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Abstract

In this study the impact of kurtosis on the statistical power is researched. For this purpose totally twenty distribu-

tions are handled. In this study Wald Wolfowitz test is benefitted from in order to examine the impact of kurtosis

on the statistical power and the α significance level is determined to be 0.05. The sample sizes used in the study are

equal and small sample sizes from (5,5) to (20,20); in addition, the means in the study were taken as follows: while

μ1 = 0, μ2 = 0.5, μ1 = 0, μ2 = 1 and μ1 = 0, μ2 = 1.5. As per the results obtained from the study the coefficient

of the skewness in the same sample size is held fixed and is taken as 0 and therefore depending on the decrease of

the kurtosis coefficient statistical power decreases generally in the sample sizes and for all of the sample sizes it is

observed that the statistical power increases in parallel with the increase in the mean of second sample providing

that the mean of first sample is fixed.
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1. Introduction

Parametric tests are based on parametric models. Parametric tests used to test the equality of two independent

population means are valid only when the assumption of normality is satisfied (Rayner & Best, 2000). When the

condition of normality is not satisfied, the nonparametric equivalent to test the difference between two independent

population means is a test for the difference between two population medians (Gibbons, 1971). However, when the

assumption of normality is satisfied, applying both parametric and nonparametric tests on the same data set, the

former tests yield higher power and the latter shows higher type II error. Thus; when the assumption of normality

is not satisfied, nonparametric tests provide significant advantages but, nonparametric tests do not use all of the

information provided by the sample, are less effective than their equivalent parametric test and even when they

provide the same power they require a bigger sample size (Harwell, 1988; Wright, 2005; Walpole, R. H. Myers, S.

L. Myers, & Ye, 2007; Jiang, 2010).

Deviations from normality are measured by the kurtosis of the relevant distribution. Kurtosis is a statistics that

measures the extent to which a frequency distribution is concentrated about its mean; it is a measure of peakedness

or flatness of a distribution especially with the concentration of values near the mean. Kurtosis has a negative

impact on the power of the test, and very small kurtosis has an impact on the type I errors (Wilcox, 1995).

When data exhibits kurtosis or skew distributions, researchers want to know the statistical power of the test they

will be using, and what sample size to use to achieve a certain power, and also what the ratio of the two distribution

means should be to yield the desirable power.

In this study, Section 2 discusses the concept of statistical power. Section 3, gives the impact of kurtosis and

skewness on the statistical power in nonparametric tests. Section 4 gives a Monte Carlo simulation study using

Wald Wolfowitz (WW) test, when kurtosis of the two distributions is different, but skewness is fixed. Simulation

results are given in Section 5, and in Section 6 we give some concluding remarks.

2. Statistical Power

Two types of errors are encountered in hypothesis tests, namely type I error and type II error. The power of a test
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is defined by 1-β; thus the smaller the probability of type II error the greater the power of the hypothesis (Boslaugh

& Watters, 2008; Brink, 2010). The power of a statistical test is the probability of the corresponding test to provide

a result that has a statistical meaning (Cohen, 1988).

The power function of a test is generally defined by (Geyer, 2001):

π(θ) = Pθ (Reject H0), (θ ∈ ΘA) (1)

where ΘA is space of alternative hypothesis.

The statistical power of a test is a function of the population sample size, which is used to define the statistical

significance; and also is the function of some other criterions (Murphy & Myors, 2004).

To determine type II error, β, a significance level, alpha, an effect size and sample size are required. If the power

of a test is 0.8 or greater, it means that a sufficient power is provided in order to determine the possible impact

which may occur. However, if the value is smaller than 0.8; the sample size is extended (Wright, 2005). As the

sample size increases the probability for type II error occurrence decreases, and thus the power increases. As α
significance level increases, the probability of type II error increases and thus the power decreases (Wilcox, 2009).

The relationship between type I and type II errors are given below:

• Type I error and type II error are directly related.

• By adjusting the area of the critical region, that is, the critical values, the probability of type I error may be

decreased under any circumstances.

• The increase in the size of the sample will decrease both α and β at the same time. This means that typeI

error will decrease and type II error will increase, consequently the power will increase.

