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Abstract

In this paper, using Marshall-Olkin transformation, a new class of Extended Power Log-normal distribution which
includes the Power Log-normal and Log-normal distributions as special cases is introduced. Its characterization
and statistical properties are studied. A real survival dataset is analyzed and the results show that the proposed
model is flexible and appropriate.
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1. Introduction

A Log-normal distribution is a well known continuous probability distribution of a random variable whose loga-
rithm is normally distributed. In survival analysis, the lognormal distribution is extensively used in applications,
for example, see Gupta et al. (1997), Royston (2001), Rutqvist (1985) and Johnson et al. (1996) etc. The density
and cumulative distribution functions of a Log-normal random variable denoted by X ~ LN(u, o) are given by, for
—oo < pu<oo,0>0,x>0,

f0 = om0 p = oM M)

Xo

where ¢ and © are the density and cumulative distribution functions of the standard normal distribution.

Nelson and Dognanksoy (1992) extended the Log-normal distribution and introduced the Power Log-normal dis-
tribution whose density and cumulative distribution functions are given by,

— In(x) o —1In(x)
o

-1
- In@ W F@ = 1= (e, )

& o

R
Xo a

Jfx) =

for —oo <y < 00,00 > 0,p > 0,x > 0. We denote it as X ~ PLN(u, o, p).

They fitted it to the life or strength data from specimens of various sizes. They presented that such a model arises
when any specimen can be regarded as a series system of smaller portions, where portions of a certain size have a
normal life (or strength) distribution. The statistical analysis can also be found in Nelson and Doganaksoy (1995).
Szyszkowicz and Yanikomeroglu (2009) and Liu et al. (2008) proposed the use of power lognormal distributions
to approximate lognormal sum distributions.

On the other hand, by adding a new parameter @ > 0 to an existing distribution, Marshall and Olkin (1997)
proposed a new family of survival functions. The new parameter results in flexibility in the distribution. Let
F(x) = 1 — F(x) be the survival function of a random variable X. Then
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is a proper survival function. G(x) is called Marshall-Olkin family of distributions. If @ = 1, we have that G = F.
The density function corresponding to (3) is given by
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and the hazard rate function is given by
W
1-(-a)Fx)’

where hp(x) is the hazard rate function of the original model with distribution F.

h(x)

Using the Marshall-Olkin transformation (3), several researchers have studied various distribution extensions. Mar-
shall and Olkin (1997) generalized the exponential and Weibull distributions. Alice and Jose (2003) introduced
Marshall-Olkin extended semi Pareto model for Pareto type III and estabilished its geometric extreme stability.
Semi-Weibull distribution and generalized Weibull distributions are discussed by Alice and Jose (2005). Ghitany
et al. (2005) studied the Marshall-Olkin Weibull distribution, that can be obtained as a compound distribution
mixing with exponential distribution, and applied it to model censored data. Marshall-Olkin Extended Lomax
Distribution was introduced by Ghitany et al. (2007). Jose et al. (2010) investigated Marshall-Olkin g-Weibull
distribution and its max-min processes. Garcia et al. (2011) generalized the standard Log-normal distribution.

In this paper, we use the Marshall-Olkin transformation to define a new model, so-called the Marshall-Olkin Power
Log-normal distribution (MPLN), which generalizes the Power Log-normal, the Log-normal model. We aim to
reveal some statistical properties of the proposed model and apply it to survival analysis.

The rest of this article is organized as follows: in Section 2, we introduce the new defined distribution and in-
vestigate its basic properties, including the shape properties of its density function and the hazard rate function,
stochastic orderings and representation, moments and measurements based on the moments. Section 3 discusses
the estimation of parameters by the method of maximum likelihood. An application of the MPLN model to real
survival data is illustrated in Section 4. Our work is concluded in Section 5.

