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Abstract

The binomial outcome data are widely encountered in many real world applications. The Binomial distribution

often fails to model the binomial outcomes since the variance of the observed binomial outcome data exceeds the

nominal Binomial distribution variance, a phenomenon known as overdispersion. One way of handling overdis-

persion is modeling the success probability of the Binomial distribution using a continuous distribution defined

on the standard unit interval. The resultant general class of univariate discrete distributions is known as the class

of Binomial mixture distributions. The Beta-Binomial (BB) distribution is a prominent member of this class of

distributions. The Kumaraswamy-Binomial (KB) distribution is another recent member of this class. In this paper

we focus the emphasis on the McDonald’s Generalized Beta distribution of the first kind as the mixing distribu-

tion and introduce a new Binomial mixture distribution called the McDonald Generalized Beta-Binomial distribu-

tion(McGBB). Some theoretical properties of McGBB are discussed. The parameters of the McGBB distribution

are estimated via maximum likelihood estimation technique. A real world dataset is modeled by using the new

McGBB mixture distribution, and it is shown that this model gives better fit than its nested models. Finally, an ex-

tended simulation study is presented to compare the McGBB distribution with its nested distributions in handling

overdispersed binomial outcome data.

Keywords: maximum likelihood, simulation, Kumaraswamy, generalized Beta first kind, ANODEV

1. Introduction

It is well known that the discrete random variable Y , the number of successes in n binary trials is generally mod-

eled using the traditional Binomial distribution with the parameters n and p, if the binary trials are identical and

independent. The probability of success parameter (p|0 ≤ p ≤ 1) is usually assumed to be a constant from trial

to trial. The mean and the variance of a Binomially distributed random variable is then given by E (Y) = np
and Var (Y) = np (1 − p). However, in most empirical situations, it has been observed that the actual variance

of Y is greater than the assumed Binomial variance. This phenomenon is generally known as Overdispersion.

“Extra Binomial Variation” and “Binomial Heterogeneity” are some other commonly used terms to label overdis-

persion. One of the possible reasons for the overdispersion is that the success probability, p, does not remain as

a constant from trial to trail but varies itself as a random variable. This leads to treat the success probability as a

continuous random variable P, which is bounded between 0 and 1. The resultant class of distributions is known

as the class of Binomial Mixture Distributions. A Binomial mixture distribution can be symbolically denoted as

Bin (n, P) ∧ FP (p) where Bin (n, P) represents the Binomial distribution and FP (p) symbolizes the distribution

function of the mixing distribution of the random variable P and the mixing density of P is denoted by fP (p). If

the mean and the variance of the mixing distribution of the random variable P are denoted by E (P) = nπ and

Var (P) = σ2 respectively, then it can be shown that the mean and the variance of the Binomial mixture random

variable Y are E (Y) = nπ and Var (Y) = nπ (1 − π) + n (n − 1)σ2 respectively. The additional component in the

variance of Y models the overdispersion.

Even though number of possible (Kotz & Van Dorp, 2004; Johnson, Kemp, & Kotz, 2005) univariate continuous
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distributions defined on the standard unit interval [0,1] are available as the mixing distribution of the success

probability random variable P, the Beta distribution Beta (a, b), where a and b are the two shape parameters of

the Beta distribution, is the most commonly used mixing distribution to model the random variable P due to

its ability of accommodating wide range of shapes. Thus the Beta-Binomial (BB) distribution, represented by

Bin (n, P) ∧ Beta (a, b), is considered as a very versatile distribution in modeling overdispersed binomial outcome

data in literature. Extensive literatures exist on the study of Beta-Binomial distribution. Theoretical properties,

estimation techniques and applications of the Beta-Binomial distribution have been discussed by, for example,

Skellam (1948), Chatfield and Goodhardt (1970), Griffiths (1973), Williams (1975), Haseman and Kupper (1977),

Paul (1982), Tripathi, Gupta, and Gurland (1994), Gange, Munoz, Saez, and Alonso (1996), Ennis and Bi (1998),

and recently Bandyopadhya, Reich, and Slate (2011), not limited but numerous.

Recently Li, Huang, and Zhao (2011) used the Kumaraswamy double bounded (Kumaraswamy, 1980), distri-

bution as the mixing distribution of the Binomial probability of success and obtained a new Binomial Mix-

ture distribution called the Kumaraswamy-Binomial (KB) distribution, which can be represented by Bin (n, P) ∧
Kumaraswamy (ζ, θ), where ζ and θ are the two shape parameters of the Kumaraswamy distribution. The Ku-

maraswamy distribution which is defined on the standard unit interval [0,1], is also known as Minimax distribution.

Analogous to the Beta distribution, the Kumaraswamy distribution also has two parameters and can assume wide

variety of shapes (Jones, 2009). Li et al. (2011), have used the Kumaraswamy-Binomial distribution to model

overdispersed binomial data and stated that both BB and KB distributions have same flexibility in modeling the

overdispersed binomial data. In addition, Li et al. (2011) have compared their distribution with another Binomial

mixture distribution proposed by Rodrı́guez-Avi, Conde-Sánchez, Sáez-Castillo, and Olmo-Jiménez (2007). This

distribution is known as the Generalized Beta-Binomial (GBB) distribution, which is developed by generalizing

the Gaussian hypergeometric representation of Beta-Binomial distribution. Both Rodrı́guez-Avi et al. (2007) and

Li et al. (2011) have shown that the Generalized Beta-Binomial (GBB) distribution with three additional parame-

ters possesses large flexibility in modeling overdispersion compared to the distributions with only two additional

parameters such as Beta-Binomial and Kumaraswamy-Binomial distribution.

The aim of this paper is to propose an alternative Generalized Beta distribution, which has three additional pa-

rameters, as the mixing distribution to model the Binomial success probability. The McDonald’s Generalized Beta

distribution of the first kind (McDonald, 1984, 1995) is considered in our work. It has been shown that this distri-

bution has more flexibility than the Beta and Kumaraswamy distributions in literature (see for example: Alexander,

Cordeiro, Ortega, & Sarabia, 2012). We call the distribution which shall be obtained by mixing the McDonald’s

Generalized Beta distribution of the first kind to the success probability of Binomial distribution in our work as the

McDonald Generalized Beta-Binomial distribution (McGBB). It can also be shown that our new mixture distribu-

tion includes both Beta-Binomial distribution and Kumaraswamy-Binomial distribution as its nested distributions.