• While the null hypothesis is wrong, β reaches the maximum value when the real value of a parameter

becomes close to an assumed value. As the distance between the hypothetical value and the real value

becomes greater, the value of β will be proportionally smaller (Walpole, R. H. Myers, S. L. Myers, & Ye,

2007).

As it is seen, decreasing both of the error types is possible by increasing the sample size (Spiegel & Stephens,

1999).

3. Normal Distribution, Skewness and Kurtosis

The normal distribution is defined by the mean μ and standard deviationσ. A special type of the normal distribution

which is named as “standard normal distribution” is μ = 0 and σ = 1 (J. G. Ramirez & B. S. Ramirez, 2009). The

probability density function for a standard normal random X variable is as given below (Handcock & Morris, 1999;

Balakrishnan & Nevzorov, 2003; Eaton, 2007; Freedman, 2009):

f (x) =
1√
2π

∫ ∞
−∞

e−x2/2dx, (−∞ < x < ∞) (2)

A distribution deviates from the normality when the skewness differs than zero or kurtosis differs than 3 (Wright,

2005). Vogt (2005) defined the skewness a measure that reflects the degree where a point distribution is asymmetric

or symmetric (Vogt, 2005). Skewness is as a measure lack of symmetry in a probability distribution. Skewness is

measured by the following equation (Balakrishnan & Nevzorov, 2003):

γ1 =
μ3√
μ3

2

(3)

where μ2 and μ3 are the second and the third moments related to the mean, respectively; γ1 (Equation 3) takes on

the value of zero for the symmetric distribution, takes on positive values for positively skewed distributions, and

negative values for negatively skewed distributions (Wright, 2005; Everitt, 2006).

Kurtosis is an indicator of the degree where a point distribution has reached its top point (Vogt, 2005). Bai and Ng

(2005) have denoted the kurtosis coefficient with γ2. As follows:

γ2 =
μ4

σ4
=

E
[
(x − μ)4

]
E
[
(x − μ)2

]2 (4)
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In normal distributions, γ2 − 3 is zero (Bai & Ng, 2005). γ2 takes the value of 0 for a normal distribution. κγ2

[Equation 3] is positive for a distribution which has high level of kurtosis and is negative for a distribution which

has less kurtosis (Everitt, 2006). The distributions of which the kurtosis coefficient is negative are called platykurtic

distributions and distributions with kurtosis coefficient is positive are called leptokurtic distributions (Balakrishnan

& Nevzorov, 2003).

4. Simulation Study

In this study, a Monte Carlo study is conducted using SAS 9.00 computer software. Random numbers are gen-

erated from a standard normal distribution N(0,1) using RANNOR procedures (Fan, Felsovalyi, Sivo, & Keenan,

2003). Fleishman’s power function was employed to produce random numbers having zero mean and unit standard

deviation. PROC NPAR1WAY procedure is used to show the power simulations.The data is generated by using the

Fleishman’s power method and this method is summarized as the following equation:

X = a + bZ + cZ2 + dZ3 (5)

Where Z has a standard normal distribution, and a, b, c and d are constants chosen in such a way that X has the

desired coefficients of skewness and kurtosis. (Fleishman, 1978, cited in Lee, 2007) showed that a = −c and the

constants b, c and d can be determined by simultaneously solving the Fleishman Equations

b2 + 6bd + 2c2 + 15d2 − 1 = 0 (6)

2c
(
b2 + 24bd + 105d2 + 2

)
− γ1 = 0 (7)

24
{
bd + c2

(
1 + b2 + 28bd

)
+
(
12 + 48bd + 141c2 + 225d2

)}
− γ2 = 0 (8)

for the specified values of skewness, γ1, and kurtosis, γ2. The equations are solved by using a modified Powell

hybrid algorithm and a finite-difference approximation to the Jacobian. The values of a, b, c and d are then

substituted into Equation 5 to transform the standard normal variable Z to X (Stewart, 2009). As shown in Table 1,

the constants a, b, c and d may be chosen such that X has a distribution with specified moments of the first four

orders, i.e., the mean, variance, skewness, and kurtosis (Luo, 2011).

