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Abstract

In this paper, we present a new algorithm for detecting multiple outliers in linear regression. The algorithm is based
on a non-iterative robust covariance matrix and concentration steps used in LTS estimation. A robust covariance
matrix is constructed to calculate Mahalanobis distances of independent variables which are then used as weights in
weighted least squares estimation. A few concentration steps are then performed using the observations that have
smallest residuals. We generate random data sets for n = 103,10%, 10° and p = 5,10 to show up the capabilities
of the algorithm. In our Monte Carlo simulations, it is shown that our algorithm has very low masking and
swamping ratios when the number of observations is up to 10* in the case of maximum contamination in X-Space.
It is also shown that, the algorithm is successful in the case of Y-Space outliers when the contamination level,
sample size and number of parameters are up to 30%, n = 10°, and p = 10, respectively. Bias, variance and
MSE statistics are calculated for different scenarios. The reported computation time of our implementation is
quite short. It is concluded that the presented algorithm is suitable and applicable for detecting multiple outliers
in regression analysis with its small masking and swamping ratios, accurate estimates of regression parameters
except the intercept, and short computation time in large data sets and high level of contamination. A future work
is required for reducing bias and variance of the intercept estimator in the model.

Keywords: outlier detection, linear regression, robust statistics
1. Introduction
Suppose the model is

y=XB+¢€ (1)

where y is an n vector of dependent variable, X is an n X p matrix of independent variables, 8 is a p vector of un-
known parameters, € is an n vector of stochastic error term, p is the number of parameters, and 7 is the number of
observations. Ordinary least squares (OLS) estimator ﬁ consistently estimates 8 with minimum variance among the
other estimators when the assumptions are hold. Autocorrelated or heteroscedastic error term, including irrelevant
variables in the regression equation decrease the efficiency of B whereas omitting a relevant variable and measure-
ment errors in independent variables yield biased and inconsistent estimates. Since most of the statistical software
packages include tests for classical assumptions of OLS, researchers have an ability of testing their hypotheses as
fast as possible. However, the problem of outliers is generally considered as a symptom of heteroscedasticity in
econometrics books or outlier detection routines are neglected in some software packages. In fact, outliers can be
more dangerous than increasing the variability of conditional variances.

A single outlier can be detected by analysing OLS residuals or diagnostic measures derived from OLS estimates.
Practitioners tend to analysis these statistics, however we don’t know the number of outliers. When the data set
contains more than one outlier, the OLS estimator B is usually affected and does not estimate the S correctly. As
a result of this; residuals, fitted values and other properties of regression are also affected. Regression diagnostics
should be calculated for subsets of observations rather than for each single observation. However, this operation is
computationally inefficient.

As a result of technical difficulties, some authors developed more efficient algorithms for detecting regression
outliers. Kianifard and Shallow (1989), Marasinghe (1985), Atkinson (1986), Hadi and Simonoff (1993), Pefa
and Yohai (1995), and Sebert et al. (1998) developed OLS based outlier detection algorithms which are not based
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on calculating statistics for all subsets of potential outliers. The methods reported in Billor et al. (2000) and
Billor et al. (2005) are modern revisions which can be categorized as robust methods. The success of these
methods depends on the number of observations, the number of parameters, and the fraction and the direction of
contamination (Wisnowski, 1999).

Robust regression is an other branch of outlier detection and has a vast of literature. Huber (1973) introduced the
M-Estimator. Rousseeuw and Leroy (1987) investigated the properties of Least Median of Squares (LMS) and
Least Trimmed Squares (LTS) estimators. LMS and LTS stay resistant when the number of outliers is up to 50% of
data. However, robust regression estimators are generally based on optimizing non-smooth or discreate functions
which consume too much computation time. There is an effort to speed up these methods. Salibian-Barrera and
Yohai (2006) suggested a new algorithm for calculating S-Regression estimates. Rousseeuw and van Driessen
(2006) suggested a new algorithm for calculating the LTS estimator for large data sets. Satman (2012) proposed
a genetic algorithm (GA) based modification on the method given in Rousseeuw and van Driessen (2006) and
showed that the GA based search obtains smaller objective values in reasonable CPU times. Torti et al. (2012)
performed a simulation study to compare powers of fast robust regression estimators including forward seach
(Atkinson, 2010). Shortly, as the level of technology increases, we can collect more data; as we collect more data,
the need for the technology increases.