The paper is organized as follows: In section 2, we present a brief review of Beta, Kumaraswamy, McDon-

ald’s generalized beta of the first kind, Beta-Binomial and Kumaraswamy-Binomial distributions. The McDonald

Generalized Beta-Binomial distribution is developed in section 3 by deriving the probability mass function and

moments. The section 4 demonstrates that both BB distribution and KB distribution are nested distributions of

McGBB distribution. In section 5, we discuss the parameter estimation of McGBB distribution by means of Maxi-

mum Likelihood Estimation technique. An empirical overdispersed binomial dataset is analyzed with our McGBB

distribution and its nested distributions, and a comparison study is done in section 6. Then, a simulation study is

presented in section 7 to compare the performance of McGBB model with BB model and KB model in handling

overdispersed binomial data. Finally, section 8 provides some concluding remarks.

2. Review on Key Ingredients

In this section we briefly outline the three mixing distributions of the random variable P, and the two Binomial

mixture distributions, Beta-Binomial distribution and Kumaraswamy-Binomial distribution.

2.1 Beta Distribution

Let P be a random variable following a Beta distribution with two shape parameters a and b, denoted by Beta (a, b).

The probability density function of P is then given by

fBeta (p; a, b) =
pa−1(1 − p)b−1

B (a, b)
; 0 ≤ p ≤ 1 and a, b > 0, (1)

where B (a, b) denotes a beta function.
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2.2 Kumaraswamy Distribution

Let P be a random variable following a Kumaraswamy distribution (Kumaraswamy, 1980), with two shape param-

eters ζand ϑ, denoted by Kumaraswamy (ζ, θ). The probability density function of P is then given by

fKum (p; ζ, θ) = ζθpζ−1(1 − p)θ−1; 0 ≤ p ≤ 1 and ζ, θ > 0 (2)

2.3 McDonald’s Generalized Beta Distribution of the First Kind

Let P be a random variable following a McDonald’s Generalized Beta distribution of the first kind (McDonald,

1984, 1995) with three shape parameters α, β and γ, denoted GB1 (α, β, γ). The probability density function of P
is then given by

fGB1 (p; α, β, γ) =
γ

B (α, β)
pαγ−1(1 − pγ)β−1; 0 ≤ p ≤ 1 and α, β, γ > 0. (3)

The rth moment of the McDonald’s Generalized Beta Distribution of the first kind is given by,

E (Pr) =
B

(
α + β, r/γ

)
B

(
α, r/γ

) . (4)

It is easy to show that the GB1 distribution is reduced to Beta distribution when γ = 1, and reduced to Ku-

maraswamy distribution when α = 1.

2.4 Beta-Binomial Distribution and Kumaraswamy-Binomial Distribution

The Beta-Binomial(BB) distribution is obtained from mixing the Binomial probability of success P over a Beta

distribution defined in section (2.1). Suppose Y |p ∼ Bin (n, P) and P ∼ Beta (a, b). The probability mass function

(PMF) of BB distribution is then given by

PBB (y) =
B (a + y, n + b − y)

B (a, b)
; y = 0, 1, . . . , n and a, b > 0. (5)

Likewise, the Kumaraswamy-Binomial distribution (Li et al., 2011) is obtained by mixing the Binomial probability

of success P over a Kumaraswamy distribution defined in section (2.2). Suppose Y |p ∼ Bin(n, P) and P ∼
Kumaraswamy (ζ, θ). The PMF of KB distribution is then given by,

PKB (y) = ζθ

(
n
y

) ∞∑
i=0

(−1)iB (y + ζ + ζi, n − y + 1); y = 0, 1, . . . , n and ζ, θ > 0. (6)

3. The McDonald Generalized Beta-Binomial Distribution (McGBB)

In this section we define the McDonald Generalized Beta-Binomial distribution and derive some basic properties

of the same distribution. We begin with the definition of developing Binomial mixture distributions.

Generally, a Binomial mixture distribution is obtained through an integration approach. Conditional on p, sup-

pose Y follows a Binomial distribution given by Bin (n, P), which is denoted by Y |p ∼ Bin (n, P). Unconditional

probability mass function of the Y can be obtained by evaluating the well-known integral,

PY (y) =

∫
PY |p (y) fP (p|Θ) dp. (7)

For y = 0, 1, . . . , n and Θ is the parameter space of the mixing distribution.

Definition 3.1 A random variable Y is said to have the McDonald Generalized Beta-Binomial (McGBB) distribu-

tion with parameters n, α, β and γ if and only if it satisfies the following stochastic representation

Y |p ∼ Bin (n, p) and P ∼ GB1 (α, β, γ)

where α, β and γ and are positive real numbers. We denote this distribution as Y ∼ McGBB (n, α, β, γ). Some basic

properties of McGBB (n, α, β, γ) are given in the following theorem.

Theorem 3.1 Let Y be a discrete random variable that follows a McDonald Generalized Beta-Binomial distribution
as defined in Definition 3.1. Then the following results hold:
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(i) The probability mass function of McGBB (n, α, β, γ) is given by,

PMcGBB (y; n, α, β, γ) =
(
n
y

)
γ

B (α, β)

∞∑
i=0

(−1)i
(
β − 1

i

)
B (y + αγ + γi, n − y + 1) , (8)

where, y = 0, 1, . . . , n and α, β, γ > 0

(ii) A rearranged probability mass function of McGBB (n, α, β, γ) is given by,

PMcGBB (y; n, α, β, γ) =
(
n
y

)
1

B (α, β)

n−y∑
j=0

(−1) j
(
n − y

j

)
B

(
y
γ
+ α +

j
γ
, β

)
, (9)

where, y = 0, 1, . . . , n and α, β, γ > 0

(iii) The rth moment of McGBB (n, α, β, γ) is given by,

E (Yr) = n
B (α + β, r/γ )

B (α, r/γ )
.

Then the mean and variance of McGBB (n, α, β, γ) are

E (Y) = nπ and Var (Y) = nπ (1 − π) {1 + (n − 1) ρ} , (10)

respectively, where

π =
B

(
α + β, 1/γ

)
B

(
α, 1/γ

) and ρ =

(
B(α+β,2/γ)

B(α,2/γ)

)
−

(
B(α+β,1/γ)

B(α,1/γ)

)2

(
B(α+β,1/γ)

B(α,1/γ)

)
−

(
B(α+β,1/γ)

B(α,1/γ)

)2
.

Here ρ can be termed as overdispersion parameter of the McGBB distribution.