In this study, twenty different distributions were examined. The corresponding distributions have fixed and zero

skewness coefficients and the values of kurtosis coefficients decrease from 3.75 to -1.00. Furthermore, each distri-

bution consists of 16 equal size samples: n1 = n2 = 5, 6, . . . 20. The sample sizes denoted by (n1, n2), where n1

and n2 represent the first and second sample sizes, respectively, from (5, 5) to (20, 20). The data obtained by two

samples were identified. The means in the study were taken as follows: while μ1 = 0, μ2 = 0.5, μ1 = 0, μ2 = 1 and

μ1 = 0, μ2 = 1.5. The α significance level was determined as 0.05 and for Wald Wolfowitz (WW) test used.

Wald-Wolfowitz run test is used to examine whether two random samples come from populations having same

distribution. This test can detect differences in averages or spread or any other important aspect between the two

populations.

In the study, three different ratios of the mean are used; 20 × 16 × 3, that is totally 960 syntaxes are written and for

each syntax, and maximum iterations was set to 30.000 iterations.

The following steps were followed in the simulation:

• Twenty population distributions with different skewness and kurtosis values were generated running SAS/

RANNOR program.

• The significance level was selected at α = 0.05 for this study.

• The null and alternative hypotheses for the comparison of WW test simulations were as follows:

H0: Two population distributions are similar.

Ha: Two population distributions are different (Roese, 2011).

The formula which will be used in WW test statistics for small samples was used. Here, we define small

sample size as samples of sizes less than 20. Firstly, data of the n1 + n2 are arranged in an ascending

order. Next, runs were obtained as follows: the data obtained by the first sample are underlined and the

data series obtained by the second sample are crossed out. Therefore, the aggregate numbers of sets
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are determined (Kartal, 2006). The WW test statistics, r, is equal to the number of series in all data

sets. At α = 0.05 significance level, the tables of lower critical values of r in the runs test and upper

critical values of r in the runs test, prepared for WW test are looked. If r is between the values of the

tables of lower critical values of r in the runs test and upper critical values of r in the runs test for (n1,

n2) sample sizes, H0 is accepted. If r is lower than the values of the tables of lower critical values of

r in the runs test or higher than the values of the table of upper critical values of r in the runs test, for

(n1, n2) sample sizes, H0 is rejected.

• Two independent samples with 16 different sample sizes were randomly obtained by 20 population distribu-

tions from (5, 5) to (20, 20) sample sizes.

• WW test statistics values were calculated for the corresponding samples.

• These test statistics were compared with the table of critical values of WW test to determine whether or

not the null hypothesis (H0), claiming that two population distributions are similar to each other, will be

accepted.

• This procedure was repeated 30.000 times for each possible condition and the numbers of rejections of the

null hypothesis for WW test were determined by running SAS/RANNOR command.

• The percent of the number of rejections was computed and compared to the preset alpha level of significance.

The initial result gives the researchers the value of statistical power.

Table 1. Parameters estimate for Fleishman’s power function for skewness = 0 and different kurtosis coefficients

γ1 γ2 a b c d
0.00 3.75 0.00 0.7480208079 0.00 0.0778727161

0.00 3.50 0.00 0.7590372902 0.00 0.0746941912

0.00 3.25 0.00 0.7704679569 0.00 0.0713765324

0.00 3.00 0.00 0.7823562204 0.00 0.0679045564

0.00 2.75 0.00 0.7947530853 0.00 0.0642603464

0.00 2.50 0.00 0.8077190741 0.00 0.0604225428

0.00 2.25 0.00 0.8213268135 0.00 0.0563653855

0.00 2.00 0.00 0.8356645719 0.00 0.0520573970

0.00 1.75 0.00 0.8508412088 0.00 0.0474595283

0.00 1.50 0.00 0.8669932694 0.00 0.0425224842

0.00 1.25 0.00 0.8842954543 0.00 0.0371827461

0.00 1.00 0.00 0.9029765982 0.00 0.0313564523

0.00 0.75 0.00 0.9233450463 0.00 0.0249295864

0.00 0.50 0.00 0.9458309370 0.00 0.0177414466

0.00 0.25 0.00 0.9710609000 0.00 0.0095550550

0.00 0.00 0.00 0.00 0.00 0.00

0.00 -0.25 0.00 1.0342476318 0.00 -0.0115492900

0.00 -0.50 0.00 1.0767327425 0.00 -0.0262683212

0.00 -0.75 0.00 1.1336219498 0.00 -0.0467317031

0.00 -1.00 0.00 1.2210095693 0.00 -0.0801583723

Table 1 shows that the estimated parameters, b increases and d decreases as the kurtosis of the distribution gets

closer to normality.