In this paper we devise a new algorithm for detecting regression outliers. In Section 2, we give a brief description
of previous works and the problem of outlier detection. In Section 3, we present the devised algorithm. In Section
4, we perform a Monte Carlo simulation to unveil the success of our algorithm. In this simulations we show the
MSE’s (Mean Square Error) of our estimator as well as the masking and the swamping ratios. Finally, in Section
5, we conclude.

2. Preliminaries

In regression analysis, an observation is an outlier if the model does not fit this observation well. However, the
model can not be estimated correctly by OLS when the data contains outliers. As a result of this, real outliers
may be fitted well by the regression equation. This is same as Type I error, namely masking in outlier detection
literature, rejecting outlyingness of observations when they are outliers in real (Lawrence, 1995). Similarly, clean
observations may be misfitted by the regression equation, that is, we fail to reject outlyingness of observations
when they are clean in real. This is the problem of swamping (Barnett & Lewis, 1978). Success of an outlier
detection method is generally measured with its masking and swamping ratios.

The LMS estimator stays resistant when the level of contamination is up to 50% (Rousseeuw, 1984). The objective
function of the LMS estimator is to minimize the median of squared residuals. Since, median is not a continuous
function of squared residuals, gradient based optimization techniques are not applicable. Therefore, several algo-
rithms were developed for the LMS in Winker et al. (2011), Nunkesser and Morell (2010) and Karr et al. (1995)
among others.

Another robust regression estimator LTS has the same breakdown point property as the LMS, that is, it stays
resistant when the data is contaminated up to 50%. The objective function of the LTS estimator can be written as

r? 2)

min ;

B

-

i=1
where rl.2 is the ith ordered squared residual and / is a custom integer which is approximately 7/2.

Since the objective function given in (2) minimizes the sum of 4 smallest squared residuals, it can be re-written as

n
min Z w,~ei2
B3
n

subject to Z w;=h

i=1

3)

where w; € {0, 1} and e? is the ith squared residual. Note that the equation given in (3) is a constrained optimization
problem with a non-linear objective function and binary variables. Several algorithms for optimizing the LTS
objective function can be found in Atkinson and Cheng (1999), Agullé (2001), Giloni and Padberg (2002), Bai
(2003), and Hofmann et al. (2010) among others.
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Rousseeuw and Driessen (2006) developed the Fast LTS algorithm which is based on performing C-Steps (Con-
centration Steps) on randomly selected subsets. In this algorithm, the key point is to find out the right set of p
observations and to perform C-Steps to enlarge the initial subset to 4 observations that minimizes the objective
function. In our algorithm, we replace the random subset selection part of Fast LTS by a non-iterative procedure.

Outlier detection methods in multivariate data and linear regression are not independent subjects. In many algo-
rithms, initially the X-Space is considered as multivariate data and an outlier detection procedure is performed.
Then, regression outliers are detected using the observations that are labeled as clean in the first stage of algo-
rithms. Hadi (1992) and Hadi (1994) developed and modified a method for detecting outliers in multivariate data
by estimating the robust covariance matrix. Rousseeuw and Van Zomeren (1990) introduced the robust covariance
estimator MVE (Minimum Volume Ellipsoid) and showed that plotting MVE based Mahalanobis distances versus
LMS residuals gives a snapshot of outliers and their directions. MCD (Minimum Covariance Determinant) is an
other robust covariance estimator which has a similar objective function with the LTS. In MCD, the / observations
which have the minimum determinant of covariance matrix is searched (Rousseeuw & Van Driessen, 1999). Note
that, all of the covariance estimators mentioned here requires many iterations and there is an effort to speed up
these algorithms.

OLS estimators are directly related to the covariance structure of the data. Suppose the model is a special form of
(1) with a single independent variable. Then the slope estimator is

~  Cov(x,y)
=—"" 4
P Var(x) @)
and it is very sensitive to outliers because both of the operators given in (4) are functions of sample sums. Huo
et al. (2012) suggested a new measure of covariance, namely comediance. Comediance of two variates x and y is
defined as
Cyy = med([x; — med(x)] X [y; — med(y)]) S)
where med(x) and med(y) are sample medians and i = 1,2,...,n. In their Monte Carlo simulations Huo et
al. (2012) showed that the performance of the comediance is comparable with other robust covariance estimators
including Campbell, Sign, and Rank. Note that this method requires computing three medians and does not include
any iterative procedure (Note 1).

