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Abstract

For the decomposability property is very a practical one in Welfare analysis, most researchers and users favor

decomposable poverty indices such as the Foster-Greer-Thorbeck poverty index. This may lead to neglect the so

important weighted indices like the Kakwani and Shorrocks ones which have interesting other properties in Welfare

analysis. To face up to this problem, we give in this paper, statistical estimations of the gap of decomposability

of a large class of such indices using the General Poverty Indice (GPI) and of a new asymptotic representation

Theorem for it, in terms of functional empirical processes theory. The results then enable independent handling

of targeted groups and next global reporting with significant confidence intervals. Data-driven examples are given

with real data.

Keywords: functional empirical processes, asymptotic normality, statistical estimation, poverty indices, decom-

posability, default of decomposability

1. Introduction

We are concerned in this paper with the statistical estimation of the gap of decomposability of the class of the

statistical poverty indices in general. Suppose that we have some statistic of the functional form Jn = J(Y1, ..., Yn)

where E = {Y1, ..., Yn} is a sample of the random variable Y defined on a probability space (Ω,A,P) and drawn

from some specific population. Now, suppose that this population is divided into K subgroups S 1, ..., S K and let

us, for each i ∈ {1, ...,K}, denote the subset of the random sample {Y1, ..., Yn} coming from S i by Ei = {Yi,1, ..., Yi,ni }
and then put Jni (i) = J(Yi,1, ..., Yi,ni ). The statistic Jn is said to be decomposable whenever one always has

Jn =
1

n

K∑
i=1

niJni (i),

whatever may be the way in which E is partitioned into the Ei ’s (i = 1, ...,K). This property is a very practical one

when dealing with the poverty measures or welfare measures in general for the following reason. If we are willing

to monitor the poverty situation, it may be very useful to target some sensitive areas or subgroups. By dividing

the population into targeted groups, and estimating the poverty intensity by Jni (i) (resp. variation of poverty by

ΔJni (i)) in each group, one would be able to report the poverty intensity (resp. global poverty variation) by (1.1)

(resp. ΔJn =
1
n
∑K

i=1 niΔJni (i)), provided that the samples are the same as it is the case in longitudinal data. Thus,

decomposability allows an independent handling of poverty for different areas and next an easy reconstruction of

the global situation.

Now in the specific case of poverty indices, we mainly have the non-weighted ones and the weighted ones. The

statistics in the first case are automatically decomposable and then are mostly preferred by users. However, the

weighted measures, which in general are not decomposable, have very interesting properties in poverty analysis.

Dismissing them only for non-decomposability would result in a disaster. We tackle this problem in this paper.

Indeed, by estimating the following gap of decomposability

gdn = Jn − 1

n

K∑
i=1

niJni (i) (1.1)
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with significant confidence intervals, we would be able to handle separated analyses in the subgroups and report

the global case and, at the same time, make benefit of the other properties of such statistics.

The remainder of the paper is organized as follows. In Section 2, we give a brief introduction of the poverty

measures and to the General Poverty Index (GPI). In Section 3, we return back to the decomposability problem

by describing the drawing scheme under which the results are given. In Section 4, we state the results which

are applied to the Senegalese and Mauritanian data in Section 5. The concluding remarks are in Section 7. In

Section 8, we show the reader how to apply the methods given here to his own data from scripts posted in our

website. Finally, the proofs are given in Section 6 after the bilibiography. Although very important, the proofs

are not necessary for nonmathematicians who would be able to skip their reading and only focus on methodology

questions.

2. A Brief Reminder on Poverty Measures

We consider a population of individuals or households, each of which having a random income or expenditure Y
with distribution function G(y) = P(Y ≤ y). In the sequel, we use Y as an income variable although it might be any

positive random variable. An individual is classified as poor whenever his income or expenditure Y fulfills Y < Z,
where Z is a specified threshold level (the poverty line).

Consider also a random sample Y1,Y2, ...Yn of size n of incomes, with empirical distribution function Gn(y) =

n−1# {Yi ≤ y : 1 ≤ i ≤ n}. The number of poor individuals within the sample is then equal to Qn = nGn(Z). And,

from now on, all the random elements used in the paper are defined on the same probability space (Ω,A,P).