5. Simulation Results

According to the simulation results show that in all of twenty distributions,providing that the mean of first sample

is fixed, the increase in the mean of second sample has a positive impact on the statistical power.

Simulation results are given in Table 2, Table 3 and Table 4. The mean of first sample, 0 and the mean of second

sample, 0.5 are given in Table 2. The mean of first sample, 0 and the mean of second sample, 1 are given in Table

3 and the mean of first sample, 0 and the mean of second sample, 1.5 are given in Table 4.
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Simulation results show that if the skewness coefficient (γ1) is held fixed, depending on the decrease of the kurtosis

coefficient(γ2), in almost all of the sample sizes the statistical power of WW test decreases. Table 2 shows that the

decrease is not very apparent when the mean of first sample, 0 and the mean of second sample, 0.5. Moreover,

it is observed that the statistical power remains fixed in some sample sizes and decreases in some sample sizes.

For example, when the mean of first sample, 0 and the mean of second sample, 1 in Table 3 and mean of first

sample, 0 and the mean of second sample, 1.5 in Table 4, respectively, if the skewness coefficient (γ1) is held fixed,

depending on the decrease of the kurtosis coefficient(γ2) it is concluded that there is an apparent decrease in the

statistical power of WW test.

Simulation results also showed that providing that the mean of first sample is fixed and 0, as the mean of second

sample increases, the statistical power of WW test also increases. According to the simulation results, when the

mean of first sample is fixed and 0 and the mean of second sample increases from 0.5 towards 1, statistical power

of WW test is higher than when the mean of second sample increases from 1 towards 1.5.

Table 2. Statistical power values of WW test when μ1 = 0 and μ2 = 0.5

Statistical Power Values

γ1 n γ2 = 3.75 γ2 = 3.50 γ2 = 3.25 γ2 = 3.00 γ2 = 2.75 γ2 = 2.50 γ2 = 2.25 γ2 = 2.00 γ2 = 1.75 γ2 = 1.50

0 5 0.036 0.035 0.035 0.037 0.036 0.032 0.032 0.032 0.032 0.032

6 0.038 0.039 0.038 0.036 0.036 0.037 0.035 0.032 0.036 0.032

7 0.015 0.016 0.014 0.014 0.015 0.014 0.012 0.015 0.013 0.013

8 0.040 0.039 0.040 0.039 0.040 0.037 0.037 0.038 0.034 0.034

9 0.043 0.042 0.042 0.040 0.039 0.038 0.038 0.037 0.033 0.036

10 0.074 0.072 0.072 0.068 0.070 0.069 0.064 0.063 0.063 0.066

11 0.072 0.074 0.070 0.071 0.070 0.069 0.063 0.065 0.066 0.063

12 0.036 0.035 0.037 0.033 0.033 0.034 0.031 0.033 0.032 0.030

13 0.059 0.059 0.055 0.054 0.054 0.053 0.052 0.053 0.050 0.048

14 0.061 0.058 0.056 0.055 0.054 0.054 0.052 0.049 0.052 0.048

15 0.079 0.076 0.080 0.081 0.077 0.077 0.076 0.073 0.073 0.068

16 0.084 0.085 0.078 0.081 0.074 0.078 0.079 0.072 0.071 0.072

17 0.048 0.048 0.046 0.045 0.044 0.042 0.041 0.039 0.040 0.040

18 0.063 0.064 0.062 0.061 0.058 0.059 0.055 0.054 0.055 0.052

19 0.065 0.060 0.060 0.060 0.056 0.059 0.054 0.057 0.052 0.053

20 0.081 0.083 0.080 0.076 0.078 0.078 0.074 0.075 0.071 0.069

γ1 n γ2 = 1.25 γ2 = 1.00 γ2 = 0.75 γ2 = 0.50 γ2 = 0.25 γ2 = 0.00 γ2 = −0.25 γ2 = −0.50 γ2 = −0.75 γ2 = −1.00