3. Proposed Method

In our algorithm, we combine the comediance measure introduced in Huo et al. (2012) and C-Steps suggested
in Rousseeuw and Driessen (2006). Briefly, the algorithm constructs a robust covariance matrix which does not
require too much computation time. Mahalanobis distances of independent variables are then calculated using this
robust covariance matrix for dispersion and sample medians of variables for location. Then, & observations with
minimum Mahalanobis distances are used to calculate OLS estimates. After all, C-Steps are performed using p
observations with smallest absolute residuals to enlarge the basic subset to & observations. The whole algorithm is
given below.

3.1 Main Algorithm

Step 0. Let p is the number of regression parameters, p — 1 is the number of independent variables, n is the number
of observations, w is an n vector of zeros, h = |n/2]| + [ (p + 1)/2], and | k] is the integer part of k

Step 1. Construct the covariance matrix £ of independent variables where (Note 2)
G = med(|xj, — med(x;)|)
fori=1,2,....,p—-1,k=1,2,...,n,and
Gij = med([xyx — med(x;)] X [xjx — med(x;)])

j=L12,...,p—1,,i# j,and &; is the element of matrix % at row i and column J.

Step 2. Calculate the mahalanobis distances D where

D= V- pyE i p)
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and u is the vector of medians of independent variables. Sort the values of D in ascending order. Let & is a vector
of indices of first 4 smallest D;’s. Set w[k;] = 1, wlk>] = 1, ..., and w[k;,] = 1.

Step 3. Perform a weighted least squares estimation for the model using the weights w and calculate absolute
residuals.

Step 4. Perform C-Steps using p observations with first p ordered absolute residuals to enlarge the basic subset to
h observations. Perform many C-Steps using the enlarged basic subset.

e;—med(e)

Step 5. Standardize the residuals obtained from the final C-Step using the formula r; = red(lermed @)

observation i as an outlier if |r;| > 2.5.

Report the

First iteration of C-Steps takes p observations and returns / observations with smallest absolute residuals. In
remaining iterations, C-Steps are performed using s observations many times and the final & observations are
returned. In those steps, it is expected that some outliers exit the basic subset and clean observations enter. Number
of C-Steps is set to 10 by virtue of the graph shown in Figure 1 in our simulations.

4. Monte Carlo Simulations

We perform a simulation study to unveil the success of our algorithm. We report the MSE’s of estimated regression
parameters as well as the masking and the swamping ratios. Data are generated for n = 103, 10* and 10°. The
number of parameters are set to p = 5 and p = 10. Any data set that generated with these n, p combinations can
be considered as large (Note 3).

Data are generated using the linear model (1) where € ~ N(0,1), X; ~ N(0,100), 8 = [5,5,...,5], N(u, o?)
is a normal distribution with mean ¢ and variance o2 andi=12,..., p. The level of contamination is variable
and set to ¢, = 20%,30%,40% and n — h for Y-Space outliers and ¢,, = n — h for X-Space outliers, where
h=|n/2]+|(p+1)/2] and | k] is the integer part of k. Note that n — & is the maximum level of contamination, that
is, a contamination level that is higher from n — 4 means that outliers turn into clean observations and via versa.
Independent variables are contaminated by adding random variates that follow a A(100, 100). The dependent
variable is contaminated using the formula y; := max(y;.;,) + Cg where max(yy.,) is the nth order statistics of first
h values of variable y and Cy, is a random variable that follows a N (10, 100).

Tables 1-5 summarize the results. In Table 1, it is shown that the MSE’s of estimators are directly related to the
level of contamination when the data is contaminated only in Y-Space. Small bias and variance statistics indicate
that the estimators are accurate when the contamination level is 20%. However, the accuracy of estimators tend to
reduce as the level of contamination increases. Finally, in the case of maximum contamination, method loses its
robustness and yields the highest MSE values.

Table 1. Y-Outliers for p = 10

cont %20 %30 40% n—h

n bias var mse bias var mse bias var mse bias var mse
Bo 0,675 119,016 119,471 19,197 5562,776 5931,294 79.894 25190,599 31573614 202,975 49920,573 91119.425

Bl -0,020 0,118 0,119 -0,344 3,430 3,548 -1,308 7,893 9,603 -2,327 8,464 13,878

B -0,010 0,062 0,063 -0,392 2,791 2,944 -1,136 6,675 7,964 -2,129 9,791 14,322

5 -0,003 0,016 0,016 -0,427 3,618 3,801 -1,199 7717 9,153 -2,349 10,008 15,524

103 n -0,014 0,127 0,127 -0,375 2,710 2,851 -1,139 7,480 8,776 -2,325 11,380 16,784
Ps -0,018 0,112 0,112 -0,407 3,889 4,054 -1,331 8,039 9.810 2,264 10,648 15,772