2. Marshall-Olkin Power Log-normal Distribution and Its Properties
2.1 Density and Hazard Function

Let X follow the Power Log-normal distribution PLN(u, o, p), then its survival function is given by F(x) = 1 —
F(x) = [(D(’%)]p. Substituting it in (3) we obtain a Marshall-Olkin Power Log-normal distribution denoted by
MPLN(u, o, p, ) with the following survival function
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The corresponding density function is given by
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g(x) = x> 0. (5)
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If @ = 1, we obtain the Power Log-normal distribution with parameter y, o, p. Furthermore, if p = 1, it reduces
to the Log-normal distribution. This distribution contains the Power Log-normal distribution and Log-normal
distribution as particular cases.
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(a) Density function (b) Hazard function

Figure 1. Plots of Marshall-Olkin power log-normal density and hazard function for some parameter values
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Figure 1(a) shows some density functions of the M PLN(u, o, p, @) distribution with various parameters. It indicates
that the value of @ has a subtantial effect on the tail of the density function.

The hazard rate function of the MPLN (u, o, p, @) distribution is given by

g p(Lny

h = = = )
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x> 0. (6)

Figure 1(b) shows some shapes of the MPLN (u, o, p, @) hazard function with various parameters.
2.2 Stochastic Orderings

In statistics, a stochastic order measures the concept of one random variable being “larger” than another. It is an
important tool to judge the comparative behavior. Here are some basic definitions.

A random variable X is less than Y in the ususal stochastic order (denoted by X <, Y) if Fx(x) > Fy(x) for all
real x. X is less than Y in the hazard rate order (denoted by X <, Y) if hx(x) > hy(x), for all x > 0. X is less
than Y in the likelihood ratio order (denoted by X <;, Y) if fy(x)/fx(x) increases in x > 0. It is well known that
X<,Y=>X<, Y= X<,Y,see Ramesh and Kirmani (1987).

Proposition 1 If X ~ MPLN(u, o, p,ay) and Y ~ MPLN(u, o, p,as), and ay < as, then X <, Y, X <, Y and
X <4 Y.

Proof. The density ratio is given by

_ x() ai[l = (1 —ay) OP(E —1:()0)]2
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Taking the derivative with respect to x,

2pa (a1 = )@ (SED) (@2 = DOPED) + 11g(72)

U'(x) =
) xoas[(a) — 1)@1}(@) +1P3

If a1 < ap, U'(x) <0, U(x) is a decreasing function of x. The results follow.
2.3 Stochastic Representation

Let Go(x|1), —c0 < x < 00, —0c0 < A < o0, be the conditional survival function of a continuous random variable X
given a continuous random variable A. Let A be a random variable with probability density function m(1). Then
the distribution with survival function

G(x) = fm Go(x])m(DdA, —oo < x < o0,

is called a compounding distribution with mixing density m(1). Compounding distribution provides a useful way
to obtain new class of distributions in terms of existing ones. The following result shows that the MPLN(u, o, p, @)
distribution can be expressed as a compound distribution.

Proposition 2 Suppose that the conditional survival function of a continuous random variable X given A = A is
given by

Go(xld) = exp —m-f'(@) +a, x>0 7

Let A have an exponential distribution with density function
m) = ae™ ™, a>0,1>0.
Then the random variable X has the MPLN (u, o, p, @) distribution.
Proof. For x > 0, the survival function of X is given by
al O(F))
1= (1 - o=

G(x) = f Go(x])m()dA = a f e AT pmad g
0 0
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which is the survival function of the MPLN (u, o, p, ) distribution.

For 1 > 0, Go(x|d) defines a class of non-standard distributions. Compounding a distribution belonging to this
class with an exponential distribution for A leads to a certain MPLN(u, o, p, @) distribution. Next we will present
another stochastic representation of the MPLN(u, o, p, @) distribution.

Proposition 3 Ler {X;,i > 1} be a sequence of i.i.d. random variables with a Power Log-normal distribution

PLN(u,o, p). Let N be a geometric random variable with parameter 0 < « < 1 such that P(IN = n) = a(l —
@) n=1,2,..., which is independent of {X;,i > 1}. Then,

(1) min(X1y, ..., Xy) has a Marshall-Olkin Power Log-normal distribution MPLN (u, o, p, @).
(2) max(Xy, ..., Xn) has a Marshall-Olkin Power Log-normal distribution MPLN(u, o, p, 1/ ).

