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Abstract

In this work, we study the goal-achieving probabilities of a multiperiod mean-variance financial strategy under

a switch-when-safe stopping time rule. This stopping time is defined as the first moment, if it occurs, where the

investor’s cumulative wealth, at this point, can be safely reinvested in a simple bank account in order to meet his

financial objective at the end of the investment horizon.
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1. Introduction

Portfolio management theory consists in finding the optimal distribution of wealth among financial assets through a

delicate balance between higher returns and lower exposure to risk. In a groundbreaking paper, Markowitz (1952),

Nobel prize laureate in economics, proposed the mean-variance portfolio selection model for a myopic investment

horizon (single period). Here an investor’s objective is to minimize the variance of his terminal wealth under a

targeted average return objective. Markowitz’s approach is considered by many scholars to be the cornerstone of

modern day portfolio theory (see Rubinstein, 2002). The dynamic multiperiod extension of the Markowitz model

has been studied extensively since that time, but an explicit expression for the optimal portfolio had not been

derived until Li and Ng’s (2000) paper.

By design the mean-variance approach works well on average, however it is widely criticized since a real-world

investor would experience only one of the many market scenarios. Hence one should also consider the probability

of eventually reaching his financial goal. With this in mind, Zhou and Li (2006) devised, in a continuous-time

setting, a modified mean-variance portfolio strategy, which we refer to as a switch-when-safe strategy. Basically,

an investor follows the usual optimal strategy up to the first (random) moment, if it occurs, where he could reinvest

all of his cumulative wealth in a riskless bank account so that it would generate the desired wealth at the end of

the investment horizon. They showed that by taking deterministic parameters in a Black Scholes model, which

describes stock prices driven by a Brownian motion, gave the following surprising results:

1) the goal-achieving probability is independent of the initial wealth and desired terminal wealth;

2) the goal-achieving probability has an explicit formulation in terms of market parameters and time horizon;

3) the goal-achieving probability has a lower bound of 0.80.

In this paper, we wish to establish to what extent these properties can be recovered when we consider a more

realistic multiperiod (discrete-time) market model where, for example, we are not restricted to assuming a log-

normal distribution of stock prices as in a Black-Scholes context.

2. Switch-When-Safe Portfolios

2.1 Multiperiod Market Model and Mean-Variance Strategies

Consider a financial market with one riskless asset and n risky assets. Let S 0
i denote the deterministic price of the

riskless asset and, for i = 0, . . . ,N, let S j
i be the stochastic price at time i of the jth risky asset. Let u j

i be the amount
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of wealth an investor allocates at the beginning of each time i = 0, . . . ,N − 1 in the jth risky asset, then assuming

that the strategy is self-financing, the wealth process satisfies

xi+1 =

⎛⎜⎜⎜⎜⎜⎜⎝xi −
n∑

j=1

u j
i

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝S 0

i+1

S 0
i

⎞⎟⎟⎟⎟⎠ +
n∑

j=1

u j
i

S j
i+1

S j
i

.

Equivalently by setting si =
S 0

i+1

S 0
i

, ui =
[
u1

i , . . . , u
n
i

]′
and Pi =

[
S 1

i+1

S 1
i
− S 0

i+1

S 0
i
, . . . ,

S n
i+1

S n
i
− S 0

i+1

S 0
i

]′

xi+1 = sixi + P′iui. (1)

A mean-variance strategy ui is the solution to the following stochastic control problem

min
ui,0�i�N−1

VAR (xN) s.t. E (xN) = z

where z > x0

∏N−1
i=0 si.

According to Li and Ng (2000), under the assumption that E−1
(
PiP′i

)
is a positive definite matrix for all time

periods, the optimal portfolio is then given by

uMV
i =

⎡⎢⎢⎢⎢⎢⎢⎣αN

N−1∏
k=i+1

s−1
k − sixi

⎤⎥⎥⎥⎥⎥⎥⎦ E−1 (PiP′i
)

E (Pi) (2)

where

αN = x0

N−1∏
k=0

sk +
z − x0

∏N−1
k=0 sk

1 −∏N−1
k=0 (1 − Bk)

Bk = E
(
P′k
)

E−1
(
PkP′k

)
E (Pk) . (3)

2.2 Switch-When-Safe Portfolios and Goal-Achieving Probabilities

Now consider the following stopping time

τz = inf

⎧⎪⎪⎨⎪⎪⎩0 � i � N | xi

N−1∏
k=i

sk � z

⎫⎪⎪⎬⎪⎪⎭
with the usual conventions inf ∅ = ∞ and

∏ j
k= j+1

yk = 1. We define a multiperiod switch-when-safe mean-variance
strategy as follows

uS WS
i =

{
uMV

i , if i < τz ∧ N;

[0]1×n , else.