Be -0,025 0,176 0,177 -0,368 2,772 2,907 -1,244 7,942 9.491 -2,216 9,057 13,967

By -0,016 0,096 0,096 -0,378 3,110 3,253 -1,261 8,398 9,988 -2,247 11,818 16,868

Bs -0,029 0,231 0,232 -0,381 2,739 2,884 -1,184 7.266 8,668 -2,196 10,482 15,303

By -0,011 0,086 0,086 -0,433 3,254 3,441 -1,174 7211 8,590 -2,257 10,844 15,940

Bo 0,544 66,519 66,815 45,825 16288,812 18388,700 124,577 46858216 62377,524 274,151 77748,635 152907,395

By -0,015 0,060 0,060 -0,957 7,249 8,164 -1,730 9,984 12,975 -2,357 8,116 13,672

B -0,014 0,110 0,110 -0,882 6,604 7,382 -1,703 9.832 12,732 -2,390 8,873 14,586

B3 -0,013 0,042 0,043 -0,912 7,215 8,046 -1,771 9,989 13,124 -2,466 8,142 14,221

104 n -0,011 0,035 0,036 -0,942 7,468 8,354 -1,736 9,957 12,970 -2,390 8,736 14,449
/3:; -0,016 0,061 0,061 -0,896 6,770 7,572 -1,785 10,017 13,203 -2.487 7,448 13,632

Be -0,036 0,306 0,308 -0,845 6,926 7,639 -1,732 10,109 13,110 -2,498 7,748 13,988

7 -0,026 0,151 0,152 -0,937 7,857 8,735 -1,669 10,040 12,826 -2.489 8,368 14,565

Bg -0,021 0,125 0,125 -0,826 6,465 7,148 -1,665 9,741 12,512 -2,437 7,878 13,816

By -0,019 0,142 0,143 -0,964 8,043 8,973 -1,758 10,428 13,517 -2,433 8,245 14,163

Bo 0,093 4,175 4,184 40,846 16314,131 17982,498 119,308 53315,920 67550,397 342,996 101362,195 219008,474

Bl -0,005 0,015 0,015 -0,832 7,499 8,191 -1,564 10,164 12,609 2,790 8,485 16,270

5 -0,006 0,020 0,020 -0,814 6,946 7,608 -1,563 9,919 12,362 -2,575 9,562 16,192

B3 -0,005 0,012 0,012 -0.873 8,003 8,764 -1,615 10,069 12,676 -2,706 7,646 14,969

10° n -0,003 0,006 0,006 -0,863 7,542 8,286 -1,590 10,153 12,680 -2,689 8,944 16,173
/3:5 -0,006 0,020 0,020 -0,868 7,738 8,491 -1,509 10,655 12,933 -2,791 8,481 16,268

Be -0,003 0,005 0,005 -0,868 7,870 8,623 -1,597 10,116 12,667 -2,589 8,775 15,479

B7 -0,002 0,004 0,004 -0,813 7,449 8,110 -1,521 9,842 12,156 -2,678 7,353 14,526

Bg -0,005 0,013 0,013 -0,828 7.271 7,956 -1,592 9,945 12,481 -2,688 8,802 16,025

By -0,005 0,013 0,013 -0,869 7,854 8,609 -1,573 9,607 12,083 -2,720 8,996 16,396

Table 2 shares a similar status including higher bias, variance and MSE statistics of the intercept estimator. Best
results are obtained when n = 10° and ¢,, = 20%.

104



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 3; 2013

Table 2. Y-Outliers for p = 5

cont %20 %30 40% n—h

n bias var mse bias var mse bias var mse bias var mse
Bo 0,850 88,255 88,977 31,213 6654,392 7628,664 66,049 14906,204 19268,699 165,406 25268,142 52627,158

A1 -0,070 0,627 0.632 -0.982 6.696 7.660 -1.441 7,769 9,847 -2,673 6,519 13,667

103 ﬂ:z -0,002 0,005 0.005 -0.876 5.984 6.752 -1.478 7.925 10,109 -2,681 6,536 13,723
B3 -0,058 0.446 0.449 -0,847 6,037 6,754 -1,467 8,201 10,355 -2,678 6,627 13,797

