α = L,C, depend on j, the sets A and B help in expressing them. Specifically, by the

independence of Zis we have

E(I(L)
j ) = pjIA( j) + qp�

� j−�
k−� �−IA( j)∑

s=1

ps(k−�), j = k, k + 1, . . . , n

and

E(I(C)
j ) = pnIB( j) + qp�

� n−1−�
k−� �∑
s=1

ps(k−�), j = 1, 2, . . . , n

where IA( j) = 1, if j ∈ A; 0, otherwise and IB( j) is defined in a similar manner. Substituting E(I(α)
j ) in

E(X(α)
n,k,�; p) =

∑
j∈J(α)

E(I(α)
j )

where J(L) = {k, k + 1, . . . , n}, J(C) = {1, 2, . . . , n}, we conclude after some algebraic manipulations that

E(X(L)
n,k,�; p) =

pk

1 − pk−�
{
q
[
(n − k + 1) − (k − �) pk−� − p(k−�)r

1 − pk−� − (s + 1)p(k−�)r] + p(1 − p(k−�)r)}, (8)

where r = �(n − �)/(k − �)� and s = n − � − r(k − �), and

E(X(C)
n,k,�; p) = nqpk 1 − p�

n−�−1
k−� �(k−�)

1 − pk−� + � n
k − � �p

n. (9)
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Equations (8)-(9) have been derived by Makri and Psillakis (2013, Corollaries 2.1 and 3.1) using a slightly different

formulation. These authors also provide expressions for E(X(α)
n,k,�) for sequences of independent not identically

distributed binary RVs ordered on a line or on a circle. For 0 ≤ � ≤ k−1, Equation (8) improves the expression given

by Proposition 2.1 of Makri and Philippou (2005) which provides E(X(L)
n,k,�; p) by means of a summation. For � = 0

it provides a formula that is simpler than that of Aki and Hirano (1988) and Antzoulakos and Chadjiconstantinidis

(2001). For 0 ≤ � ≤ k − 1, Equation (9) recaptures Proposition 3.1 of Makri and Philippou (2005) which for � = 0

coincides with a result of Charalambides (1994) and Makri and Philippou (1994).

For the particular case � = 0, an even simpler new expression for E(X(L)
n,k,�; p) is obtained by solving the recurrence

relation provided by Balakrishnan and Koutras (2002, p. 163); i.e.

E(X(L)
n,k,0; p) = pk[E(X(L)

n−k,k,0; p) + 1 + (n − k)q
]
, n ≥ k. (10)

Specifically, using standard techniques (see, e.g. Rosen, 1995, pp. 318-325) we obtain that

E(X(L)
n,k,0; p) =

pk

1 − pk

[
(1 − pn)(1 − kq

1 − pk ) + nq
]
, n ≥ k. (11)

For � = k − 1, Equations (8)-(9) imply that

E(X(L)
n,k,k−1

; p) = (n − k + 1)pk, E(X(C)
n,k,k−1

; p) = npk. (12)

That is, by Equation (12) the formula for E(X(L)
n,k,k−1

; p) provided by Ling (1988) and the expression for E(X(C)
n,k,k−1

; p)

given in Proposition 2.2 of Makri and Philippou (1994), are recaptured.

For k = 1, � = 0, X(α)
n,k,�, α = L,C is a B(n, p) with P(X(α)

n,1,0 = x) =
(

n
x

)
px(1 − p)n−x, x ∈ S (α)

n,1,0 = {0, 1, . . . , n}, hence,

E(X(α)
n,1,0; p) = np. The latter one is confirmed as a special case of Equations (8)-(9), (11)-(12).