Proof. The survival function of min(Xy, ..., Xy) is

Pmin(Xj,...,Xy) > x) = ZP(X1>x,...,X,1>x)P(N=n)
n=1

D IF@I'a(l - o)
n=1

aF(x)
1-(1-a)Fx)’
which is the survival function of the Marshall-Olkin Power Log-normal distribution MPLN (u, o, p, @).
The survival function of max(Xi,...,Xy) is
P(max(Xy,...,Xy)>x) = 1-Pmax(Xy,...,Xy) < x)

1 —ZP(X1 <x....X, <x)P(N =n)
n=1

00

1= Y [FT"a(l - o)™

n=1

+F
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which is the survival function of the Marshall-Olkin Log-Logistic distribution MPLN(u, o, p, 1 /).
2.4 Moments and Quantiles
Proposition 4 Let X ~ MPLN(u, o, p, ), fork = 1,2, ..., Then the kth non-central moment is given by

1 p—1
- h
=EXx" = kﬂf ko ®~! () dh,
He = EX) = pae 0 [(@ = Dh? + 117

®)

where ®~ is the inverse (quantile function) of the normal cumulative distribution function.

Proof. By definition of the moment,

f N xkg(x)dx
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The above expression seems to have no compact form. We can compute it with the help of computer. For

. . -3 +2u3 —Ayty 3 +6p2 =3t
the standardized skewness coefficient V3, = ,14—3(#,141”,1422)3/2#1 s M(Z} ;)‘f =
2~ 27H

and kurtosis coeflicient 8, = , where
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M1, 1o, 13, (g are the moments given in (8), Figure 2 shows the skewness and kurtosis coefficients for the Marshall-
Olkin Power Log-normal MPLN(u = 0,0 = 1, p, @) model.

100
|

RN
ENTRNNIN

80
|

60
|

Skewness {B;

Kurtosis B,
40

20

(a) Skewness coefficient (b) Kurtosis coefficient

Figure 2. The plots for the skewness /8| and kurtosis coefficient 5,

The gth quantile x, = G~'(q) of the MPLN(u, o, p, @) distribution is given by

o (1
Xq = a o® [(mrq“)p], 0< q=< L. (9)

where G71(-) is the inverse of distribution function. In particular, the median of the MPLN(u, o, p, @) distribution
1
is given by median(X) = e*7% (G071,

Figure 3 displays the measures of central tendency (mean, median) of the MPLN(u = 0,0 = 1, p, @) distribution.
From the figure, it is found that, as expected, the mean is larger than the median. The distribution has a right tail.
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Figure 3. Plots of mean and median of the MPLN(u = 0,0 = 1, p, @) distribution

3. Maximum Likelihood Estimation

In this section, we consider the maximum likelihood estimation about the parameters (i, o, p, @) of the Marshall-
Olkin Power Log-normal model. Suppose Xi, Xz, ..., X, is a random sample of size n from the Marshall-Olkin
Power Log-normal distribution MPLN(u, o, p, @). Then the likelihood function is given by

ﬁ gx(x;) = ﬁ
i=1

=1z (@ = DIOE)pp 4 1)

pa,[q)(ll—ln(xi) )]p—l ¢(I~l—ln(xi) )

(10)
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and the log-likelihood function is given by

l

In([ | ex(x)
i=1

nln(p) + nln(a) —nln(o) + (p — 1) Z ln(@(@)) + Z 1n(¢('u _(l:(Xi) )
i i=1

—Zln(x,)—ZZln(a DHar 1(x’))+1]. (11)

The estimates of the parameters maximize the likelihood function. Taking the partial derivatives of the log-
likelihood function with respect to u, o, p, @ respectively and equalizing the obtained expressions to zero yield
to likelihood equations.

A g Wy

ou oo ap Oa
However, the equations do not lead to explicit analytical solutions for the parameters. Thus, the estimates must
be obtained by means of numerical procedures such as Newton-Raphson method. The program R provides the
nonlinear optimization function optim for solving such problems.