Ba -0,028 0,158 0.158 -0.909 6,044 6.870 -1,482 8,031 10,227 -2,673 6,595 13,739

Bo 3,191 380,347 390,529 38,331 9227,526 10696,798 94,507 22877,730 31809,338 176,187 36223,090 67264,823

B -0,184 1.311 1,345 -1.192 9.568 10.988 -1,967 9,997 13,865 -2,262 6,924 12,039

104 th -0,182 1,289 1,322 -1.131 8.693 9.972 -1,984 9,987 13,922 -2,339 7.044 12,516
B3 -0,184 1,290 1,324 -1,118 8,157 9.407 -1,984 10,138 14,075 -2,306 7,040 12,358

Ba -0,161 1,108 1,134 -1.098 7.870 9.077 -1,970 10,130 14,012 -2,325 7.514 12,920

/59 0,052 0,532 0,535 36,156 10032,413 11339,679 103,871 29216,361 40005,465 226,611 47187,082 98539,506

B -0,004 0,005 0.005 -1.140 10,099 11,399 -2,056 12,315 16,542 -2,557 6,850 13,389

109 ﬁ:z -0,004 0,005 0.005 -1.090 9.301 10.488 -2,025 11,886 15,986 -2,636 6,601 13,548
B3 -0,003 0,003 0,003 -1,108 9,707 10,935 -2,030 11,601 15,722 -2,674 7,051 14,202

By -0,003 0,002 0,002 -1,151 10,307 11,631 -2,089 12,009 16,372 -2,614 6,560 13,393

In Table 3, it is shown that the proposed method yields parameter estimates with relatively small biases and
variances when independent variables are contaminated at maximum level. Algorithm performs well except for
n = 10°. Torti et al. (2012) stated that the primary interest in fitting regression models in applied statistics is to use
the fitted model rather than solely to detect outliers. However, investigating the performance of an outlier detection
method by examining masking and swamping ratios is not trivial. In Table 4, it is shown that, our method has very
low masking and swamping ratios when n = 10* and n = 10*. The masking ratio is relatively high for n = 103 and
p = 5butitis reduced when p = 10.

Table 3. X-Outliers, p=5and p = 10,¢c,, =n—h
n 103 107 103

p bias var mse bias var mse bias var mse
Bo 0,001 0,002 0,002 -0,015 0,119 0,119 -3.464 5,101 17,103

pi -0,000 0,000 0,000 -0,010 0,047 0,047 -3,610 4,593 17,626

5 B 0,000 0,000 0,000 -0010 0,056 0,056 -3,609 4,590 17,616
p3 -0,000 0,000 0,000 -0,010 0,046 0,046 -3,611 4,595 17,634

Bs 0,000 0,000 0,000 -0,009 0,042 0,042 -3,609 4,589 17,615

Bo -0,123 2,072 2,087 -0,023 0,275 0,275 -0,859 3,809 4,546

A1 -0,042 0,189 0,191 -0,008 0,032 0,032 -0,868 3,537 4,290

B -0,048 0,243 0,246 -0,009 0,045 0,045 -0,869 3,546 4,301

Bz -0,043 0,196 0,198 -0,010 0,053 0,053 -0,868 3,533 4,286

10 A, -0,051 0267 0269 -0010 0,053 0053 -0.866 3,522 4273
Bs -0,047 0,227 0,229 -0,009 0,042 0,042 -0,869 3,543 4,297

pe -0,047 0,228 0,230 -0,010 0,055 0,055 -0,869 3,541 4,295

67 -0,062 0,393 0,397 -0,011 0,056 0,056 -0,866 3,523 4,273

ps  -0,057 0323 0,326 -0,010 0,050 0,051 -0,863 3,499 4,244

Bo -0,051 0262 0,264 -0,010 0,053 0,053 -0,863 3,493 4,237

Table 4. Masking and swamping ratios for X-Space outliers under maximum level of contamination

p=5 p=10
n  Masking Swamping Masking Swamping
10 0,000 0,000 0,004 0,001
104 0,001 0,000 0,001 0,000
10° 0,327 0,058 0,078 0,014

In Table 5, it is shown that the performance of our algorithm is convincing when the level of contamination is 20%
and 30% in the case of Y-Space outliers. Masking and swamping ratios increase as the level of contamination
increases, finally masking and swamping ratios reach their maximum at the maximum contamination level.