2.2 Symmetric Bernoulli Sequences

For a Bernoulli sequence of length n with probability of 1 s p, let f (α)
n,k,�(x; p) denote the probability mass function

(PMF) of the RV X(α)
n,k,�; i.e.

f (α)
n,k,�(x; p) = P(X(α)

n,k,� = x), x ∈ S (α)
n,k,�, α = L,C. (13)

Then, the expected value of X(α)
n,k,� is

E(X(α)
n,k,�; p) =

∑
x∈S (α)

n,k,�

x f (α)
n,k,�(x; p), α = L,C. (14)

In the sequel, we consider a symmetric (p = 1/2) finite Bernoulli sequence (i.e. a finite binary string) of length n
for which we obtain our main results. Since the cardinality of a proper sample space is 2n (i.e. there are 2n binary

strings that are equally likely to occur) the classical definition of probability implies that

f (α)
n,k,�(x; 1/2) = N(α)

x;n,k,�/2
n, x ∈ S (α)

n,k,�, α = L,C. (15)

In the above formula, N(α)
x;n,k,� is the number of all binary strings of length n with exactly x, x ∈ S (α)

n,k,�, �-overlapping

1-runs of length k, among all 2n (possible) binary strings of length n, n ≥ k > � ≥ 0, ordered linearly (α = L) or

circularly (α = C). In other words, N(α)
x;n,k,� is the number of 0 − 1 strings of length n so that X(α)

n,k,� = x. That is,

N(α)
x;n,k,� =

∑
z=(z1,z2,...,zn), zi∈{0,1}

I(z), x ∈ S (α)
n,k,�, (16)

where

I(z) =

{
1, if X(α)

n,k,� = x on z
0, otherwise,

and the values of X(α)
n,k,� are determined via (1)-(2).
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Equation (16) implies that if we wish to empirically determine N(α)
x;n,k,� we have to generate (by a computer) all 2n

0 − 1 strings of length n and then count among all 2n strings those for which it holds X(α)
n,k,� = x. This approach, i.e.

first listing and then counting, although possible and useful too in several applications like the ones mentioned in

the Introduction, does not determine theoretically the numbers N(α)
x;n,k,�. It is the combinatorial analysis that gives

answers in such problems since it counts arrangements of things without listing them.

Next closed expressions for N(α)
x;n,k,�, x ∈ S (α)

n,k,�, α = L,C, in terms of sums of binomial coefficients, are provided.

They are directly obtained by Equation (15) and by Theorems 2.1 and 4.1 of Makri et al. (2007a). The latter

Theorems provide the PMF of X(α)
n,k,� defined on a binary sequence derived by a Polya-Eggenberger urn model

of which a Bernoulli sequence and in turns a binary string are particular cases. Their method was based on the

solution of a combinatorial problem; specifically, the allocation of indistinguishable balls into distinguishable cells

under certain restrictions about the capacity of the cells. Accordingly, we have:

N(α)
0;n,k,� =

{ ∑n
y=�n/k�CR(n − y, y + 1, k − 1), α = L∑n
y=�n/k�

n
y CR(n − y, y, k − 1), α = C

and for x ∈ S (α)
n,k,� − {0}

N(α)
x;n,k,� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑y2

y=yL
1

∑� n−y
k �

i=1

(
y+1

i

)(
x−1
i−1

)
CM(γi, i, y + 1 − i, k − � − 1, k − 1), α = L∑y2

y=yC
1

n
y
∑y

i=1

(
y
i

)(
x−1
i−1

)
CM(γi, i, y − i, k − � − 1, k − 1) + δx,� n

k−� �, α = C
(17)

with yL
1 = � n+x�

k � − x, yC
1
= 1, y2 = n − k − (x − 1)(k − �), γi = n − y − ik − (x − i)(k − �). It is noticed that the RHS

of (17) for x = 0 is the same for every �, 0 ≤ � ≤ k − 1, since P(X(α)
n,k,� = 0) = P(X(α)

n,k,0 = 0), hence N(α)
0;n,k,� = N(α)

0;n,k,0,

0 < � < k, α = L,C, by (15).

The coefficients CM and CR are

CM(γ, i, r − i,m1 − 1,m2 − 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, γ < 0

1, γ = 0∑� γm1
�

j1=0

(
i
j1

)∑� γ−m1 j1
m2
�

j2=0
(−1) j1+ j2

(
r−i
j2

)(
γ−m1 j1−m2 j2+r−1
γ−m1 j1−m2 j2

)
, γ > 0

(18)

and

CR(γ, r,m1 − 1) ≡ CM(γ, i, r − i,m1 − 1,m1 − 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, γ < 0

1, γ = 0∑� γm1
�

j=0
(−1) j

(
r
j

)(
γ−m1 j+r−1
γ−m1 j

)
, γ > 0

by Lemma 2.1 and Corollary 2.1 of Makri et al. (2007a), respectively.