It is known that under some regular conditions, as the sample size increases, the distribution of the MLE tends to
a multivariate normal distribution with mean 6 = (u, o, p, )T and covariance matrix equal to the inverse of the
Fisher information matrix 7-'(6), see Cox and Hinkley (1979). The score vector and Hessian matrix are given in
the Appendix. The multivariate normal distribution can be used to construct approximate confidence intervals for
the parameters.

The likelihood ratio test can be used to test if the fit using MPLN model is statistically better than a fit using
the PLN model. That is, we can test the hull hypothesis Hy: @ = 1 against H;: @ # 1. When Hj is true, the
likelihood ratio statistic d = 2[I(i1, 6, p, &) —I({1, G, p, 1)] has approximately a chi-square distribution with 1 degree
of freedom, see Neyman and Pearson (1928) and Wilks (1938).

4. Application

In this section, we consider a real data set to illustrate the proposed model. The data taken from Davis (1952) are
the number of miles to first and succeeding major motor failures of 191 buses operated by a large city bus company.
The data is shown in Table 1.

Table 1. Initial bus motor failures

Distance interval(1000 miles) Observed number of failures
Less than 20 6
20-40 11
40-60 16
60-80 25
80-100 34
100-120 46
120-140 33
140-160 16
160-180 2
180-up 2

We fit the data set with the Log-normal(LN), the Power Log-normal (PLN) and the Marshall-Olkin Power Log-
normal(MPLN) distributions, respectively, using maximum likelihood method. The results are reported in Table
2. The usual Akaike information criterion (AIC) introduced by Akaike (1973) and Bayesian information criterion
(BIC) proposed by Schwarz (1978) to measure of the goodness of fit are also computed. AIC = 2k — 2In(L) and
BIC = klIn(n) — 21In(L). where k is the number of parameters in the distribution and L is the maximized value of
the likelihood function.

The results show that MPLN model fits best. Figure 4 displays the histogram and fitted models using the MLE
estimates.
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Table 2. Maximum likelihood parameter estimates (with standard deviation) of the LN, PLN and MPLN models
for the initial bus motor failure data

Model 7 & b 5 loglik AIC BIC
LN 4454  0.566 - - ~1013.410 2030.820 2037.325
(0.141)  (0.290)

PLN 12312 1729 19.714

(0.437)  (1.002) (1.208)
MPLN 15435 2671 10558 12.454 -960.498 1928.996 1942.005
(0.529) (0.408) (1.604) (1.109)

S

-971.501  1949.002  1958.759

0.012
1

— MPLN

Density
0.004 0.006 0.008 0.010
1 1

0.002
1

0.000
1

0 50 100 150 200

Initial bus motor failures

Figure 4. Histogram and fitted curves for the initial bus motor failure data

5. Conclusions

In this paper, the Power Log-normal distribution is generalized by adding an extra parameter. It is achieved by
using the well known Marshall-Olkin transformation. The new model, named Marshall-Olkin Power Log-normal
distribution, includes the Power Log-normal and Log-normal distributions as special cases.

Its detailed characterization and statistical properties such as stochastic orderings, stochastic representation, the
moments and measures based on the moments, are presented. The estimation of parameters is approached by the
method of maximum likelihood and the Hessian matrix is derived. A real survival dataset is analyzed and the
results show that the proposed model is flexible and appropriate.

6. Appendix: Score Vector and Hessian Matrix

Suppose xj, x2, ..., X, is a random sample from the MPLN(u, o, p, @) distribution, then the log-likelihood function
is given by (11). The elements of the score vector are obtained by differentiation
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i=1 (@ - DOr(=) +1 = o P
@ S(q - Hor(E) 4

i=1
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The Hessian matrix, second partial derivatives of the log-likelihood, is given by
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n (p— 1)(# _ ln(xi))ng’(”_l;(Xi)) (p— 1)(/1 In(x;) )2(1) (;t ln(x,) )2
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The Fisher information matrix /() = —E(H(0)).
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