Given these preliminaries, we introduce measurable functions A(p, q, z), w(t), and d(t) of p, q ∈ N, and z, t ∈ R.

Set B(Qn) =
∑Qn

i=1
w(i).

Let Y1,n ≤ Y2,n ≤ ... ≤ Yn,n be the order statistics of the sample Y1,Y2, ...Yn of Y . We consider general poverty

indices (GPI) of the form

GPIn = δ

⎛⎜⎜⎜⎜⎜⎜⎝A(Qn, n,Z)

nB(Qn, n)

Qn∑
j=1

w(μ1n + μ2Qn − μ3 j + μ4) d
(

Z − Yj,n

Z

)⎞⎟⎟⎟⎟⎟⎟⎠ , (2.1)

where μ1, μ2, μ3, μ4 are constants. This global form of poverty indices was introduced in Lo, Sall and Seck (2006)

(see also Lo, 2009; Sall & Lo, 2010) as an attempt to unify the large number of poverty indices that have been

introduced in the literature since the pioneering work of the Nobel Prize winner, Amartya Sen (1976) who first

derived poverty measures (see Sen, 1976) from an axiomatic point of view. A survey of these indices is to be

found in Zheng (1997), who also discussed their introduction, from an axiomatic point of view. We will cite a few

number of them here just to make clear the minds and prepare the data-driven applications in Section 5.

One may devide the poverty indices into two classes. The first includes the nonweighted ones. The most popular

of them is the Foster, Greer and Shorrocks (1984) class which is defined for α ≥ 0, by

FGT (α) =
1

n

Qn∑
j=1

(
Z − Yj,n

Z

)α
. (2.2)

For α = 0, (2.2) reduces to Qn/n, the headcount of poor individuals. For α = 1 and α = 2, it is respectively

interpreted as the severity of poverty and the depth in poverty. (2.2) is obtained from (2.1) by taking

δ = Id, w ≡ 1, d(u) = uα, B(Qn, n) = Qn and A(Qn, n,Z) = Qn.

Next, we have for α ≥ 0,

C(α) =
1

n

Qn∑
j=1

(
1 −

(
Yj,n

Z

)α)
,

the Chakravarty family class of poverty measures is obtained from (2.1) by taking Yα and Zα as respectively

transformed income Y and threshold Z and

δ = Id, w ≡ 1, d(u) = u, B(Qn, n) = Qn and A(Qn, n,Z) = Qn.

The statistics in this class are decomposable and are not concerned by the present work.
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The second class consists of the weighted indices. We mention here two of its famous members. The Sen index

(see Sen, 1976)

PS E,n =
2

n(Qn + 1)

Qn∑
j=1

(Qn − j + 1)

(
Z − Yj,n

Z

)
(2.3)

(2.3) is obtained from (2.1), by taking

d(u) = u,w(u) = u, A(Qn, n, Z) = Qn,

B(Qn) = Qn(Qn + 1)/2, μ1 = 0 and μ3 = μ2 = μ4 = 1.

The Shorrocks index (see Shorrocks, 1995)

PS H,n =
1

n2

Qn∑
j=1

(2n − 2 j + 1)

(
Z − Yj,n

Z

)
(2.4)

is obtained from (2.1) by taking

B(Qn, n) = Qn(Qn + 1)/2, A(n,Qn,Z) = Qn(Qn + 1)/2n,

δ = Id, w(u) ≡ (u), d(u) = u, μ1 = 2, μ2 = 0, μ3 = 2 μ4 = 1.

Measures (2.3) and (2.4) evaluate the poverty intensity by giving a more important weight on the poorest individ-

uals. This means that a small decrease of the intensity on the poorest household indicates significant improvement

in the population.

In the applications, we mainly deal with these two specific measures because of their importance in poverty anal-

ysis. Notice that the Thon measure Thon (1979) is different from the Shorrocks one only by their normalization

coefficients which are respectively n(n + 1) and n2, so that they have the same asymptotic behavior. Finally, we

have the following generalization of the Sen measure given by Kakwani (1980).