The number CM(γ, i, r − i,m1 − 1,m2 − 1) is the number of integer solutions of the equation x1 + x2 + . . . + xr = γ,
s.t. 0 ≤ x j < m1, 1 ≤ j ≤ i; 0 ≤ xi+ j < m2, 1 ≤ j ≤ r − i. Equivalently, it gives the number of allocations

of γ indistinguishable balls into r distinguishable cells, of which i specified cells have a capacity of m1 − 1, and

each of the remaining r − i cells have a capacity of m2 − 1. Consequently, CR(γ, r,m1 − 1) represents the number

of allocations of γ indistinguishable balls into r distinguishable cells, each cell with capacity m1 − 1. This is so

because, in the case of CR, there are not specified cells and all i + (r − i) = r cells have the same capacity m1 − 1.

In Tables 1 and 2 we compute, via (17)-(18), and present the numbers N(α)
x;n,k,�, x ∈ S (α)

n,k,�, for n = 4, 1 ≤ k ≤ n,

0 ≤ � ≤ k − 1 and α = L,C. The value n = 4 was chosen small so that the computation can also be done by

hand like the calculation of N(L)
1;4,2,1 = 5 in the indicative Example 3. Tables 1 and 2 also provide the sets S (α)

n,k,�,

determined by (3), by just looking at the non empty entries of them and then notifying the respective xs. For

instance, S (L)
4,2,1 = {0, 1, 2, 3} (Example 3) and S (C)

4,2,1 = {0, 1, 2, 4}. Furthermore, the entries of the columns of the

Tables labeled x = 0 confirm that N(α)
0;4,k,� = N(α)

0;4,k,0, for 1 ≤ k ≤ 4, � = 1, 2, . . . , k − 1, α = L,C as it is expected.
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Table 1. Distribution of N(L)
x;4,k,�, x ∈ S (L)

4,k,� for run length size k, 1 ≤ k ≤ 4 and overlapping (common) size �,
0 ≤ � ≤ k − 1

k � x = 0 x = 1 x = 2 x = 3 x = 4

1 0 1 4 6 4 1

2 0 8 7 1

1 8 5 2 1

3 0 13 3

1 13 3

2 13 2 1

4 0 15 1

1 15 1

2 15 1

3 15 1

Table 2. Distribution of N(C)
x;4,k,�, x ∈ S (C)

4,k,� for run length size k, 1 ≤ k ≤ 4 and overlapping (common) size �,
0 ≤ � ≤ k − 1

k � x = 0 x = 1 x = 2 x = 3 x = 4

1 0 1 4 6 4 1

2 0 7 8 1

1 7 4 4 1

3 0 11 5

1 11 4 1

2 11 4 1

4 0 15 1

1 15 1

2 15 1

3 15 1

The calculation of the entries of Tables 1 and 2, showing the whole class of N(α)
x;n,k,� for n = 4, has been done by

a computer. The same approach can easily be followed for larger ns. But, because of space limitations it is not

possible to depict all these numbers in the paper for large ns. Instead of it, and simultaneously to give a sense of

the values of N(α)
x;n,k,� even for moderate ns, let us consider Example 4.

Example 4. Let k = 3, � = 0, 1, 2, x = 0, 1, α = L, C and n = 16, 32. Then, by Equations (17)-(18), we

easily compute that: N(L)

0;16,3,�
= 19513 for � = 0, 1, 2, N(L)

1;16,3,0
= 27820, N(L)

1;16,3,1
= 23780, N(L)

1;16,3,2
= 15776;

N(C)

0;16,3,�
= 17155 for � = 0, 1, 2, N(C)

1;16,3,0
= 27280, N(C)

1;16,3,1
= 22896, N(C)

1;16,3,2
= 14832 and N(L)

0;32,3,�
= 334745777

for � = 0, 1, 2, N(L)
1;32,3,0 = 1009569304, N(L)

1;32,3,1 = 854712776, N(L)
1;32,3,2 = 560052736; N(C)

0;32,3,�
= 294294531 for

� = 0, 1, 2, N(C)
1;32,3,0 = 935981600, N(C)

1;32,3,1 = 785556960, N(C)
1;32,3,2 = 508882912.