Proof. (i) LetY |p ∼ Bin (n, P) and P ∼ GB1 (α, β, γ). Then the unconditional PMF of Y can be obtained by using

Equation (7) as below,

PY (y) =

1∫
p=0

PY|p (y) fGB1 (p; α, β, γ) dp =

1∫
p=0

(
n
y

)
py (1 − p)n−y γ

B (α, β)
pαγ−1(1 − pγ)β−1 dp.

By adding the Binomial series representation of (1 − pγ)β−1 for the above, we get

PY (y) =

(
n
y

)
γ

B (α, β)

∫ 1

p=0

py+αγ−1(1 − p)n−y

⎛⎜⎜⎜⎜⎜⎝
∞∑

i=0

(
β − 1

i

)
(−pγ)i

⎞⎟⎟⎟⎟⎟⎠ dp.

Since the Binomial series is a Power series, it could be integrated term by term and hence we have

PY (y) =

(
n
y

)
γ

B (α, β)

∞∑
i=0

(−1)i
(
β − 1

i

) ∫ 1

p=0

py+αγ+γi−1(1 − p)n−ydp.

Since Re (y + αγ + γi) > 0 and Re (n − y) > 0, [where Re (.) represents the real part of the number] the inner

integral can be represented using a Beta function as,

PY (y) =

(
n
y

)
γ

B (α, β)

∞∑
i=0

(−1)i
(
β − 1

i

)
B (y + αγ + γi, n − y + 1) .

which is the PMF given in Equation (8). Although the above PMF is a valid PMF as it is obtained by means

of well-known stochastic compound formula, an infinite series occurs inside the PMF. Therefore it is of interest

to know whether the above infinite series can be represented as a finite series. The second part of this theorem

rearranges the above PMF as given below.
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(ii) Now to obtain the rearranged probability mass function of McGBB (n, α, β, γ), let us begin with,

∞∑
i=0

(−1)i
(
β − 1

i

)
B (y + αγ + γi, n − y + 1) =

1∫
p=0

py+αγ−1 (1 − p)n−y(1 − pγ)β−1 dp.

Now consider the binomial series expansion of (1 − p)n−y in the above integral. Since n − y ≥ 0 and a positive

integer, this series terminates at n − y, and can be written in the form
n−y∑
j=0

(−1) j
(
n − y

j

)
p j. Thus,

∞∑
i=0

(−1)i
(
β − 1

i

)
B (y + αγ + γi, n − y + 1) =

1∫
p=0

py+αγ−1

n−y∑
j=0

(−1) j
(
n − y

j

)
p j(1 − pγ)β−1 dp

=

n−y∑
j=0

(−1) j
(
n − y

j

) 1∫
p=0

(pγ)
(

y
γ+α+

j
γ− 1
γ

)
(1 − pγ)β−1 dp.

Substitute p = z
1
γ , hence dp = 1

γ
z

1
γ−1dz ,

=
1

γ

n−y∑
j=0

(−1) j
(
n − y

j

) 1∫
z=0

(z)
(

y
γ+α+

j
γ−1

)
(1 − z)β−1 dz.

Again, since Re
(

y
γ
+ α + j

γ

)
> 0 and Re (β) > 0, the inner integral can be represented using a Beta function and

hence,
∞∑

i=0

(−1)i
(
β − 1

i

)
B (y + αγ + γi, n − y + 1) =

1

γ

n−y∑
j=0

(−1) j
(
n − y

j

)
B

(
y
γ
+ α +

j
γ
, β

)
. (11)

Now by inserting Equation (11) in Equation (8) we have,

PMcGBB (y; n, α, β, γ) =
(
n
y

)
1

B (α, β)

n−y∑
j=0

(−1) j
(
n − y

j

)
B

(
y
γ
+ α +

j
γ
, β

)
.

(iii) To obtain the rth moment about zero, mean and variance of McGBB (n, α, β, γ), apply the following well-

known identities of probability theory,

• Conditional Expectation Identity E (Yr) = EP (E (Yr |P)) and

• Conditional Variance Identity Var (Y) = EP (Var (Y |P)) + VarP (E (Y |P)).

Since Y |p ∼ Bin (n, P) it follows that,

E (Yr) = EP (E (Yr |P)) = n EP (Pr)

and

Var (Y) = EP (nP (1 − P)) + VarP (nP)

Now, by substituting the moments of P ∼ GB1 (α, β, γ) given in Equation (4) in the above two identities, the

moments of McGBB (n, α, β, γ) stated in Equation (10) can be derived. �
4. Nested Distributions of McGBB

In this section we show that the McGBB distribution can be nested to the BB distribution and KB distribution

under specific parameter settings.

Proposition 4.1 Let Y ∼ McGBB (n, α, β, γ), then by setting γ = 1, we obtain the Beta-Binomial distribution with
parameters n, α and β.
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Proof. For γ = 1, the PMF of McGBB in Equation (8) becomes,

PY (y) =

(
n
y

)
1

B (α, β)

∞∑
i=0

(−1)i
(
β − 1

i

)
B(y + α + i, n − y + 1),

PY (y) =

(
n
y

)
1

B (α, β)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1∫

p=0

py+α−1 (1 − p)n−y
∞∑

i=0

(
β − 1

i

)
(−p)i dp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

PY (y) =

(
n
y

)
1

B (α, β)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1∫

p=0

py+α−1 (1 − p)n−y+β−1 dp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Since Re (y + α) > 0 and Re (n − y + β) > 0, we have

PY (y) =

(
n
y

)
B (y + α, n − y + β)

B (α, β)
,

which is the PMF of Beta-Binomial distribution. �
Proposition 4.2 Let Y ∼ McGBB (n, α, β, γ), then by setting α = 1, we obtain the Kumarasswamy-Binomial
distribution with parameters n, β and γ.

Proof. For α = 1, the PMF of McGBB (n, α, β, γ) in Equation (8) becomes,

PY (y) =

(
n
y

)
γ

B (1, β)

∞∑
i=0

(−1)i
(
β − 1

i

)
B(y + γ + γi, n − y + 1) = γβ

(
n
y

) ∞∑
i=0

(−1)i
(
β − 1

i

)
B (y + γ + γi, n − y + 1) ,

which is the PMF of Kumaraswamy-Binomial distribution. �
Probability Mass Function plots of McGBB for some arbitrary parameter values are shown in Figure 1. Here,

a graphical comparison of McGBB is illustrated with its nested mixture distributions, BB and KB, by fixing the

common parameters and allowing the additional parameter to vary. These comparison plots indicate that the

additional parameter in our new Binomial mixture distribution has more impact on the shape of the PMF compared

to that of its nested distributions.