Jn(k) =
Q

n
∑Q

j=1
jk

Q∑
j=1

(Q − j + 1)kd
(

Z − Yj,n

Z

)
,

where k is a positive parameter. Notice that Jn(1) is the Sen measure. Notice also that, under mild conditions, Jn

converges in probability to the Exact General Poverty Index (EGPI) (see Barrett & Donald, 2009; Bishop, Chow,

& Zheng, 1995; Bishop, Formby, & Zheng, 1997; Lo, 2009),

J(G) = GPI =
∫ Z

0

L1(u,G)d
(Z − u

Z

)
dG(u), (2.5)

where L1 is some weight function depending on the distribution function. This result will be proved again in

Theorem 1 below.

3. Statistical Decomposability

From now, we suppose that our studied population of households is divided into K subgroup such that, for each

i ∈ {1, ...,K}, the probability that a randomly drawn household comes from the ith subgroup is pi > 0, with p1+ ...+
pK = 1. Let us suppose that we draw a sample of size n from the population: Y1, ..., Yn and let us denote those of

the n∗i observations coming from the ith subgroup, (1 ≤ i ≤ K) by Yi, j, j = 1, ..., n∗i . Let Jn∗i (Gi) = Jn∗i (Yi,1, ..., Yi,n∗i )

the empirical index measured on the ith subgroup and Jn(G) the global index. Clearly, decomposability implies for

all n ≥ 1,

gdn = Jn − 1

n

K∑
i=1

n∗i Jn∗i ≡ 0.

Surely, n∗ = (n∗1, ...n
∗
K) follows a multinomial law with parameters n and p = (p1, ..., pK). Since each pi > 0, we

have that for each 1 ≤ i ≤ K, n∗i → ∞ a.s., as n→ ∞. We will have by (1.1) and by (2.5),

gdn = Jn(G) − 1

n

K∑
i=1

n∗i Jn∗i (Gi)→P gd = J(G) −
K∑

i=1

piJi(Gi).
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The right member of this equation is the exact gap of decomposability gd. It follows that gd is zero if the dis-

tribution of the income is the same over all the population, that the more homogeneous the income is over the

population, the lower the gap of decomposability gd is. As a first result, we get that the decomposability does

not, asymptotically at least, matter for a more or less homogeneous population. That is, the decomposability is

not only a functional form matter (of the index), but it is also a statistical one since whatever might be the index,

decomposability is asymptotically obtained when the subgroups have the same distribution. For example, it has

been pointed out in Haidara and Lo (2009), for the Senegalese poverty databases from 1996 to 2001, that the gaps

of decomposability were very low for various stratifications (in regions, gender, ethnic groups, etc.). The apparent

reason was the homogeneity of the income. Such results are confirmed in Section 5.

Now we want to find the law of

gd∗n =
√

n(gdn − gd)

for a more accurate estimation of gd by confidence intervals. At this step, we have to precise our random scheme.

We put a probability space (Ω1 × Ω2,A1 ⊗ A2,P1 ⊗ P2) and put P = P1 ⊗ P2. We draw the observations in the

following way. In each trial, we draw a subgroup, the ith subgroup (Ei) having the occurring probability pi. And

we put

πi, j(ω1) = I(the ithsubgroup is drawn at the jth trial)(ω1),

1 ≤ i ≤ K, 1 ≤ j ≤ n. Now, given that the ith subgroup is drawn at the jth trial, we pick one individual in this

subgroup and observe its income Yj(ω1, ω2).We then have the observations

{Yj(ω1, ω2), 1 ≤ j ≤ n}.
We have these simple facts. First, for 1 ≤ i ≤ K,

n∗i =
n∑

j=1

πi, j. (3.1)

Secondly, the distribution of Yj given (πi, j = 1), is Gi, that is

P(Yj ≤ y�πi, j = 1) = Gi(y).

Next

∀(y ∈ R),P(Yj ≤ y) =

K∑
i=1

P(πi, j = 1)P(Yj ≤ y�πi, j = 1) =

K∑
i=1

piGi(y).