0 5 0.028 0.029 0.030 0.027 0.027 0.028 0.026 0.027 0.026 0.023

6 0.033 0.032 0.032 0.031 0.030 0.031 0.028 0.028 0.027 0.023

7 0.013 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.009 0.008

8 0.034 0.033 0.033 0.033 0.031 0.032 0.030 0.028 0.029 0.027

9 0.037 0.033 0.033 0.034 0.033 0.030 0.030 0.028 0.025 0.022

10 0.062 0.063 0.060 0.059 0.060 0.057 0.059 0.057 0.059 0.058

11 0.061 0.059 0.059 0.059 0.057 0.054 0.051 0.052 0.049 0.040

12 0.029 0.030 0.027 0.028 0.026 0.027 0.023 0.024 0.023 0.018

13 0.049 0.047 0.047 0.046 0.044 0.045 0.045 0.046 0.044 0.050

14 0.051 0.047 0.045 0.046 0.045 0.041 0.039 0.039 0.035 0.032

15 0.070 0.068 0.069 0.066 0.065 0.066 0.063 0.067 0.065 0.073

16 0.069 0.066 0.064 0.065 0.062 0.059 0.056 0.054 0.055 0.047

17 0.038 0.035 0.035 0.033 0.032 0.033 0.032 0.030 0.025 0.023

18 0.051 0.052 0.049 0.051 0.049 0.049 0.050 0.048 0.050 0.056

19 0.051 0.049 0.048 0.046 0.044 0.045 0.045 0.040 0.038 0.036

20 0.069 0.068 0.065 0.065 0.064 0.063 0.064 0.064 0.070 0.076
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Table 3. Statistical power values of WW test when μ1 = 0 and μ2 = 1

Statistical Power Values

γ1 n γ2 = 3.75 γ2 = 3.50 γ2 = 3.25 γ2 = 3.00 γ2 = 2.75 γ2 = 2.50 γ2 = 2.25 γ2 = 2.00 γ2 = 1.75 γ2 = 1.50

0 5 0.127 0.117 0.117 0.114 0.111 0.109 0.105 0.104 0.104 0.097

6 0.103 0.102 0.097 0.096 0.094 0.089 0.087 0.084 0.081 0.078

7 0.063 0.063 0.056 0.057 0.055 0.053 0.050 0.047 0.046 0.040

8 0.167 0.163 0.153 0.148 0.147 0.148 0.139 0.136 0.131 0.132

9 0.149 0.140 0.143 0.136 0.131 0.124 0.118 0.114 0.111 0.105

10 0.263 0.253 0.252 0.242 0.236 0.231 0.221 0.220 0.211 0.210

11 0.242 0.242 0.222 0.218 0.215 0.208 0.206 0.191 0.185 0.175

12 0.168 0.164 0.164 0.156 0.147 0.144 0.138 0.135 0.128 0.120

13 0.261 0.258 0.255 0.243 0.234 0.234 0.224 0.219 0.213 0.209

14 0.252 0.241 0.239 0.225 0.219 0.210 0.206 0.201 0.188 0.180

15 0.339 0.339 0.325 0.318 0.311 0.304 0.292 0.278 0.278 0.268

16 0.323 0.319 0.307 0.303 0.289 0.283 0.271 0.269 0.252 0.246

17 0.254 0.244 0.238 0.230 0.218 0.212 0.199 0.191 0.188 0.179

18 0.335 0.321 0.314 0.309 0.301 0.295 0.277 0.277 0.264 0.254

19 0.316 0.304 0.295 0.291 0.277 0.272 0.263 0.251 0.243 0.232

20 0.394 0.381 0.377 0.363 0.363 0.351 0.340 0.332 0.321 0.309

γ1 n γ2 = 1.25 γ2 = 1.00 γ2 = 0.75 γ2 = 0.50 γ2 = 0.25 γ2 = 0.00 γ2 = −0.25 γ2 = −0.50 γ2 = −0.75 γ2 = −1.00

