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Abstract

To provide an optimum estimator for the parameters, the use of priori information has a crucial role in univariate
as well as bivariate distributions. One such prior information is to utilize the knowledge on coefficient of variation
in the inference problems. In the past plenty of work was carried out regarding the estimation of the mean u
of the normal distribution with known coefficient of variation. Also inference about the parameters of bivariate
normal distribution in which X and Y have the equal (known) coefficient of variation c, are extensively discussed
in the available literature. Such studies arise in clinical chemistry and pharmaceutical sciences. It is interesting
to note that concomitants of order statistics are applied successfully to deal with statistical inference problems
associated with several real life situations. A problem of interest considered here is the estimation of parameters of
bivariate normal distribution in which X and Y have the same coefficient of variation ¢ using concomitants of order
statistics. For that consider a sample of n pairs of observations from a bivariate normal distribution in which X and
Y have the same coefficient of variation ¢, we derive the best linear unbiased estimator (BLUE) of 6, and derive
some estimators of . Efficiency comparisons are also made on the proposed estimators with some of the usual
estimators, finally we conclude that efficiency of our best linear unbiased estimator (BLUE) 6, is much better than
that of the estimators &, and o;.

Keywords: coeflicient of variation, concomitants of order statistics, best linear unbiased estimator, bivariate nor-
mal distribution

1. Introduction

The use of prior information in inference is well established in the Bayesian arena of statistical methodology. Such
information is usually incorporated into a model by choosing an appropriate prior distribution. In some instances
prior information can be incorporated in classical model as well. Searls and Intarapanich (1990) considered an
estimator of variance when the kurtosis of the sampled population is known. But in some situations of biological
and physical sciences, where the scale parameter is proportional to the location parameter, knowing the propor-
tionality constant is equivalent to knowing the population coefficient of variation (Gleser & Healy 1976), however,
inferential testing procedures become more complex, and the property of completeness is no longer held true, and,
thus the standard theory of uniformly minimum variance unbiased estimation (UMVUE) is not applicable. Several
authors, have studied these problems; Searls (1964) used the coefficient of variation to improve the precision of
sample mean as an estimator of the population mean. If the parent distribution is normal with mean 6 and standard
deviation cf thus, distributed as N(6, ¢26?), the problem of estimating @ has been studied (Kunte, 2000; Guo & Pal,
2003); the best linear unbiased estimator (BLUE) of 8 for N(6, ¢26?) distribution for different values of ¢ using
order statistics are discussed in Thomas and Sajeevkumar (2003); and estimating the location parameter 6 of the
exponential distribution with known coefficient of variation by ranked set sampling are discussed by Irshad and
Sajeevkumar (2011); and Sajeevkumar and Irshad (2011) have also dicussed estimation of the location parameter
6 of the exponential distribution using censored samples.

Estimation of means of two normal populations is frequently undertaken, assuming that the variances of the pop-
ulations are known. Sen and Gerig (1975) developed an estimator under the equality of the two coefficients of
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variation assumption; Azen and Reed (1973) consider the problem of estimation of parameters of bivariate normal
distribution with equal coefficient of variation, however, they fail to give explicit expression for the estimates of the
parameters. Sajeevkumar and Irshad (2012) have recently studied the estimation parameters of bivariate normal
distribution with equal coefficient of variation using concomitants of record values. This paper discuss the estima-
tion of parameters of bivariate normal distribution with equal coefficient of variation say BVND(6,, 0,, ¢y, c6,,1)
with means 6; > 0 and 6, > 0, standard deviations cf; and c6,, and correlation coefficient ©# using concomitants of
order statistics.

Let (X;,Y),i = 1,2,--- ,n be a random sample from an arbitrary bivariate distribution with probability density
function (pdf) f(x,y). If the sample values on the variate X are ordered as Xi.,, Xo.s, - - - , X0, then the accompa-
nying Y-observation in an ordered pair with X-observation equal to X,., is called the concomitant of the ' order
statistic X,., and is denoted by Y},.,,;. There is extensive literature available on the application of concomitants of
order statistics such as in: biological selection problems (Yoe & David, 1984), ocean engineering (Castillo, 1988),
development of structural designs (Coles & Tawn, 1994). Harrel and Sen (1979) used concomitants of order statis-
tics to estimate the correlation coefficient 9 of a bivariate normal distribution. An excellent review of work on
concomitants of order statistics is available in David and Nagaraja (2003).