We conclude that {Y1, ..., Yn} is an independent sample drawn from G(y) =
∑K

i=1 piGi(y), the mixture of the dis-

tribution functions of the subgroups incomes. Finally, we readily see that conditionally on n∗ ≡ (n∗1, n
∗
2, ..., n

∗
K) =

(n1, n2, ..., nK) ≡ n with n1 + n2 + ...+ nK = n, {Yi, j, 1 ≤ j ≤ n∗i } are independent random variables with distribution

function Gi.

4. Our Results

The results stated here hold for a very large class of poverty measures summarized in the GPI. This is why we need

the representation Theorem of the GPI in Lo and Sall (2010). In fact, we do not need here the complete form of

Lo and Sall (2010), but a special case of it, based on the assumptions described below. For that, suppose that Gi

(1 ≤ i ≤ K), is the distribution function of the income for the ith subgroup, and G is the distribution function of the

income for the global population. Let also γ(x) = d
(

Z−x
Z

)
I(x≤Z) and e(x) = I(x≤Z). The following assumptions are

required.

(HD0) G0(Z) ∈]0, 1[ for G0 ∈ {G,G1, ...,GK}.
(HD1) There exist a function h(p, q) of (p, q) ∈ N2 and a function c(s, t) of (s, t) ∈ (0, 1)2 such that, as n→ +∞,

max
1≤ j≤Q

∣∣∣A(n,Q)h−1(n,Q)w(μ1n + μ2Q − μ3 j + μ4) − c(Q/n, j/n)
∣∣∣ = oP(n−1/2).

(HD2) For the function h found in (HD1), there exists a function π(s, t) of (s, t) ∈ R2 such that as n→ +∞,

max
1≤ j≤Q

∣∣∣∣∣w( j)h−1(n,Q) − 1

n
π(Q/n, j/n)

∣∣∣∣∣ = oP(n−3/2).
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(HD3) The bivariate functions c and π have continuous partial differentials.

(HD4) For a fixed x, the functions y→ ∂c
∂y (x, y) and y→ ∂π

∂y (x, y) are monotone.

(HD5) G0 is strictly increasing for any G0 ∈ {G,G1, ...,GK}.
(HD6) We have for any G0 ∈ {G,G1, ...,GK}

0 < Hc(G0) =

∫
R

c(G0(Z),G0(y))γ(y)dG0(y) < +∞

and

0 < Hπ(G0) =

∫
R

π(G0(Z),G0(y))e(y)dG0(y) < +∞

We also need the following definitions, for G0 ∈ {G,G1, ...,GK},

J(G0) = Hc(G0)/Hπ(G0),

g0(·) = H−1
π (G0)gc,0(·) − Hc(G0)H−2

π (G0)gπ,0(·) + K(G0)e(·), (4.1)

with

gc,0(·) = c(G0(Z),G0(·))γ(·), gπ,0(·) = π(G0(Z),G0(·))e(·), (4.2)

K(G0) = H−1
π (G0)Kc(G0) − Hc(G0)H−2

π (G0)Kπ(G0) (4.3)

with

Kc(G0) =

∫ 1

0

∂c
∂x

(G0(Z), s)γ(G−1
0 (s))ds,

Kπ(G0) =

∫ 1

0

∂π

∂x
(G0(Z), s)e(G−1

0 (s))ds, (4.4)

ν0(·) = H−1
π (G0)νc,0(·) − Hc(G0)H−2

π (G0)νπ,0(·), (4.5)

where

νc,0(·) = ∂c
∂y

(G0(Z),G0(·))γ(·), νπ,0(·) = ∂π
∂y

(G0(Z),G0(·))e(·).