Choosing the right number of C-Steps is important. Generally, iterating more C-Steps yields more accurate esti-
mates. However, C-Steps consumes time when the sample size is large. We set the number of C-Steps to 10 in our
simulations. In Figure 1, LTS criterion versus number of choosen C-Steps is plotted. It is clear that, performing
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more than 10 C-Steps does not gain too much. When the computation time is not critical, more C-Steps can be

performed.

In Figure 2, consumed CPU times of our implementation (Note 4) are presented. It is shown that, CPU times
increase as n and p increase. However, it takes under a second when the number of observations is 3 X 10*. This
property of our implementation points out that our method can also be used in online detection of outliers of real

time data (Note 5).

Table 5. Masking and swamping ratios for Y-Space Outliers

c 20% 30% 40% n—h
P =n M S M S M S M S
10° 0,002 0,023 0038 0018 0,110 0039 0245 0,407
5 10* 0004 0022 0,042 0020 0113 0033 0235 0426
10° 0,000 0,020 0032 0016 0,114 0028 0262 0,508
10° 0,001 0024 0019 0011 0,085 0032 0235 0,321
10 10* 0,000 0020 0035 0016 0,102 0028 0251 0442
10° 0,000 0,020 0027 0013 0085 0021 0273 0,503

M for masking, S for swamping.

LTS Criterion
1220 1240 1260 1280 1300
1 1 1 1 1

1200
I

1180

5 10 15 20

Number of C-Steps

Figure 1. Number of C-Steps and LTS criterion

CPU times in seconds

T T T T T T T
o 5000 10000 15000 20000 25000 30000

Number of observations

Figure 2. CPU times consumed by our R implementation
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5. Results and Discussion

It is important to be aware of outliers in regression analysis. When the data is contaminated, the parameter es-
timates, calculated residuals and fitted values are affected. Because of that, regression diagnostics are not useful
and should be calculated for subsets of observations rather than each single observation. However, this operation
consumes too much computation time. Despite the robust procedures are successful in detecting outliers even
though the contamination level is up to 50%, they consume too much time and there is also an effort to speed up
these procedures in the outlier detection literature.

In this paper, we proposed a new algorithm based on a non-iterative covariance matrix and C-Steps used in LTS
estimation. Since this covariance matrix has not all desired statistical properties, it is useful at finding a clean
basic subset which is then used in a robust fit. Standardized absolute residuals which are bigger than a predefined
criterion can be labelled as outliers.

The proposed algorithm has low masking and swamping ratios in the case of X-Space outliers when the level of
contamination, sample size and number of parameters are up to 50%, n = 10*, and p = 10, respectively.

In the case of Y-Space outliers, performance of the algorithm reduces but it still stays resistant when the contami-
nation level, sample size and number of parameters are up to 30%, n = 10°, and p = 10, respectively.

Our algorithm is suitable and applicable for detecting multiple outliers in regression analysis when the data sets are
large and the contamination level is high. Computational cost is low and it is applicable even in interpretable sta-
tistical software packages. Regression estimators have small biases, variances and MSE’s except for the intercept
parameter.

An effort for reducing the bias and variance of intercept estimator would not be trivial and it can be examined in
future works.
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Notes
Note 1. However, comediance is not affine equivariant for linear transformations of the X-space.

Note 2. Note that the ZA‘.i,i given in Step I is the Median Absolute Deviation (MAD) statistic without the correction
factor of 1.4826 (Rousseeuw & Croux, 1993). The MAD statistic has a lower efficiency without the correction
factor when the data is normal. However, this version of MAD narrows the space spanned by the ellipsoid which is
most likely free of outliers. In our simulation study, better results obtained using this definition of the MAD. Since
MAD is a robust measure of scale, it is generally used instead of usual standard deviation. In our method, MAD is
placed in the diagonal elements of £ which stands for variances instead of the standard deviations.

Note 3. In statistics, the terms large sample or large data set are not well-defined. In robust statistics, a data set
is generally considered as large when calculation of a required set of combinations is intractable or infeasible.
Rousseeuw and van Driessen (2006) uses the term of small data set when calculation of all p-subsets is possible.
In their Monte Carlo simulations, they generate data for n = 100, 500, 1000, 10000, 50000 and p = 2,3,5,10. In
our simulations, the selected n, p combinations constitute a subset of previous work and we include the sample
size of n = 10° to generate larger data sets.

Note 4. We provide a function medmad in the R package galts (Satman, 2013) which is freely available at site
http://cran.r-project.org/web/packages/galts/.

Note 5. The function medmad is written in R which is an interpreter (R Core Team, 2012). A C/C++ or Fortran
implementation should result in shorter times.
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