David (1973) considered the bivariate normal model say BVND(0,, 0>, ¢1, ¢», 1) in which the variable Y is linked
with the variable X through the regression model:

X-6
Y:6’2+ﬂ¢2( l)+Z,
o
where Z ~ N(O, ¢%(1 — %)) and error term Z is independent of X. Thus forr = 1,2,--- ,n,
Xpn— 0
Y[r:n] = 02 + 19¢2 (¢—1) + er]a
1

where Zj,; denotes the particular error Z, associated with X,.,. Due to the independents of X, and Z,, we have, set
of X;., is independent of Z;,;. Yang (1977) showed that:

E[Y[r:n]] = E[m(Xr:n)L (1)
Var(Yirml = Varlm(X,.,)l + Elo*(X,.)] (2)

and,
COV[Y[r:n]» Y[s:n]] = COV[m(Xr:n)s m(Xs:n)]’ 1 <r<s<n, (3)

where m(X,.,) = E(Y/X,., = x) and 02(X,-n) = Var(Y/X,n = x).

2. Inference on 6, When ¢ and  are Known Using Concomitants of Order Statistics

Let(X;, Y;);i=1,2,--- ,nbe arandom sample of size n drawn from BVND(0, 6,, c0y, c6», D). Let Y{1.n1, Yion)s -+ -
Yn:n) be the concomitants of order statistics arising out of ordering X, Xz, - -+ , X, also let Yj,;; = (Y13, Yi2onps -+ -

Yi:np)' be the vector of concomitants of order statistics. Using (1), (2) and (3), we obtain means and vaiances of
Y(,.n; and covariances of Y., Yy from BVND(6, 01, c6,, c6,, 1), and are given by:

E[Y[r:n]] =6, +9cb 0y = O2(1 + Pchyp), 4)
VarlYim] = GBIV = D + 11, 5)
and,
COV[Y[r:n]’ Y[s:n]] = 029§ﬁ2 Vr,s:ns r#s, (6)
where,
X,. —
Spn = E(Lel) ,
6‘9]
(Xr:n - 91 )
Vr,r:n =Var| ——— 5
C91
and,
Xr'n -0 stn -
Vrs:n:COV - 1, ol , rs=12,---,n
’ 6‘91 6‘91
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Let Yi=(Y[1:n7> Yi2:m)s - - » Yineny)” be the vector of concomitants of order statistics, 6 = 9(51.4, 021, + , Opzn)” and
H=(1 - 9*)U + 9*V, U is an identity matrix of dimension n and V = ((V; ;)). Then by consider 6, as the location
parameter of Y variable, a linear unbiased estimator of #, based on concomitants of order statistics is given by
(same argument that of Balakrishnan & Rao, 1998, p. 13):

SH'1¢ -61)H!
(H'$)X'H 1) - (6’'H'1)?

6 = - Yo, (N

and,

('H'6)c%63
(H '$)I'H'1) - (¢yH '1)2°
Since the X variable is symmetric about 6, then by the same argument that of (David & Nagaraja, 2003, p. 188),

Var(6) = (8)

SH'1=0. 9)

Using (7), (8) and (9) reduces to:

. T'H!
6 = ———Yju, 10
1 ™ (19)
and,
6‘2 2
Var($,) = —=—. (1)
1'H 1

Introducing c¢6, as the scale parameter of Y variable, a linear unbiased estimator of ¢f, based on concomitants of
order statistics is given by (same argument that of Balakrishnan & Rao, 1998, p. 13):

TH'A6 -6 1HH!

= Y., 12
@H'O@WH ') - H 12 " (12
and,
(1I'H'1)c?6?
Var(T) = ; ; - (13)
(H '6)(I'H'1) — (’H'1)2
Using (9), (12) and (13) reduces to:
SH™!
= mY[n], (14)
and,
262
Var(T) = 6,H}16. (15)

From (12) we can obtain another linear unbiased estimator 65 of ¢, based on concomitants of order statistics and
is given by:
1 TH'A6 -6 1HH™!

== Y, (16)
Poc|@H )@ HT D) - (H 1
and,
. (I'H'1)6?
Var(6,) = — pr— - 17)
(H '6)I'H'1) — (’H '1)?
using (9), (16) and (17) reduces to:
i 6/H—l
ERTTEr) o
and,
2

where 1 is an n x 1 matrix. The BLUE 6, of 6, is given in the following theorem.
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Theorem 1 Let (X;,Y;);i = 1,2,--- ,n be a random sample of size n drawn from BVND (61, 6,, c6, cb, ).
Let Yi=(Y(1:np, Yi2nys - -+ » Yinm)” De the vector of concomitants of order statistics, 6 = 901, 02:n5 -+, Opn)” and
H=(1 - 9*)U + 9*V, U is an identity matrix of dimension n and V = ((Vi ;) then the BLUE of 0, is given by:

- (c6+1YH™!
th = = Y, (20)
(c6+1)YH "(c6+1)
and,
- 62
Var(fs) = - . 1)
(c6+1YH "(c6+1)
Proof. £ Y=Y[1:n1, Y121, -+ » Yiueny)” be the vector of concomitants of order statistics. From (4) we have:
E[Y[,,]] = 921 + C@zé
= (cd + 1)6,, (22)
where 1is an nx 1 matrix and 6 = #(J1.4, 02:, - -, Opzn)’. From (5) and (6) the dispersion matrix of Yy, is obtained
as:
D(Y,) = He?63, (23)

where H = (1 — 92U + 92V, U is an identity matrix of dimension n and V = ((V; ;)), where © and ¢ are known,
then (22) and (23) defines a generalised Gauss-Markov setup, the BLUE 65 of 6, is given by:

- 6+ 1YH™!
b = ( ,)1 Yiu
(c5+ 1YH (6 + 1)
and,
- c20§
Var(6,) = . .
(5 + 1YH (6 + 1)
Using (9), (20) and (21) reduces to:
_ (coHTT+THT)
0, = Y, 24
T 2sH s+ 1H'T 24)
and,
Varéy) <6 25)
ar = .
YT 2sH s+ 'H 11
This proves the theorem. U

Remark 1 The estimator 6, defined in (24) is a convex combination of the estimators &, and 05 defined respectively
in (10) and (18).

Proof.
Let R=ab + (1 -a)b;
and,
Var(R) = a*Var(6) + (1 — a)*Var(6;).
Now we should find a such that Var(R) is minimum. That is we have to find a such that % = 0. which implies:
Var(6;)
a= — .
Var(6y) + Var(6;)
For this values of a, we have R = 6,. Hence the proof. O

We have calculated the coefficients of Y}; in the BLUE 0,, for different values of n, ¢ and 9. Also we have
computed the numerical values of Var(9,) givenin (11), Var(6;) given in (19), Var(6,) given in (25), the efficiency
E, = Var(6) Var(9;)

U= Var@,) Var(,) ~
19, and are given in the following tables. It may be noted that in all the cases efficiency of our estimator 6, is much
better than that of the estimators 6, and 5.

of 6, compared to 6, the efficiency E;, = of 6, compared to 6;, for different values of n, ¢ and
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3. Inference on ¥ When c and 6, are Known Using Concomitants of Order Statistics

In this part, we derive certain estimators for © of a BVND(6, 65, c01, ¢8>, ) with known coeflicient of variation by
concomitants of order statistics. Take
Y [rin] — 02

C@z

Y[*r n] ’

using (4), (5) and (6) we have:
E[Y}.y] = 05, (26)

VarlY., 1 =1+ 9V — 1)

and,
CovlY],s Y] = 0 Vi # 5.

Suppose Y} =(Y{,» Y5+ > ¥}yy) - Therefore,
ElYy) = 0¢ @7

and,
DY, = (1 -9)HU+ 9V, (28)

& = (010,020, »0nn) and V = ((V; ;). From (27) and (28) we noted that Gauss-markov theorem does not
applicable to derive the BLUE of ©J. Hence we derive two linear unbiased estimators of 1J, and are given below.

Theorem 2 Suppose W be an n dimensional coloumn vector and W'Y, [n] be alinear function of Y7 (L YE‘2 T Y[*n "
with
VarlW'y;, 1= (1 =9)W'W + W' VW. (29)
Then an estimator ¥, obtained by minimising W'W subject to W'Y Y, is unbiased for ¥ is obtained as:
g, = g—gy[*n] (30)
and an estimator 9, obtained by minimising W' VW subject to W’ Y[*n] is unbiased for 9 is obtained as:
R lvfl
9, = ;V—_lgyg‘n]. 31)
Also:
. 1 V.
Var(d)) = (1 -9)— + f/ ‘iﬁz (32)
&e (&9
and,
. V2 1
Var(9,) = (1 - 9?) 3 — ¢ + — 1. (33)
EVer EVé
The proof of the theorem is omitted, since it is similar to the proof of Chacko and Thomas (2008).
The estimators ¢, and 19} given in (30) and (31) can also written as g = 2 d; Y[*] and ¥, = L€ Yljl
Theorem 3 If §, = f, : Yo and 9, = § v fY[* o are two unbiased estimators of ¢ with variances given by (32) and

g g, — Z _&ve 1 _ &V
(33) then ¥y is more better than ¥, if |9 < Z, where Z = 1IZI+22, Z, = @ " v and Z, = v T TR
provided Z; #+ 0 and Z, # 0.

The proof of the theorem is omitted, since it is similar to the proof of Chacko and Thomas (2008).

We have calculated the values d; and ¢; contained in 1§1 and 1§2, their variances and the interval (—Z, Z) in which 19]
is more better than ¢, for different values of n and are given in Table 4.

Remark 2 1f Z, = Z, = 0 then 1§1 = 1§2.
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Concluding Remarks

It may be noted that our estimator §> defined in (24) is much better than the estimators #, and 65 defined respectively
in (10) and (18). Also the estimator 6, is convex combination of the estimators &, and ;.
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