With the conventions that for G0 = G, we denote g0 = g and ν0 = ν. For G0 = Gi, 1 ≤ i ≤ K, we put g0 = gi and

ν0 = νi. Finally define

	i(t) = (g − gi)
(
G−1

i (t)
)
, ci(t) = (piν − νi)

(
G−1

i (t)
)
, 0 ≤ t ≤ 1. (4.6)

We are now able to briefly describe the approximation of Lo and Sall (2010): if G0 fulfills (HD1),..., (HD6), then

as n→ +∞, we have √
n(Jn(G0) − J(G0)) = αn(g0) + βn(ν0) + oP(1),

where

αn(g0) =
1√
n

n∑
j=1

g0(G0(Vj) − Eg0(G0(Vj))

is the functional empirical process and

βn(ν0) =
1√
n

n∑
j=1

{
Gn(Vj) −G0(Vj)

}
ν0(Vj) (4.7)

is a residual stochastic process introduced in Lo and Sall (2010) and widely studied in Lo (2010), where Gn is the

empirical distribution function associated with {V1, ...,Vn} sampled from G0.

Finally, we introduce these constants of whom the variances of our theorem are based on:

A1 =

K∑
i=1

pi

⎧⎪⎪⎨⎪⎪⎩
∫ Gi(Z)

0

(g − gi)
2(G−1

i (t))dt −
(∫ Gi(Z)

0

(g − gi)(G
−1
i (t))dt

)2
⎫⎪⎪⎬⎪⎪⎭ ,
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A2 =

K∑
i

pi

∫ Gi(Z)

0

∫ Gi(Z)

0

(s ∧ t − st)(piν − νi)(G−1
i (s))(piν − νi)(G−1

i (t))dsdt,

A31 =

K∑
i=1

p2
i

K∑
h�i

ph

∫ Gi(Z)

0

∫ Gi(Z)

0

[
Gh(G−1

i (s)) ∧Gh(G−1
i (t)) −Gh(G−1

i (s))Gh(G−1
i (t))

]
ν(G−1

i (s))ν(G−1
i (t))dsdt,

A32 =

K∑
i=1

pi

K∑
j�i

p j

K∑
h�{i, j}

ph

∫ Gi(Z)

0

∫ G j(Z)

0

[
Gh(G−1

i (s)) ∧Gh(G−1
j (t)) −Gh(G−1

i (s))Gh(G−1
j (t))

]
ν(G−1

i (s))ν(G−1
j (t))dsdt,

B1 =

K∑
i=1

pi

∫ Gi(Z)

0

{∫ s∧Gi(Z)

0

(g − gi)(G
−1
i (t))dt −s

∫ Gi(Z)

0

(g − gi)(G
−1
i (t))dt

}
(piν − νi)(G−1

i (s))ds,

B2 =

K∑
j=1

p j

K∑
i� j

pi

∫ Gi(Z)

0

∫ G j(Z)

0

[s ∧Gi(G−1
j (t)) − sGi(G−1

j (t))] × (piν − νi)(G−1
i (s))ν(G−1

j (t))dsdt,

and

B3 =

K∑
j=1

p j

K∑
i� j

pi

∫ G j(Z)

0

⎧⎪⎪⎨⎪⎪⎩
∫ Gi(G−1

j (s))∧Gi(Z)

0

(g − gi)(G
−1
i (t))dt −Gi(G−1

j (s)) ×
∫ Gi(Z)

0

(g − gi)(G
−1
i (t))dt

}
ν(G−1

j (s))ds,

where

g0(·) = g0(·) × e(·) and ν0(·) = ν0(·) × e(·),
and

(g0, ν0) ∈ (g, g1, ..., gK) × (ν, ν1, ..., νK) and i = 1, ...,K.

We are now able to state our main result.

Theorem 1 Let (HD0)-(HD6) hold. Then gd∗n,0 =
√

n(gdn − gd0) � N(0, ϑ2
1 + ϑ

2
3), and gd∗n =

√
n(gdn − gd) �

N(0, ϑ2
1 + ϑ

2
2) with

ϑ2
1 = A1 + A2 + A3 + 2(B1 + B2 + B3)

ϑ2
2 =

K∑
h=1

Fh
2 ph −

⎛⎜⎜⎜⎜⎜⎝
K∑

h=1

Fh ph

⎞⎟⎟⎟⎟⎟⎠
2

for Fh = Eg(Yh) − J(Gh) +
∑K

i=1 piEGh(Yi)ν(Yi), and

ϑ2
3 =

K∑
h=1

Mh
2 ph −

⎛⎜⎜⎜⎜⎜⎝
K∑

h=1

Mh ph

⎞⎟⎟⎟⎟⎟⎠
2

for Mh = Eg(Yh) +
∑K

i=1 piEGh(Yi)ν(Yi).