Figure 1. (a) PMF of Beta-Binomial for n = 8, α = 0.7, β = 1.3 and (b) PMF of of McDonald Generalized

Beta-Binomial distribution for n = 8, α = 0.7, β = 1.3 and some varying values of γ. (c) PMF of

Kumaraswamy-Binomial for n = 9, β = 0.8, γ = 1.5 and (d) PMF of McDonald Generalized Beta-Binomial

distribution for n = 9, β = 0.8, γ = 1.5 and some varying values of α
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5. Estimation of Parameters of McGBB

In this section we consider the Maximum Likelihood Estimation (MLE) of the three unknown parameters of the

McGBB distribution. Let Y = (y1, y2....yN)T be a random sample of size N from a McGBB distribution with

unknown parameter vector Θ = (α, β, γ)T . Then the log-likelihood function for Θ can be defined either by consid-

ering the probability mass function given in Equation (8) or Equation (9). However, the log-likelihood function in

terms of the PMF given in (8) proceeds too many iterations as there is an infinite series that results unnecessary

computer time. This is one of the reasons which motivated us to rearrange the PMF of the McGBB distribution

from Equation (8) to Equation (9). Thus the log-likelihood function for Θ can be defined as follows,

� (Θ) =

N∑
k=0

log

(
n
yk

)
+

N∑
k=0

log

(
1

B (α, β)

)
+

N∑
k=0

log

⎛⎜⎜⎜⎜⎜⎜⎝
n−yk∑
j=0

(−1) j
(
n − yk

j

)
B

(
yk

γ
+ α +

j
γ
, β

)⎞⎟⎟⎟⎟⎟⎟⎠
The Maximum Likelihood Estimates Θ̂ =

(
α̂, β̂, γ̂

)T
can be obtained either by directly maximizing the above

log-likelihood function with respect to Θ or by solving the three simultaneous equations obtained by equating

U (Θ) = 0. The score function U (Θ) is defined as the gradient of � (Θ) , derived by taking the partial derivatives

of � (Θ) with respect to α, β and γ. The components of the score function U (Θ) =
(
Uα (Θ) ,Uβ (Θ) , Uγ (Θ)

)T

are given below

Uα (Θ) = ∂� (Θ)
∂α
= N (ψ (α + β) − ψ (α)) +

N∑
k=0

1
Ck

(
n−yk∑
j=0

(−1) j
(
n − yk

j

)
Dαk

)
,

Uβ (Θ) = ∂� (Θ)
∂β
= N (ψ (α + β) − ψ (β)) +

N∑
k=0

1
Ck

(
n−yk∑
j=0

(−1) j
(
n − yk

j

)
Dβk

)
,

Uγ (Θ) = ∂� (Θ)
∂γ
=

N∑
k=0

1
Ck

(
n−yk∑

j=0
(−1) j

(
n − yk

j

)
Dγk

)
,

where

Ck =
n−yk∑
j=0

(−1) j
(
n − yk

j

)
B

(
yk
γ
+ α + j

γ
, β

)
,

Dαk = B
(

yk
γ
+ α + j

γ
, β

) [
ψ

(
yk
γ
+ α + j

γ

)
− ψ

(
yk
γ
+ α + j

γ
+ β

)]
,

Dβk = B
(

yk
γ
+ α + j

γ
, β

) [
ψ (β) − ψ

(
yk
γ
+ α + j

γ
+ β

)]
,

Dγk =
(

yk+ j
γ2

)
B

(
yk
γ
+ α + j

γ
, β

) [
ψ

(
yk
γ
+ α + j

γ
+ β

)
− ψ

(
yk
γ
+ α + j

γ

)]
,

and ψ (·) is the digamma function.

In particular, the optimization method “Simplex algorithm for minimization” (Nelder, 1965) is used to minimize

the user defined negative log-likelihood function with respect to Θ in our study.

6. Applications of McGBB in Handling Overdispersion

This section demonstrates the superiority of McGBB distribution over its nested binomial mixture distributions

BB and KB in handling overdispersed binomial outcome data. We compare the goodness of fit and the Analysis

of Deviance(ANODEV) results of the three Binomial mixture models in modeling a real world data that exhibits

overdispersion relative to the Binomial distribution. The data for this section is taken from Alanko and Lemmens

(1996), which have also been previously used by Rodrı́guez-Avi et al. (2007) and Li et al. (2011) for similar

purposes.

6.1 Data Description

The numbers of alcohol consumption days in two reference weeks are separately self-reported by a randomly

selected sample of 399 respondents in the Netherlands in 1983. The number of days an individual consumes

alcohol Y, out of n=7 days in a reference week can be treated as a Binomial variable. However, the Binomial

success probability p, the probability to consume alcohol on a randomly chosen day in a reference week for an

individual, cannot be treated as a constant in this setup since there is a person-to-person variation in the inclination

to drink and the drinking behavior. This leads to analyze this data using a Binomial mixture distribution by

modeling the random variable P using a continuous distribution bounded in the standard unit interval. Alanko and

Lemmens (1996) modeled this data using the Beta-Binomial distribution, Li et al. (2011) approached this data
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with the Kumaraswamy-Binomial distribution.

6.2 Modeling Results and Discussions

We model the alcohol consumption data by means of McGBB distribution by estimating the Maximum Likelihood

Estimates Θ̂ =
(
α̂, β̂, γ̂

)T
as described in section 5. The MLEs â and b̂ of BB model are taken as starting values for

α and β and the initial value of γ is taken as 1 in the numerical iterative procedures.

Table 1. presents the modeling results of BB model (Alanko & Lemmens, 1996), KB model (Li et al., 2011) and

new McGBB model. MLEs, Log-Likelihood values, χ2 statistics. Degrees of Freedoms (DF) and the correspond-

ing p-values of the three models for both weeks are reported.