0 5 0.096 0.093 0.088 0.087 0.082 0.077 0.069 0.069 0.064 0.059

6 0.075 0.072 0.067 0.064 0.061 0.059 0.051 0.050 0.041 0.034

7 0.039 0.038 0.035 0.032 0.030 0.028 0.025 0.023 0.017 0.014

8 0.125 0.114 0.112 0.109 0.105 0.101 0.098 0.091 0.089 0.086

9 0.102 0.094 0.092 0.088 0.083 0.077 0.074 0.061 0.053 0.050

10 0.205 0.198 0.190 0.183 0.173 0.173 0.167 0.157 0.156 0.154

11 0.168 0.165 0.155 0.150 0.141 0.133 0.130 0.112 0.101 0.098

12 0.115 0.109 0.102 0.093 0.093 0.086 0.075 0.067 0.059 0.059

13 0.201 0.191 0.188 0.180 0.174 0.164 0.160 0.151 0.151 0.161

14 0.171 0.165 0.160 0.150 0.144 0.127 0.118 0.108 0.100 0.105

15 0.264 0.259 0.246 0.238 0.230 0.223 0.217 0.213 0.208 0.231

16 0.231 0.224 0.215 0.198 0.192 0.180 0.170 0.156 0.144 0.158

17 0.172 0.163 0.148 0.146 0.138 0.122 0.118 0.102 0.102 0.107

18 0.250 0.242 0.234 0.222 0.213 0.210 0.196 0.188 0.194 0.219

19 0.219 0.217 0.202 0.190 0.179 0.173 0.157 0.148 0.139 0.152

20 0.295 0.295 0.286 0.273 0.265 0.254 0.247 0.243 0.243 0.283
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Table 4. Statistical power values of WW test when μ1 = 0 and μ2 = 1.5

Statistical Power Values

γ1 n γ2 = 3.75 γ2 = 3.50 γ2 = 3.25 γ2 = 3.00 γ2 = 2.75 γ2 = 2.50 γ2 = 2.25 γ2 = 2.00 γ2 = 1.75 γ2 = 1.50

0 5 0.284 0.277 0.285 0.276 0.265 0.258 0.253 0.249 0.241 0.236

6 0.248 0.241 0.236 0.231 0.217 0.220 0.206 0.201 0.202 0.189

7 0.175 0.172 0.167 0.162 0.155 0.150 0.145 0.137 0.135 0.130

8 0.411 0.404 0.398 0.393 0.386 0.377 0.370 0.359 0.354 0.341

9 0.380 0.370 0.358 0.354 0.344 0.331 0.320 0.313 0.301 0.292

10 0.574 0.569 0.561 0.555 0.546 0.532 0.529 0.514 0.506 0.495

11 0.542 0.533 0.526 0.516 0.499 0.488 0.486 0.470 0.456 0.447

12 0.466 0.451 0.437 0.425 0.423 0.411 0.399 0.385 0.375 0.361

13 0.623 0.615 0.605 0.601 0.583 0.586 0.571 0.558 0.552 0.541

14 0.597 0.582 0.578 0.562 0.549 0.550 0.529 0.516 0.502 0.488

15 0.728 0.720 0.704 0.703 0.694 0.688 0.673 0.663 0.650 0.642

16 0.713 0.701 0.678 0.675 0.665 0.649 0.643 0.627 0.620 0.601

17 0.639 0.626 0.616 0.600 0.593 0.581 0.570 0.554 0.541 0.521

18 0.745 0.743 0.737 0.723 0.710 0.694 0.688 0.683 0.673 0.661

19 0.726 0.720 0.714 0.702 0.687 0.675 0.664 0.652 0.635 0.627

20 0.814 0.806 0.803 0.790 0.783 0.773 0.765 0.752 0.744 0.736

γ1 n γ2 = 1.25 γ2 = 1.00 γ2 = 0.75 γ2 = 0.50 γ2 = 0.25 γ2 = 0.00 γ2 = −0.25 γ2 = −0.50 γ2 = −0.75 γ2 = −1.00