Remark 1 This clearly makes the so important decomposability requirement less crucial since the default of de-

composability may be estimated by confidence intervals based on this theorem, as we showed it in the next section.

5. Examples and Applications

5.1 Sen Case

The conditions (HD1), (HD2), (HD3) and (HD4) hold for this measure and we have here c(x, y) = x − y and

π(x, y) = y/x. Further when (HD0), (HD5) and (HD6) are true, the results of Theorem 1 apply with

J(G0) = 2

∫ G0(Z)

0

(
1 − s

G0(Z)

) ⎛⎜⎜⎜⎜⎝Z −G−1
0

(s)

Z

⎞⎟⎟⎟⎟⎠ ds,

K(G0) = 2

(
1 − 1

ZG0(Z)

∫ G0(Z)

0

G−1
0 (s)ds

)
+

J(G0)

G0(Z)
,

g0(y) =

{
2

[(
1 − G0(y)

G0(Z)

) (Z − y
Z

)
−

(
G0(y)

G0(Z)

) (
J(G0)

G0(Z)

)]
+ K(G0)

}
I(y≤Z),
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and

ν0(y) = − 2

G0(Z)

[(Z − y
Z

)
+

J(G0)

G0(Z)

]
I(y≤Z).

5.2 Shorrocks’ Case

We have the same conclusion of the previous case with c(x, y) = 2(1 − y), K(G0) = 0,

J(G0) = 2

∫ G0(Z)

0

(1 −G0(Z))

⎛⎜⎜⎜⎜⎝Z −G−1
0 (s)

Z

⎞⎟⎟⎟⎟⎠ ds, (5.1)

g0(y) = 2 (1 −G0(y))
(Z − y

Z

)
I(y≤Z),

and

ν0(y) = −2
(Z − y

Z

)
I(y≤Z).

5.3 Kakwani Case

We also have the same conclusion for the Kakwami measure of parameter k ≥ 1 with c(x, y) = (x − y)k and

π(x, y) = yk/x,

J(G0) = (k + 1)

∫ G0(Z)

0

(
1 − s

G0(Z)

)k ⎛⎜⎜⎜⎜⎝Z −G−1
0 (s)

Z

⎞⎟⎟⎟⎟⎠ ds,

K(G0) =
k(k + 1)

G0(Z)

∫ G0(Z)

0

(
1 − s

G0(Z)

)k−1 ⎛⎜⎜⎜⎜⎝Z −G−1
0 (s)

Z

⎞⎟⎟⎟⎟⎠ ds +
J(G0)

G0(Z)
,

g0(y) =

⎧⎪⎪⎨⎪⎪⎩(k + 1)

⎡⎢⎢⎢⎢⎢⎣
(
1 − G0(y)

G0(Z)

)k (Z − y
Z

)
− J(G0)

G0(Z)

(
G0(y)

G0(Z)

)k⎤⎥⎥⎥⎥⎥⎦ + K(G0)

⎫⎪⎪⎬⎪⎪⎭ I(y≤Z),

and

ν0(y) = −k(k + 1)

G0(Z)

⎡⎢⎢⎢⎢⎢⎣
(
1 − G0(y)

G0(Z)

)k−1 (Z − y
Z

)
+

J(G0)

G0(Z)

(
G0(y)

G0(Z)

)k−1
⎤⎥⎥⎥⎥⎥⎦ I(y≤Z).

5.4 Data-driven Applications

In this note, let us focus on the Sen case, which is more tricky than the Shorrocks one. We consider the Senegalese

database ESAM 1 of 1996 which includes 3278 households. We first consider the geographical decomposition into

the areas, Dakar is the Capital. We have the Sen measure values for the whole Senegal and for its ten sub-areas in

Table 1 below.