Naturally, we would like to evaluate P (τz � N), to achieve this we present the following propositions

Proposition 1 A stopped mean-variance wealth reinvested in the riskless asset has a terminal wealth given by

xi+1

N−1∏
k=i+1

sk = αN −
⎛⎜⎜⎜⎜⎜⎜⎝αN − x0

N−1∏
k=0

sk

⎞⎟⎟⎟⎟⎟⎟⎠
i∏

k=0

(
1 − P′kE−1

(
PkP′k

)
E (Pk)

)
. (4)

Proof. First, from the wealth Equation (1) we have

xi+1

N−1∏
k=i+1

sk = xi

N−1∏
k=i

sk + P′iui

N−1∏
k=i+1

sk.

By substituting the value of the optimal portfolio (2), setting Yi = xi
∏N−1

k=i sk and

Ci = P′i E
−1 (PiP′i

)
E (Pi) (5)

we obtain the following first order linear recursive equation

Yi+1 = (1 −Ci) Yi + αNCi
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which has the solution

Yi+1 = Y0

i∏
k=0

(1 −Ck) + αN

i∑
k=0

i∏
j=k+1

(
1 −C j

)
Ck.

Finally observe that

i∑
k=0

i∏
j=k+1

(
1 −C j

)
Ck =

i∑
k=0

⎡⎢⎢⎢⎢⎢⎢⎣
i∏

j=k+1

(
1 −C j

)
−

i∏
j=k

(
1 −C j

)⎤⎥⎥⎥⎥⎥⎥⎦ = 1 −
i∏

j=0

(
1 −C j

)

thus

Yi+1 = αN − (αN − Y0)

i∏
k=0

(1 −Ck) .

�

Proposition 2 The goal achieving probability of a switch-when safe strategy is given by

P (τz � N) = P

⎛⎜⎜⎜⎜⎜⎜⎝ inf
0�i�N−1

⎧⎪⎪⎨⎪⎪⎩
i∏

k=0

(1 −Ck) �
N−1∏
k=0

(1 − Bk)

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠ (6)

where Bk and Ck are defined by (3) and (5) respectively.

Proof. From Equation (4), we have

xi

N−1∏
k=i

sk � z ⇔
i∏

k=0

(
1 − P′i E

−1 (PiP′i
)

E (Pi)
)
� αN − z

αN − x0

∏N−1
k=0 sk

and therefore

αN − z

αN − x0

∏N−1
k=0 sk

=
x0

∏N−1
k=0 sk +

z−x0
∏N−1

k=0 sk

1−∏N−1
k=0 (1−Bk)

− z

z−x0
∏N−1

k=0 sk

1−∏N−1
k=0 (1−Bk)

=

1

1−∏N−1
k=0 (1−Bk)

− 1

1

1−∏N−1
k=0 (1−Bk)

=

N−1∏
k=0

(1 − Bk)

�

As in Li and Zhou’s continuous-time Black-Scholes model, Equation (6) shows that neither initial wealth or tar-

geted wealth affects the goal-achieving probabilities in a multiperiod setting.

The process appearing in (6) also suggests that in general one might not obtain closed-form formulas for the goal-

achieving probabilities unless, for example, this process follows a simple dynamic such as a recombinant tree.

Nonetheless, in subsection 2.3, we will illustrate that adequate values can be obtained through basic Monte Carlo

simulations.

Furthermore a universal 80% lower bound probability cannot be achieved for all market models and investment

horizons. For example, if we consider a single step model (N = 1) with a single risky asset, then, from Equa-

tion (6), we are reduced to evaluating P (E (P0) � P0). So clearly, if P0 follows a symmetrical distribution, then

P (E (P0) � P0) = 0.5. However, in section 3, we will show that under some assumptions on the market model,

we can obtain asymptotical lower bounds (that is for a large number of transaction periods in a given time frame).