Table 1. BB, KB and McGBB modeling results of alcohol consumption data
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0 47 54.6 54.30 51.29 42 47.9 47.72 45.92

1 54 42.0 41.74 45.67 47 42.9 42.81 45.13

2 43 38.9 38.86 43.17 54 41.9 41.98 44.75

3 40 38.5 38.70 41.61 40 42.5 42.57 44.50

4 40 40.1 40.38 40.52 49 44.3 44.45 44.35

5 41 44.0 44.41 40.01 40 47.8 48.00 44.51

6 39 53.1 53.51 41.83 43 54.9 55.02 46.57

7 95 87.8 87.10 94.90 84 76.7 76.45 83.26

Total 399 399 399 399 399 399 399 399

χ2 9.6 9.9837 2.162 9.7 9.8632 4.0036

DF 5 5 4 5 5 4

p-value 0.086 0.0757 0.706 0.082 0.0792 0.4055

Maximum â = 0.722 ζ̂ = 0.700 α̂ = 0.037 â = 0.857 ζ̂ = 0.850 α̂ = 0.037

Likelihood b̂ = 0.581 θ̂ = 0.590 β̂ = 0.195 b̂ = 0.700 θ̂ = 0.710 β̂ = 0.278

Estimates γ̂ = 24.023 γ̂ = 26.350

Log-

Likelihood -813.4571 -813.6939 -809.68 -821.3922 -821.4543 -818.48

As can be seen in Table 1, the p-values in the Chi-Square goodness of fit tests for both Beta-Binomial (0.086 for

week 1 and 0.082 for week 2) and Kumaraswamy-Binomial (0.0757 for week 1 and 0.0792 for week 2) models are

noticeably small. Further, there are considerably large discrepancies between the expected frequencies obtained

by means of both Beta-Binomial models and Kumaraswamy-Binomial models and the actual observed frequen-

cies. Also, Li et al. (2011) noted that both Beta-Binomial distribution and Kumaraswamy-Binomial distribution,

which have only two additional parameters, have the same flexibility in modeling this consumption data. Thus we

conclude that both Beta-Binomial and Kumaraswamy-Binomial modeling approaches are not very satisfactory in

analyzing this data. On the other hand, a Generalized Beta-Binomial(GBB) distribution proposed and developed

by Rodrı́guez-Avi et al. (2007) possesses great flexibility in modeling this data. Since Rodrı́guez-Avi’s GBB

distribution was developed in a different context, we do not pay much attention on that distribution at present.

However, the newly proposed McGBB distribution provides an admirable fit to the alcohol consumption data com-

pared to its nested distributions. The discrepancy between the observed frequencies and the expected frequencies

is much reduced in McGBB model over BB and KB models. For example, the observed number of respondents

who consume alcohol in all seven days of a week is 95 over the week 1 and 84 over the week 2; the BB model

provides the expected frequencies 87.8 and 76.7 for this; the KB model provides a similar 87.1 and 76.45 for

this; While, as anticipated, the McGBB model results 94.90 and 83.26 for expected number of respondents who

consume alcohol in all seven days of a week over the week 1 and week 2 respectively. The lesser discrepancies
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between the observed and expected frequencies in the McGBB model also results a substantial decrease in the

χ2 goodness of fit test statistic and accordingly larger p-values(0.7060 for week 1 and 0.4055 for week 2). This

indicates that for any standard statistical significance level McGBB distribution models this data well whereas BB

and KB distributions fail to fit.

Moreover, ANODEV results which compare McGBB model with its nested models in fitting this alcohol con-

sumption data are presented in Table 2.

Table 2. ANODEV to compare McGBB models with nested models in fitting alcohol consumption data

Hypothesis Comparison Week Deviance Difference DF p-values

1. H0 : γ = 1 vs H1 : γ � 1 McGBB vs BB Week 1 7.5456 1 0.006016

Week 2 5.8248 1 0.015800

2. H0 : α = 1 vs H1 : α � 1 McGBB vs KB Week 1 8.0195 1 0.004628

Week 2 5.9502 1 0.014720

The p-values in Table 2. indicate that both BB and KB models are significantly rejected in favor of the McGBB

model to fit this alcohol consumption data. Therefore, based on these results, we conclude that the proposed

McGBB distribution provides better fit to model this data than its nested BB and KB distributions.

7. Simulation Study

In this section, we present a Monte Carlo Simulation study conducted to investigate the performance of McGBB

distribution with its nested BB and KB distributions in modeling simulated overdispersed binomial outcome data

under varying degrees of overdispersion.

7.1 Generation of Overdispersed Binomial Variates

In general, random generation from the Beta-Binomial distribution is used as a standard method to simulate

overdispersed Binomial variables (See for example: Ennis & Bi, 1998). However, since our present study focuses

on comparing three Binomial mixture distributions including the Beta-Binomial distribution in handling overdis-

persed Binomial data, there is a suspicion that perhaps the results may be influenced towards Beta-Binomial dis-

tribution. Therefore an alternative algorithm proposed by Ahn and Chen (1995) is used to simulate overdispersed

Binomial variables. The algorithm developed by Ahn and Chen (1995) to generate overdispersed Binomial vari-

ables for specified mean and variance from an underlying multivariate normal distribution is simplified using equal

correlation structure and briefly outlined in subsection 7.1.1.

7.1.1 Representation of Overdispersed Binomial Variables

Let the overdispersed binomial random variable Yi be the sum of the correlated binary variables Xi1, Xi2, . . . , Xin

where n is the number of trials and i = 1, 2, . . . ,N. Suppose, E
(
Xi j

)
= π, Var

(
Xi j

)
= π (1 − π) and corr

(
Xi j, Xik

)
=

ρ, for j � k. Then the mean and the variance of Yi is given by

E (Yi) = nπ and Var (Yi) = nπ (1 − π) (1 + (n − 1) ρ) . (12)

The parameter ρ is the overdispersion (also, the intracluster correlation coefficient) parameter of the overdispersed

Binomial random variable. This explains that when ρ → 0 this distribution reduces to Binomial distribution and

ρ → 1 results severe overdispersion. The means and the variances of the three Binomial mixture distributions

under consideration can be represented similar to Equation (12), nevertheless, the expressions of π and ρ depend

on the mixing distribution. Such a representation of the mean and the variance of the McGBB distribution is given

in Equation (10).

7.1.2 Algorithm to Generate Overdispersed Binomial Random Variable

Step 1: Solve the following equation for a given n, π and ρ,

Φ[z (π) , z (π) , δ] = π (1 − π) ρ + π2.

For δ , whereΦ[z (π) , z (π) , δ] is the cumulative distribution function of the standard bivariate normal

random variable with correlation coefficient δ , and z (π) denotes the πth quantile of the standard normal

distribution.
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Step 2: Generate n−dimensional multivariate normal random variables, Zi = (Zi1,Zi2, . . . , Zin)T with mean 0
and constant correlation matrix

∑
i for i = 1, 2, . . . ,N, where the elements of

[∑
i
]
lm are δ for l � m.

Step 3: Now, for each j = 1, 2, . . . , n define

Xi j =

{
1; i f Zi j < z (π)
0; otherwise.

Then, it can be showed that the random variable Yi =
n∑

j=1
Xi j is overdispersed relative to the Binomial

distribution.