Let us compute the different variances ϑ2
1, ϑ

2
2 and ϑ2

3 of Theorem 1 with the empirical estimations pi ≈ ni/n,.
We obtain for the geographical decomposability in Senegal: ϑ2

1 + ϑ
2
2 = 0, 093195; ϑ2

1 + ϑ
2
3 = 0, 093224 and

gdn = 1, 25450.10−3 . This gives the 95%-confidence:

dg ∈ [−0.00919%; 0.00117%],

that is

J(G) ∈ [34.7%; 34.71%],

We remark the very accurate estimation of the Sen index for the whole country of Senegal which makes us tell that

this index is practically decomposable in this empirical case. We have already explained that decomposability does

not matter when the distribution is uniform in the population. It happens that earlier works show that the senegalese

date are well fitted by the lognormal or the Singh-Maddala model for each area with very similar parameters. Now

for a decomposition with respect to the household chief gender, we get the sen measure values in Table 2.

We see here that ϑ2
1 + ϑ

2
2 = 1, 87, ϑ2

1 + ϑ
2
3 = 1, 78, gdn = 1, 496 × 10−4and this 95%-confidence:

dg ∈ [−0.00437%; 0.0016%],

that is

J(G) ∈ [34.696%; 34.704%],
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We get the same conclusion that the gap of decomposability is significantly very low.

We have for the Mauritanian data (EPCV 2004) the following geographical and gender decomposability estimates.

From the Sen measures values given in Table 3 for the whole country and its thirteen sub-areas, computation of

the variances gives:

ϑ2
1 + ϑ

2
2 = 2, 31 × 10−2, ϑ2

1 + ϑ
2
3 = 2, 31 × 10−2 and gdn = 3, 25 × 10−4. This gives the 95%-confidence:

dg ∈ [−0.00276%; 0.00341%]

For a stratification with respect to the gender of the chief household, from the values of Table 4, we have:

ϑ2
1 + ϑ

2
2 = 5, 12 × 10−2, ϑ2

1 + ϑ
2
3 = 5, 12 × 10−2, gdn = 3, 99 × 10−5 and the 95%-confidence:

dg ∈ [−0.00454%; 0.00462%],

Our general conclusion is that for all these cases, the sen measure is almost decomposable. But, this does not really

matter. The important result is that we are able to have an accurate estimation of the gap of decomposability.

5.5 Tables

Table 1. Sen measures values for the ten sub-areas for SENEGAL

Area Senegal Kolda Dakar Diourbel Saint-Louis Louga

Sen Index 34.71% 51.66% 22.73% 40.16% 37.51% 34.53%

Size 3278 198 1122 231 314 174

Area Tambacounda Kaolack Thies Fatick Ziguinchor

Sen Index 47.47% 37.91% 41.31% 42.22% 39.13%

Size 126 316 401 180 216

Table 2. Sen measures values for the genders in SENEGAL

Gender Senegal Male female

Sen Index 34.7 % 35.27 % 32.62 %

size 3278 2559 919

Table 3. Sen measures values for the thirteen sub-areas for Mauritania

Area Mauritanie Hodh Charghy Hodh Gharby Guidimagha

Sen Index 7.5% 6.73% 7.59% 10.89%

Size 9360 1211 469 234

Area Adrar Nouadhibou Tagant Tiris Zemmour Assaba

Sen Index 5.5% 0.83% 13.34% 2.78% 6.49%

Size 568 585 490 284 514

Area Brakna Trarza Inchiri Gorgol Nouakchott

Sen Index 11.57% 9.12% 4.89% 12.43% 3.49%

Size 1190 1217 205 796 1597

Table 4. Sen measures values for the genders in Mauritania

Gender Mauritania Male female

Sen Index 7.5 % 7.46 % 7.64 %

size 9360 7513 1847
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6. Appendix

We would like to provide indications to the reader for using the techniques developped here. We have a zipped file

at:

http : //www/u f rsat.org/lerstad/sen − decomposabilite.rar

It includes the executable sendecomp.exe file which performs the computation of dg. Here is how to proceed:

(i) Download the zipped file and unzip him in a folder named sen-decomposabilite directly placed C folder.