2.3 Numerical Examples

Example 1 Consider a market model with one risky asset and where the daily log-returns, ln
(

S i+1

S i

)
, are identically

distributed and follow a normal distribution with mean μ = 0.000486 and standard deviation σ = 0.009789

(Note 1), and furthermore the risky asset has a constant (compounded) daily interest of r = 0.0649/365 (Note 2).

Table 1 provides Monte Carlo estimates of the goal-achieving probabilities where the numbers of sample paths are

indicated in the first column and the time horizons are indicated in the top row:
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Table 1. Monte Carlo estimates of goal-achieving probabilities for normally distributed log-returns

N (days) 5 10 15 20 25 30

m = 105 0.7361 0.7916 0.8083 0.8171 0.8205 0.8210

m = 106 0.7349 0.7897 0.8087 0.8174 0.8209 0.8228

m = 107 0.7356 0.7897 0.8086 0.8171 0.8211 0.8227

Example 2 In the previous example, the mean and standard deviation characterized the market’s dynamics. To

better illustrate the effect of the market model’s parameters on the hitting time probabilities, we will assume this

time that the identically distributed daily log-returns, ln
(

S i+1

S i

)
, follow a four-parameter normal inverse gaussian

distribution NIG (α, β, δ, μ), as seen in Barndorff-Nielsen (1995). We choose mean μ = 0.000486, asymmetry

parameter β = 0 and generate m = 106 sample paths for each time horizons. To easily compare our results, we

consider different values for the scale parameter δ and tail heaviness parameter α all of which generate the same

first and second moments E (Pi) and E
(
P2

i

)
:

Figure 1. Monte Carlo estimates of goal-achieving probabilities for normal inverse gaussian log-returns

For this type of modeling, Figure 1 suggests that heavier tail distributions (lower values of α) tend to lead to lower

first passage-time probabilities.

Example 3 Finally, to study the effect of mutual dependency in multiple assets models, let us choose an horizon of

N = 30 days and a market model with two risky assets whose joint daily excess rate of return follows a “bivariate

binomial tree” process

(
P1,i, P2,i

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(U1,U2) prob. p1

(U1,D2) prob. p2

(D1,U2) prob. p3

(D1,D2) prob. p4

We consider different values of p1, p2, p3, and p4 leading to positive, negative or zero correlation between the

individual daily excess rate of return of the risky assets and analyze the resulting goal-achieving probabilities.

Let U1 = 0.0015, D1 = −0.0003, U2 = 0.0006, D2 = −0.0012, we will consider p1, p2, p3, and p4 such that the

individual excess rate of return of the stocks share the same first and second moment while generating different

correlation values. The following table gives Monte Carlo estimates (106 simulated trajectories) for the goal-

achieving probabilities :

Table 2. Monte Carlo estimates of goal-achieving probabilities for bivariate tree excess returns

(p1, p2, p3, p4) P (τz � N) E
(
Pj,i

)
E
(
P2

j,i

)
ρ
(
P1,i, P2,i

)
(

7
32
, 1

32
, 17

32
, 7

32

)
0.8085 1.5 × 10−4 6.3 × 10−7 1

6(
3
16
, 1

16
, 9

16
, 3

16

)
0.8201 1.5 × 10−4 6.3 × 10−7 0(

5
32
, 3

32
, 19

32
, 5

32

)
0.8356 1.5 × 10−4 6.3 × 10−7 − 1

6
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In this example, positive (negative) correlation leads to lower (higher) goal-achieving probabilities.

An interesting observation can be made from the second case since it is generated from two independent binomial

trees of the form

P1,i =

⎧⎪⎪⎨⎪⎪⎩
U1 prob. 1

4

D1 prob. 3
4

, P2,i =

⎧⎪⎪⎨⎪⎪⎩
U2 prob. 3

4

D2 prob. 1
4

If we consider two separate markets with only one of the assets in each, then the individual goal-achieving proba-

bilities would be respectively, for these single asset models, 0.7813 and 0.7886 while in a combined market, where

an individual can invest in both assets, the switch-when-safe strategy would produce a higher goal achieving prob-

ability of 0.8201.

3. Convergence to Continuous-Time Results

Let T > 0 and, for each t ∈ [0,T ], set i = [Nt], we will consider a financial market consisting of one riskless asset

and one risky asset and suppose that the excess rate of return {Pi, i = 0, . . . ,N − 1} are independent and identically

distributed.