0 5 0.233 0.223 0.220 0.206 0.204 0.193 0.187 0.178 0.162 0.146

6 0.181 0.171 0.167 0.155 0.150 0.139 0.124 0.114 0.106 0.084

7 0.121 0.120 0.106 0.103 0.095 0.085 0.083 0.070 0.063 0.050

8 0.333 0.323 0.317 0.304 0.292 0.282 0.263 0.251 0.244 0.229

9 0.283 0.268 0.255 0.245 0.228 0.219 0.201 0.182 0.169 0.161

10 0.486 0.482 0.464 0.455 0.441 0.426 0.413 0.401 0.384 0.390

11 0.432 0.416 0.404 0.384 0.371 0.354 0.331 0.311 0.296 0.298

12 0.350 0.330 0.321 0.307 0.287 0.266 0.251 0.228 0.223 0.220

13 0.527 0.506 0.499 0.491 0.474 0.463 0.440 0.429 0.426 0.443

14 0.476 0.459 0.438 0.430 0.403 0.383 0.365 0.346 0.341 0.344

15 0.630 0.619 0.608 0.589 0.583 0.560 0.547 0.540 0.532 0.564

16 0.585 0.569 0.545 0.534 0.517 0.498 0.473 0.456 0.442 0.467

17 0.510 0.491 0.482 0.459 0.439 0.412 0.393 0.379 0.361 0.391

18 0.648 0.629 0.623 0.610 0.595 0.580 0.562 0.546 0.541 0.579

19 0.607 0.587 0.569 0.556 0.535 0.512 0.494 0.462 0.470 0.499

20 0.724 0.710 0.702 0.686 0.673 0.658 0.644 0.633 0.625 0.680

6. Concluding Remarks

When the distributions which were subjected to the analysis and the means of first and second sample are regarded,

it was observed that in all distributions and in all sample sizes, the statistical power increased as the mean of first

sample is fixed and 0, and the mean of second sample increased. It is concluded that, in all of the distributions,

the greatest power increase occurred when the mean of the first sample is fixed and 0, and the mean of the second

sample increased from 0.5 to 1.

Excluding a few exceptional cases, it is one of the conclusions obtained from the study that when the sample sizes

were increased the statistical power value was increasing. In all of the distributions in which μ1 = 0 and μ2 = 0.5
in passing from (6, 6) sample size to (7, 7) sample size; in passing from (10, 10) sample size to (11, 11) sample

size; in passing from (11, 11) sample size to (12, 12) sample size and in passing from (16, 16) sample size to (17,

17) sample size it was observed that the statistical power values of the WW test decreased and the in other sample

sizes as the sample sizes increase it was observed that the statistical power values of WW test was increasing.

Similarly, the statistical power of WW test decreased for all sample pairs, from (5, 5) to (19, 19), when the means

were μ1 = 0 and μ2 = 1 and μ1 = 0 and μ2 = 1.5. When all of the distributions are regarded, the greatest statistical

power values for the WW test were viewed in (20, 20) sample size and the smallest statistical power values were

viewed for (7, 7) sample sizes.

The highest statistical power value observed is 0.814 for samples of size (20, 20) and for μ1 = 0 and μ1 = 1.5,

γ1 = 0 and γ2 = 3.75. The smallest statistical power value observed in the study is the 0.008 for samples of size

(7, 7) and μ1 = 0 and μ1 = 0.5, γ1 = 0 and γ2 = 1.00. Thus, it is concluded that the statistical power of WW test

decreases as the kurtosis coefficients decreases, given that the skewness coefficient is fixed to zero.

Simulation results show that for skewness of zero and fixed sample size, the statistical power decreases as the

coefficient of kurtosis [Equation 4] decreases. No special pattern is observed for fixed γ4 and increasing sample

sizes. However, the statistical power is very low when the mean of second sample increased from 0.5 to 1. The
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highest power is reached when the mean of second sample increased from 0.5 to 1.5 for sample sizes of twenty and

γ1 = 0 and γ2 = 3.75. Only one parametric test was used for the simulation, thus it is recommended to replicate

that study on some other nonparametric tests and to compare results. It is also recommended to replicate the study

for larger sample sizes and for skewed distributions.
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