The (total) number, R(α)
n,k,�, of occurrences of all �-overlapping 1-runs of length k, in all possible 2n binary strings of

length n, n ≥ k > � ≥ 0, ordered linearly (α = L) or circularly (α = C) can be defined via N(α)
x;n,k,� as

R(α)
n,k,� =

∑
x∈S (α)

n,k,�

xN(α)
x;n,k,�, n ≥ k > � ≥ 0, α = L,C. (19)

Alternatively, R(α)
n,k,� can be obtained without the usage of N(α)

x;n,k,�. This is so, because

E(X(α)
n,k,�; 1/2) =

∑
x∈S (α)

n,k,�

x f (α)
n,k,�(x; 1/2),

hence by (15) and (19),

R(α)
n,k,� = 2nE(X(α)

n,k,�; 1/2). (20)

56



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 3; 2013

Therefore, for n ≥ k > � ≥ 0, Equations (8)-(9), (11)-(12) and (20) imply that

R(L)
n,k,� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2n−1, k = 1, � = 0
2n−k

1−2−k {(1 − 2−n)[1 − k
2(1−2−k)

] + n
2
}, 2 ≤ k ≤ n, � = 0

(n − k + 1)2n−k, 2 ≤ k ≤ n, � = k − 1
2n−k

1−2−(k−�) {2−1[(n − k + 1) − (k − �) 2−(k−�)−2−(k−�)r
1−2−(k−�)

−(s + 1)2−(k−�)r] + 2−1(1 − 2−(k−�)r)}, otherwise

(21)

with r = �(n − �)/(k − �)�, s = n − � − r(k − �), and

R(C)
n,k,� =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n2n−1, k = 1, � = 0

n2n−k, 2 ≤ k ≤ n, � = k − 1

n2n−k−1 1−2
−� n−�−1

k−� �(k−�)
1−2−(k−�) + � n

k−� �, otherwise.

(22)

In brief, the numbers N(α)
x;n,k,� and R(α)

n,k,� are associated with the PMF and the mean of X(α)
n,k,�. Accordingly, they are

interrelated and R(α)
n,k,� can be computed by (19), which uses (17)-(18), or directly and efficiently too (even with the

use of a normal pocket calculator) by the explicit expressions (21)-(22).

By symmetry, R(α)
n,k,� provide the respective numbers associated with �-overlapping 0-runs of length k, in all 2n

binary strings of length n, n ≥ k > � ≥ 0, α = L,C.

It is noticed that R(α)
n,k,�, α = L,C, is decreasing in k and increasing in n and �. That is, R(α)

n,k,�1
≤ R(α)

n,k,�2
, 0 ≤ �1 ≤

�2 < k ≤ n, R(α)
n,k1,�

≥ R(α)
n,k2,�

, 0 ≤ � ≤ k1 − 1, 1 ≤ k1 ≤ k2 ≤ n and R(α)
n1,k,�

≤ R(α)
n2,k,�

, 0 ≤ � < k ≤ n1 ≤ n2. This

is so, because the numbers R(α)
n,k,� follow in general the behavior of statistics X(α)

n,k,�, α = L,C. The latter feature

immediately implies that R(L)
n,k,� ≤ R(C)

n,k,�, 0 ≤ � < k ≤ n.

Tables 3 and 4 present the numbers R(L)
n,k,� and R(C)

n,k,� for binary strings of length n = 2t, t = 1, 2, 3 and for

1 ≤ k ≤ n, 0 ≤ � ≤ k − 1. As an illustration notice that (see also Example 3) R(L)
4,2,1 = 12 which is directly

computed by the third of (21). The entries of Tables 3 and 4, efficiently computed by (21)-(22), also confirm the

previously noticed ordering among the depicted numbers. Furthermore, they suggest that the numbers R(L)
n,k,� and

R(C)
n,k,� decrease exponentially as k increases tending to n. They eventually tend to R(L)

n,n,� = 1, � = 0, 1, . . . , n − 1 and

R(C)
n,n,� = � n

n−� �, � = 0, 1, . . . , n − 1, respectively.

Finally, in order to get a sense of the values of the numbers R(α)
n,k,� even for moderate ns, we compute and present

some such numbers in Example 5 which continues Example 4.