The reason for the above follows from the fact that E
(
Xi j

)
= P

{
Xi j = 1

}
= P

{
Zi j < z (π)

}
= π and

corr
(
Xi j, Xik

)
=

cov
(
Xi j, Xik

)
√

Var
(
Xi j

)
Var

(
Xi j

) =
E

(
Xi jXik

)
− E

(
Xi j

)2

√
Var

(
Xi j

)
Var

(
Xi j

) =
P

{
Zi j < z (π) , Zik < z (π)

}
− π2

π (1 − π) = ρ.

Thus, it is apparent that the correlated binary variables generated by this algorithm encompass an overdispersed

Binomial random variable which is characterized in Equation (12).

7.2 Simulation Design

In a simulation study like this, determining the values of the parameters to be used to generate required data is

indeed a challenging task. In the alcohol consumption data presented in the previous section the McGBB estimate

of π for both week 1 and week 2 is around 0.5 while the similar estimate of overdispersion parameter ρ for both

week 1 and week 2 is around 0.4. Also, the number of trails in this data is 7 and the total number of observations

is 399. Even though we can generate overdispersed data for different ρ values by keeping the other parameters

π, n and N fixed as those in this data, in the present study we have conducted an extended simulation to clearly

understand the complete scope of the problem. Consequently, in this simulation study, three π values are chosen

as 0.1 (extreme), 0.5 (middle) and 0.75 (moderate), [here the range of success probabilities from 0-0.5 is adequate

as the other half of the possible π values can be included by modeling the failure probability, however without

loss of generality, we include π = 0.75 as a moderate value instead of π = 0.25]; two n values are chosen as

5(lower) and 10(greater); two N values are selected as 20 (small number of observations) and 500 (large number

of observations). Further, 10 overdispersion parameter ρ values are picked from 0.05 to 0.9 in the increasing order

since the main objective of this simulation study is understanding the behavior and comparing the performance

of the three Binomial mixture distributions discussed above for different degrees of overdispersion. Thus, we

run a total of 3 × 2 × 2 × 10 = 120 factorial combinations of the four factors π = {0.1, 0.5, 0.75}, n = {5, 10},
N = {20, 500} and ρ = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The value of ρ = 0.05 is chosen just to

observe the performance of the mixture models when there is almost no overdispersion.

For each of the 120 parameter combinations, we then simulate 1000 overdispersed Binomial datasets (total of

120,000 datasets) using the algorithm described above. Starting from the data generation, the entire simulation

study (including the model fitting, evaluation and comparison presented below) is programmed and performed

using the open source statistical software R and RStudio: an integrated development environment for R.

The types of simulated data herein may arise in many real world applications. For instance, the surveys of con-

sumption of a product or service for a small time frame, like the one described in section 6; or any other types

of behavior reporting in a short retrospective time period, such as the consumer purchasing behavior investigated

by Chatfield and Goodhardt (1970). Moreover, other types of data such as plant decease incidence data modeled

using Beta-Binomial distribution by Hughes and Madden (1993).

7.3 Model Evaluation Procedures

For each of 120,000 datasets the maximum likelihood estimates of the three Binomial mixture distributions (McGBB,

BB and KB ) are obtained along with the Log-Likelihood values and the AIC values of the model fit. Then, by

comparing the observed frequencies with the expected frequencies obtained by means of each of the three esti-

mated Binomial mixture models, the Chi-Square goodness of fit test statistics, the number of degrees of freedom

and the associated p-values to test that the data is consistent with the distribution specified under the null hypothesis

are also obtained. The model evaluations are done in two procedures as stated below.
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Procedure 1:

The three Binomial mixture models are evaluated individually for each of 120 parameter combinations. This is

done graphically by comparing the boxplots of the calculated AIC values and also for an inferential discussion, the

percentage of p-values that significantly reject the Binomial mixture model under consideration at 5% significance

level are reported and evaluated. These measures are also used to compare across the models for each set of

parameter combinations.

Procedure 2:

Pairwise comparisons are done for McGBB model with its nested BB and KB models for each of the 120,000

simulated datasets. Here, we perform Analysis of Deviance (ANODEV) by calculating the deviance difference

using the Log-Likelihood values to determine whether the complex McGBB model with an additional parameter

provides a significantly better fit compared to its nested models. Again, the percentage of p-values that significantly

rejects the simple model over the complex McGBB model at 5% significance level are reported for each of the 120

parameters combinations.

7.4 Results of the Simulation Study

First we compare the individual evaluation of the three Binomial mixture models by means of the methods stated

above in Procedure 1. The percentage of the significant p-values which leads to reject the model under considera-

tion at 5% significance level, out of the 1000 simulated datasets for each of the 120 parameters combinations are

presented in Table 3.

It can be seen from these numbers that, regardless of the π and n values, the rejection percentage of all three

Binomial mixture models increases with increasing number of observations for two extremes of degree of overdis-

persion [ρ = 0.05, 0.1 and ρ = 0.9]. This large scale increase in the rejection percentage of all three Binomial

mixture models with N, also continues for extreme π values from ρ = 0.2 to ρ = 0.5. The same continues in the

KB models even for ρ = 0.6, 0.7 and 0.8. Moreover, the KB model fails to fit any of the dataset out of the 1000

simulated datasets for high overdispersion, extreme probability and large number of observations irrespective of

the number of trials, which is a major drawback of KB model. The significant p-value rejection percentage does

not increase with N in a considerable magnitude for the BB model and the new McGBB model for middle and

moderate π values, from ρ = 0.2 to ρ = 0.7 despite the changes in the n values.

The across comparison of all three Binomial mixture models for each of the parameter combinations suggests that

there are no any large differences in the rejection percentages between the three models for most of the parameter

combinations except in the case of high overdispersion, in which KB model fails to fit very high number of

simulated datasets compared to BB and McGBB models. Further, for low overdispersion values, at some particular

parameter combinations both the BB and KB models result a very serious rejection percentage( for example, more

than 20% the simulated datasets are rejected by BB models at {π = 0.1, n = 10, N = 500, ρ ≤ 0.1} whereas the

newly proposed McGBB models have a less rejection percentage). Even though there are few configurations in

which the McGBB model results a slightly high rejection percentage than BB and KB models, this is not a serious

issue as BB and KB are nested distributions of McGBB distribution. Besides, it should be noted there may be few

simulated datasets which cannot be modeled using all three Binomial mixture models considered herein. By its

nature the low probability of success can result binomial outcome datasets that contain excessive amount of zeros,

known as zero-inflated data. Relatively high rejection percentage(>10%) of all three Binomial mixture models at

{π = 0.1, n = 10, N = 500, ρ ≤ 0.2} is due to this zero-inflation feature.