Proposition 3 Let mN = E [ln (1 −Ci)] and s2
N = VAR [ln (1 −Ci)], if there exists α ∈ R, β > 0 and γ < 0 such that

for each i = 0, . . . ,N − 1

(A1) limN→∞ imN = αt;

(A2) limN→∞ Ns2
N = β

2T ;

(A3) limN→∞ N ln (1 − Bi) = γT ;

then

lim
N→∞ P (τz � N) = Φ

((
γ − α
β

) √
T
)
+ e2

αγ

β2
T
Φ

((
α + γ

β

) √
T
)

(7)

where Φ is the cumulative density function of a standardized normal distribution.

Proof. From (6), we have

P (τz � N) = P

⎛⎜⎜⎜⎜⎜⎝ inf
0�i�N−1

⎧⎪⎪⎨⎪⎪⎩
i∑

k=0

ln (1 −Ck) � N ln (1 − Bk)

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎠ .

Now, consider the process

i∑
k=0

ln (1 −Ck) − N ln (1 − Bk) =

⎛⎜⎜⎜⎜⎝
√

NsN√
T

⎞⎟⎟⎟⎟⎠
√

T√
N

i∑
k=0

[
ln (1 −Ck) − mN

sN

]
+ imN − N ln (1 − Bk)

where S i =
∑i

k=0 Xk, Xk =
ln(1−Ck)−mN

sN
and consider the partial sums process (linear interpolation)

{ξN (t) = S i + (Nt − i)Xi+1, t ∈ [0,T ]} .

From Donsker’s invariance principle (see Karatzas & Shreve, 1991),
√

T√
N
ξN converges weakly (in distribution) to

Brownian motion W (t) on [0,T ]. Therefore, using assumptions (A1), (A2) and (A3) then

⎛⎜⎜⎜⎜⎝
√

NsN√
T

⎞⎟⎟⎟⎟⎠
√

T√
N
ξN + imN − N ln (1 − Bk)

L−→ βW (t) + αt − γ

on [0,T ]. Since the first passage time functional is continuous almost everywhere with respect to the Brownian

motion (with drift), using the continuous mapping theorem (see Whitt, 2002) and results on first passage-time of

Brownian motion through time-varying boundaries (see Di Nardo et al., 2001), we have

lim
N−→∞ P (τz � N) = Φ

((
γ − α
β

) √
T
)
+ e2

αγ

β2
T
Φ

((
α + γ

β

) √
T
)
.

�
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Proposition 4 Let α, β and γ as defined in Proposition 3, if α < 0 and γ > α then for every T > 0 we have

lim
N−→∞ P (τz � N) � Φ

(√
α − γ
α + γ

)
−

√
α2 − γ2

2α
ϕ

(√
α − γ
α + γ

)
, (8)

where ϕ and Φ are respectively the probability and cumulative density functions of a standardized normal distri-
bution.

Proof. Let

f (x) = Φ

((
γ − α
β

)
x
)
+ e2

αγ

β2
x2

Φ

((
α + γ

β

)
x
)
,

a smooth function defined on [0,∞) then, using the fact that ϕ
((
γ−α
β

)
x
)
= e2

αγ

β2
x2

ϕ
((
α+γ
β

)
x
)
, we have

∂ f (x)

∂x
=

2γ

β
e2
αγ

β2
x2
[
ϕ

((
α + γ

β

)
x
)
+

2α

β
xΦ

((
α + γ

β

)
x
)]
.

Since
∂ f (x)

∂x |x=0 =
2γ
β
ϕ (0) < 0, f (0) = 1 and limx→∞ f (x) = 1 then f admits at least one local minima. We will

show that this minima is unique.

First observe that
∂ f (x)

∂x
=

2γ

β
xe2

αγ

β2
x2

g (x) ,

where

g (x) =
ϕ
((
α+γ
β

)
x
)

x
+

2α

β
Φ

((
α + γ

β

)
x
)
.

Now

∂g (x)

∂x
= ϕ

((
α + γ

β

)
x
) [
α2 − γ2

β2
− 1

x2

]
,

therefore g is decreasing on

[
0, β√

α2−γ2

]
and increasing on

[
β√
α2−γ2
,∞

]
, since limx→0+ g (x) = ∞ and limx→∞ g (x) =

0 there is a unique value x̂ ∈
[
0, β√

α2−γ2

]
such that

∂ f (x)

∂x |x=x̂ = g (x̂) = 0.