Example 5. Let k = 3, � = 0, 1, 2, α = L,C and n = 16, 32. Then, Equations (21)-(22) directly provide that:

R(L)

16,3,0
= 68211, R(L)

16,3,1
= 78279, R(L)

16,3,2
= 114688; R(C)

16,3,0
= 74901, R(C)

16,3,1
= 87384, R(C)

16,3,2
= 131072 and R(L)

32,3,0 =

9378806136, R(L)
32,3,1 = 10856722887, R(L)

32,3,2 = 16106127360; R(C)
32,3,0 = 9817068106, R(C)

32,3,1 = 11453246128,

R(C)
32,3,2 = 17179869184.

Table 3. Number of occurrences of �-overlapping 1-runs of length k, R(L)
n,k,� in binary strings of length n ordered on

a line n k � = 0 � = 1 � = 2 � = 3 � = 4 � = 5 � = 6 � = 7

2 1 4

2 1 1

4 1 32

2 9 12

3 3 3 4

4 1 1 1 1

8 1 1024

2 313 448

3 120 135 192

4 49 51 57 80

5 20 20 21 23 32

6 8 8 8 8 9 12

7 3 3 3 3 3 3 4

8 1 1 1 1 1 1 1 1
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Table 4. Number of occurrences of �-overlapping 1-runs of length k, R(C)
n,k,� in binary strings of length n ordered on

a circle
n k � = 0 � = 1 � = 2 � = 3 � = 4 � = 5 � = 6 � = 7

2 1 4

2 1 2

4 1 32

2 10 16

3 5 6 8

4 1 1 2 4

8 1 1024

2 340 512

3 146 172 256

4 66 74 84 128

5 33 34 34 44 64

6 17 17 18 18 20 32

7 9 9 9 10 10 12 16

8 1 1 1 1 2 2 4 8

3. Concluding Review

In this paper we concerned 0 − 1 sequences of finite length n, ordered on a line or on a circle. For such sequences

we considered run statistics, X(α)
n,k,�, α = L(line), C(circle), associated with counting of 1-runs of a fixed length k,

assuming that these runs may have overlapping parts of a given length �, 0 ≤ � < k ≤ n. Other schemes, along

with the associated statistics Y (β,α)

n,k , counting runs of 1s of length exactly equal to k (β = E) and greater than or

equal to k (β = G) are also mentioned. Relationships among the statistics X(α)
n,k,� and Y (β,α)

n,k are discussed. X(α)
n,k,� and

Y (β,α)

n,k are defined on any binary sequence ordered on a line or on a circle via appropriate indicators. Using the latter

ones, in Section 2.1 the expected values, E(X(α)
n,k,�; p), of X(α)

n,k,� for Bernoulli sequences with probability of 1s p were

expressed. The formulae (8)-(9) for E(X(α)
n,k,�; p), α = L,C are simple, computationally efficient and also general.

According to the latter feature some known results for E(X(α)
n,k,�; p), α = L,C and � = 0, k − 1 are recaptured as

special cases of the unified approach. An alternative expression of E(X(L)
n,k,0; p), given by (11), which is not implied

for � = 0 by the general formula (8) for E(X(L)
n,k,�; p) is obtained.

After the review in Section 2.1 on some results concerning E(X(α)
n,k,�; p), the numbers N(α)

x;n,k,� and R(α)
n,k,�, α = L,C

are introduced and studied on binary strings (symmetric Bernoulli sequences) in Section 2.2. R(α)
n,k,� is the number

of the �-overlapping runs of 1s of length k in all 2n binary strings of length n and is associated with E(X(α)
n,k,�; 1/2).

N(α)
x;n,k,� is the number of those strings, among the 2n strings, which contain x �-overlapping runs of 1s of length k

and is related with the PMF of X(α)
n,k,�. Accordingly, for N(α)

x;n,k,� we give, by Equations (17)-(18), closed expressions

in terms of sums of binomial coefficients whereas for R(α)
n,k,� we provide, by Equations (21)-(22), explicit closed

expressions in addition to those, i.e. Equations (19), that can be derived using N(α)
x;n,k,�. The expressions so obtained

clarify further the interdependencies among the numbers N(α)
x;n,k,� and R(α)

n,k,� which might be potentially useful in

applications like those mentioned in the Introduction.
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