In addition, the graphical comparison of the distribution of AIC values plotted by calculating the AIC values of all

model fits for each of the parameter combinations (Selected boxplots of the distributions of AIC values are given

in Appendix A.), does not indicate any noteworthy differences between the three models via the distributions of

AIC values, except in the high overdispersion values in which the KB models tend to give large AIC values.
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Table 3. The percentage of the significant p-values at 5% significance level which leads to reject the model under

consideration out of the 1000 simulated datasets

ρ = 0.05 ρ = 0.1 ρ = 0.2

π n N BB KB McGBB BB KB McGBB BB KB McGBB

0.1 5 20 0.6 0.6 1.5 0.7 0.7 1.8 1.1 1.1 3.5

0.1 5 500 14.2 9.9 12.3 8.4 7.5 11.6 7.8 6.6 9.6

0.1 10 20 0.4 0.3 0.5 1.2 0.8 1.4 0.8 1.0 1.4

0.1 10 500 21.0 15.9 11.2 25.3 22.5 18.0 17.1 10.5 11.8

0.5 5 20 3.9 4.7 9.1 2.6 2.7 8.6 4.6 4.7 9.5

0.5 5 500 12.9 6.6 14.3 16.3 6.2 10.8 5.3 5.5 8.0

0.5 10 20 4.2 3.4 5.6 3.5 3.4 4.7 4.0 3.7 6.0

0.5 10 500 18.1 5.8 8.8 10.6 6.7 6.8 5.1 4.8 6.0

0.75 5 20 2.6 3.4 6.7 2.9 3.2 7.9 3.9 3.9 7.9

0.75 5 500 6.5 5.9 12.0 4.9 4.8 11.1 6.1 6.1 11.5

0.75 10 20 1.8 1.9 2.7 2.3 2.6 4.1 5.2 5.4 6.2

0.75 10 500 7.5 6.4 9.8 6.7 5.4 9.4 7.5 7.5 11.9

ρ = 0.3 ρ = 0.3 ρ = 0.5

π n N BB KB McGBB BB KB McGBB BB KB McGBB

0.1 5 20 2.6 2.4 6.0 3.4 3.2 6.7 3.4 3.0 6.5

0.1 5 500 9.4 7.6 12.5 7.3 5.8 11.9 6.8 7.1 12.1

0.1 10 20 2.5 2.8 3.4 2.3 2.3 3.3 2.9 2.5 4.4

0.1 10 500 12.9 7.6 10.8 8.4 6.6 9.5 6.4 7.2 7.5

0.5 5 20 5.0 5.0 9.8 4.8 4.8 9.7 3.6 3.5 6.5

0.5 5 500 6.3 6.3 12.1 5.7 5.7 9.5 5.0 5.1 6.5

0.5 10 20 4.7 4.7 6.5 4.5 4.6 6.7 4.7 4.6 5.2

0.5 10 500 6.0 5.8 8.6 5.4 5.5 7.3 5.1 5.5 5.5

0.75 5 20 3.9 4.2 8.6 4.2 4.3 7.8 4.8 5.0 8.0

0.75 5 500 5.6 5.8 10.3 4.5 4.8 9.1 4.9 4.8 8.2

0.75 10 20 4.1 4.3 5.9 4.4 4.4 5.2 4.2 4.3 4.1

0.75 10 500 6.5 7.6 10.3 6.2 6.3 8.5 5.9 5.5 7.4

Table 3. Continued

ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9
π n N BB KB McGBB BB KB McGBB BB KB McGBB BB KB McGBB

0.1 5 20 4.1 3.7 7.1 4.3 4.5 7.5 2.9 1.9 5.0 0.7 2.7 1.8

0.1 5 500 6.1 8.4 8.1 5.7 10.6 7.4 5.3 5.9 7.0 5.2 NA 10.9

0.1 10 20 3.8 3.6 5.4 4.6 4.7 5.1 2.9 1.2 3.7 1.8 2.8 2.6

0.1 10 500 5.7 7.4 4.5 4.9 10.0 5.1 5.2 5.2 5.5 5.2 NA 8.0

0.5 5 20 4.3 4.6 7.7 3.2 3.7 6.8 1.9 4.4 5.9 0.5 2.6 2.6

0.5 5 500 5.1 6.2 6.4 5.7 10.7 6.5 5.2 6.2 6.2 4.6 42.9 5.5

0.5 10 20 4.6 4.8 6.1 4.4 4.5 4.9 4.2 4.1 3.5 3.9 2.7 3.1

0.5 10 500 5.4 7.7 5.9 7.3 12.8 7.5 7.2 7.8 7.0 8.4 43.9 7.6

0.75 5 20 4.0 4.6 7.2 4.5 5.4 6.3 2.9 3.7 4.0 2.0 5.4 2.3

0.75 5 500 4.1 4.5 6.0 5.6 7.0 7.0 4.5 5.1 5.5 4.9 11.8 7.5

0.75 10 20 4.8 5.2 4.5 4.6 5.2 3.8 4.5 3.6 3.1 3.9 8.1 2.0

0.75 10 500 5.8 4.9 6.3 5.0 6.5 5.6 6.7 6.6 6.1 6.6 17.6 7.3

Next, we compare the Analysis of Deviance comparison results that are performed to determine the superiority

of complex McGBB models in favor of its nested simpler models in fitting overdispersed binomial outcome data.

Table 4. presents the results of Procedure 2. described in section 7.3 for ANODEV comparison of McGBB over

KB for the first set of hypotheses stated in Table 2. Correspondingly, Table 5. contains the similar ANODEV

comparison of McGBB over KB for the second set of hypotheses stated in the Table 2.
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Table 4. Percentage of significant p-values in the ANODEV of McGBB over BB

Overdispersion Parameter ρ
π n N 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 5 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 5 500 6.0 0.7 0.0 0.3 0.1 0.2 2.8 4.2 2.5 0.4

0.1 10 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 10 500 12.9 14.5 2.0 0.6 0.0 1.7 8.2 7.2 4.1 0.3

0.5 5 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 5 500 7.3 11.8 1.7 0.2 1.3 3.5 2.8 3.2 3.4 3.7

0.5 10 20 0.0 0.0 0.0 0.0 0.2 0.4 0.9 1.4 0.6 0.0

0.5 10 500 13.6 7.5 2.9 1.2 1.5 2.2 2.9 4.7 4.9 4.3

0.75 5 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.75 5 500 0.0 0.0 0.0 0.3 0.9 1.1 1.5 1.5 1.9 2.1