Thus, x̂ is the global point of minimum of f , that is for all x ∈ [0,∞],

f (x) � f (x̂)

= Φ

((
γ − α
β

)
x̂
)
+ e2

αγ

β2
x̂2

Φ

((
α + γ

β

)
x̂
)

= Φ

((
γ − α
β

)
x̂
)
− β

2α
e2
αγ

β2
x̂2 ϕ

((
α+γ
β

)
x̂
)

x̂

= Φ

((
γ − α
β

)
x̂
)
− β

2α

ϕ
((
γ−α
β

)
x̂
)

x̂
.

Finally, consider

h (y) = Φ

((
γ − α
β

)
y
)
− β

2α

ϕ
((
γ−α
β

)
y
)

y

defined on

[
0, β√

α2−γ2

]
, then

∂h (y)

∂y
=
β

2α
ϕ

((
γ − α
β

)
y
) [

1

y2
− α

2 − γ2

β2

]
,
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thus h is decreasing on

[
0, β√

α2−γ2

]
then

f (x) � f (x̂)

� h

⎛⎜⎜⎜⎜⎜⎝ β√
α2 − γ2

⎞⎟⎟⎟⎟⎟⎠
= Φ

(√
α − γ
α + γ

)
−

√
α2 − γ2

2α
ϕ

(√
α − γ
α + γ

)
.

�

Example 4 Consider the Cox-Ross-Rubinstein binomial tree model (see Shreve, 2005), a discrete version of the

continuous-time Black-Scholes market model. This is a three-parameter financial market model, with μ > r > 0

and σ > 0, where the riskless asset’s dynamics are given by

S 0
i+1

S 0
i

= erT/N

while those of the risky asset’s are given by

S 1
i+1

S 1
i

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
eσ
√

T/N prob. p = eμT/N−e−σ
√

T/N

eσ
√

T/N−e−σ
√

T/N

e−σ
√

T/N prob. 1 − p

In this case, limN→∞ imN = − 3
2
θ2t , limN→∞ Ns2

N = θ
2T and limN→∞ N ln (1 − Bk) = −θ2T where θ = μ−r

σ
> 0

therefore from (7) we have

lim
N−→∞ P (τz � N) = Φ

(
1

2
θ
√

T
)
+ e3θ2TΦ

(
−5

2
θ
√

T
)

and from (8),

lim
N−→∞ P (τz � N) � Φ

(
1√
5

)
+

√
5

6
ϕ

(
1√
5

)
> 0.80

which is precisely Zhou’s result in the continuous-time setting with constant market parameters.

4. Conclusion

In this paper, we established, for a general discrete-time market model, fundamental properties of a multiperiod

switch-when-safe mean-variance strategy. This is a financial strategy in which an investor follows the optimal

mean-variance strategy up to the first moment, if it occurs, at which time the cumulative wealth can be transferred

in a simple bank account in order to safely attain the financial objective at the end of the investment horizon. Under

the assumption that the excess rates of return are time-independent, surprisingly, the goal-achieving probabilities

are not affected by the initial wealth nor targeted wealth. Goal-achieving probabilities are easily obtained through

standard Monte Carlo simulations of the first passage time through a fixed boundary of products of time inde-

pendent random variables. Furthermore, under mild assumptions on the market model, the continuous-time limit

of the goal-achieving probability expression converges to an explicit tractable formula involving the cumulative

density function of a standardized normal distribution. Finally, in several cases, the continuous-time limit of the

goal-achieving probability admits a lower bound.

Further investigation might include a double-barrier problem in which the investor would also introduced a lower

threshold for his cumulative wealth when pursuing the mean-variance optimal strategy. A common situation would

be a no bankruptcy condition, therefore we could study the probability of first reaching a safe reinvestment level

of wealth before hitting possible bankruptcy.

An equally interesting problem would be the study of the goal-achieving probabilities in the case of a multiperiod

setting where the excess rate of returns are allowed to be time-dependent (see Schweizer, 1995; Vaillancourt &

Watier, 2005) this would include usual models such as Markov chains and time series. A particularly challenging

question with the time-dependency feature would be to know if continuous-time limit results can still be obtained

since, in this case, we cannot directly apply Donsker’s invariance principle (functional central limit theorem).
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