0.75 10 20 0.0 0.0 0.0 0.0 0.5 0.9 1.4 1.0 0.3 0.0

0.75 10 500 0.0 0.2 0.0 0.0 0.3 0.7 1.5 4.2 3.8 3.9

Table 5. Percentage of significant p-values in the ANODEV of McGBB over KB

Overdispersion Parameter ρ
π n N 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 5 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 5 500 2.3 0.4 0.4 0.9 0.2 0.6 8.2 18.4 21.4 NA

0.1 10 20 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0

0.1 10 500 10.9 15.1 1.0 0.5 0.3 4.4 21.9 31.3 39.3 NA

0.5 5 20 0.2 0.1 0.0 0.0 0.0 0.1 0.3 0.5 0.5 0.0

0.5 5 500 0.6 0.3 1.3 0.2 1.3 4.9 8.1 14.1 21.0 69.5

0.5 10 20 0.1 0.0 0.0 0.0 0.2 0.7 2.0 3.7 5.2 4.9

0.5 10 500 1.1 1.7 1.5 0.8 1.6 5.6 9.9 24.0 42.1 87.6

0.75 5 20 0.9 0.2 0.0 0.0 0.0 0.0 0.2 0.2 0.1 0.4

0.75 5 500 0.0 0.0 0.0 0.3 0.8 1.4 2.8 7.5 11.9 18.1

0.75 10 20 0.0 0.0 0.0 0.0 0.5 1.2 2.3 2.8 2.8 2.8

0.75 10 500 0.0 0.1 0.0 0.0 0.2 0.9 3.1 8.7 21.3 44.6

In Table 4, it is clear that, there are many cells with 0’s which indicate that the BB model is adequate to fit all

datasets simulated at those parameter combinations. In particular, this suggests that when number of observations

(N) is small, regardless of other parameter combinations, the BB model adequately fits the overdispersed data

with any degree of overdispersion. On the other hand, when the number of observations is large and for extreme

and middle π values irrespective of n values, noticeably high percentage of simulated datasets are favoring the

complex McGBB model over the simpler BB model for low overdispersion values (ρ ≤ 0.1). Again, for the high

overdispersion values (ρ ≥ 0.6) a few percentage of simulated datasets are favoring the complex McGBB model

over the simpler BB model when N is large.

Finally, it can be seen from Table 5, that ANODEV comparisons of McGBB vs KB also result many parameter

combinations with zero percentage of significant p-values indicating that KB is a minimum adequate model in favor

of McGBB model at those parameter settings. Nevertheless, for high overdispersion values (ρ ≥ 0.6), the simpler

KB models are extensively rejected in favor of the complex McGBB models for large N values. For example,

at the parameter combination {π = 0.5 , n = 10, N = 500 , ρ = 0.9}, 87.6% of the simulated datasets are rejected

favoring the complex McGBB model over the simpler KB model which is exceptionally high.

Our overall findings of the simulation study are that even though the BB model and the KB model are minimum

adequate models compared to complex McGBB model when N is small regardless of the other parameter com-

binations, which is not true in general. In particular, when N is large there are considerable number of simulated

datasets which cannot be modeled either by means of BB or KB models but the proposed McGBB possibly mod-

els those datasets well. Note that for many simulated datasets, we observe that McGBB model outperforms BB

model for very low degree of overdispersion (ρ ≤ 0.1) when N = 500 and π = 0.1 and 0.5, as well as McGBB
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model outperforms KB model for relatively high degree of overdispersion(ρ ≥ 0.6) when N = 500 and all π values

considered and, also when ρ ≤ 0.1, N = 500, π = 0.1 and n = 10.

8. Concluding Remarks

In the present study, we propose a new three parameter Binomial Mixture distribution, namely the McDonald

Generalized Beta-Binomial (McGBB) distribution, by mixing the McDonald’s Generalized Beta distribution of the

first kind to the success probability of the Binomial distribution. We present two different parameter arrangements

of the probability mass function of the McGBB distribution one containing an infinite series and the other with a

finite series. The central moments of the McGBB distribution are also obtained along with the mean and variance

of the McGBB distribution. The additional parameter in the McGBB distribution allows accommodating wide

range of shapes in addition to the shapes that are accommodated by its nested Binomial mixture distributions.

The parameters of the McGBB distribution are estimated by maximum likelihood estimation technique. The main

objective of our study is comparing the new McGBB mixture distribution with its nested distributions in handling

Binomial overdispersion. This objective is achieved by means of a real data and an extended simulation study. The

results of the real data shows that the new McGBB mixture model provides a better fit and good improvement in

the goodness of fit tests than BB and KB models. From the results of the simulation study, it is also evident that the

McGBB model is superior to its nested models for some parameter combinations. Hence the proposed McGBB

distribution has a great potential for handling Binomial overdispersion.
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Appendix A: Boxplots of the Distribution AIC Values with Varying Degrees of Overdispersion for All Three
Binomial Mixture Models

Figure A1. Boxplots of the distribution of AIC values when ρ = 0.1
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Figure A2. Boxplots of the distribution of AIC values when ρ = 0.9

*** Comparison of AIC values via boxplots is presented only for selected parameter combinations since these

comparisons do not indicate any noteworthy differences between BB, KB and McGBB models except in the high

overdispersion values.
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Appendix B: R Codes

• The R function that calculates McGBB probabilities is as follows

dMcGBB<- function(x, a, b,c, n) {

j <- 0:(n-x)

term<-sum(((-1)**j)*(choose(n-x,j))*(beta(((x/c)+a+(j/c)),b)))

return(choose(n,x)*(1/beta(a,b))*term)

}

• The R function that construct Negative Log-likelihood of the McGBB is as follows

McGBBNegLL<-function(x,a,b,c,fre,n){

density<-c()

for( i in 0:n){

j <- 0:(n-i)

term<-sum(((-1)**j)*(choose(n-i,j))*(beta(((i/c)+a+(j/c)),b)))

vector.density<-choose(n,i)*(1/beta(a,b))*term

density[i+1]<-vector.density

}

McGBBLL<-sum(fre*log(density))

return(-McGBBLL)

}

Arguments

x = values of the variable

fre = vector of frequencies

n = number of trials

a,b,c = Three parameters of the McGBB Distribution

Optimization functions available in R, such as optim{stats} , mle{stats4} or mle2{bbmle}, can be used to estimate

the parameters of the McGBB distribution by minimizing the negative log-likelihood constructed above.

Note: More details on R programming in estimating the parameters of the new McGBB distribution can be obtained

from the first author (cmanoj@live.com).
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