(ii) Upload in the sen-decomposabilite folder the following user files: The income file dep.txt of size n at most

equal to 10000, the equivalent-adult file eq.txt of the same size n and finally the labels file labels.txt including the

names of the different strates. If the income file is already scaled for individuals, use an eq.txt file of size n having

unity at each line. The nomber of labels is at most equal to 15. They must be enumarated from to 1 to KK < 16.

(iii) Execute sendecomp.exe by clicking on it. The user is prompted to provide the income file name, the

equivalent-adult file name and the labels file name without the suffixs .txt.

(v) The package provides the sen measures value for the differents strates and report the gap of decomposability

value.

(vi) or the user’s practice we provided in the zipped folder the following income variables (depm.txt), equivalent-

adult variable (eom.txt) and labels (here areas) file named after regm.txt. Practice with a poverty line equal to

94300.

(vi) If the data size exceeds n = 10000 or the strates number exceeds KK = 15, the user is free to write to the

authors and adapted packages will be provided.

Finally for those who want to set their own packages in some langage, we provide a Visual Basic module including

the main program and the subroutines.

7. Conclusion

We just illustrated how apply our results for the Sen Measure and the Senegalese database ESAM I and the Mauri-

tanian EPCV 2004 data. But It would be more interesting and instructive to conduct large scale data-driven for the

West African databases for example, for several measures. It would also be interesting to see the influence of the

Kakwani parameter k on the results. This study is underway.

8. Proofs

To begin, we need more notations to describe the representation result of Lo and Sall (2010), in an appropriate

way to our proof. Let G0 ∈ {G,G1, ...,GK} and let a sample of incomes {V1, ...,Vm} from G0. Let αG0,m the uniform

empirical functional process based on

{G0(V1), ...,G0(Vm)},
defined by

αG0,m(g0) =
1√
m

m∑
j=1

g0(G0(Vj) − Eg0(G0(Vj)),

and define an other empirical process, called here residual empirical process,

βG0,m(ν0) =
1√
m

m∑
j=1

{
GG0,m(Vj) −G0(Vj)

}
ν0(Vj), (8.1)

where GG0,m is the empirical distribution function associated with {V1, ...,Vm}. The representation Theorem of Sall

and Lo (2010) establishes under the hypotheses (HD0)-(HD6), for J(G0) = Hc(G0)/Hπ(G0),

√
m(Jm(G0) − J(G0)) = αG0,m(g0) + βG0,m(ν0) + oP(1)

as m→ ∞, where g0 and ν0 are described in (4.1) and (4.5).

Before going any further, we should precise the notations for the global population and the subgroups. For G = G0,
we drop the subscript G0 so that αn, βn, Gn, Jn are respectively the empirical, the residual empirical process (8.1),

the empirical distribution function and the GPI based on the sample Y1, ..., Yn, and J = J(G) = Hc(G)/Hπ(G). As

well the functions g0 and ν0 are denoted as g and ν for G = G0. For G = Gi, 1 ≤ i ≤ K, we use the subscript i so
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that αi,n∗i , βi,n∗i , Gi,n∗i , Ji,n∗i will respectively denote the empirical, the residual empirical process (8.1), the empirical

distribution function and the GPI based on the sample Yi,1, ..., Yi,n∗i , and Ji(Gi) = Hc(Gi)/Hπ(Gi), accordingly to the

notations of Section 4, and the functions g0 and ν0 are denoted as gi and νi in this case. But sometimes we may

feel the notations so heavy and then lessen them. For example, we only put Ji(Gi) = J(Gi) and Ji,n∗i (Gi) = Jn∗i (Gi),

i ∈ {1, ..,K}.
To begin the proof, we remark that n∗(ω1) = (n∗1(ω1), ..., n∗K(ω1)) →P1

{+∞}K as n = n∗1(ω1) + ... + n∗K(ω1) → ∞.
We then get √

n(Jn(G) − J(G)) = αn(g) + βn(ν) + oP(1) := γn + oP(1) (8.2)

and for any 1 ≤ i ≤ K,

√
n∗i (Jn∗i (Gi) − J(Gi)) = αi,n∗i (gi) + βi,n∗i (νi) + oP(1) := γi,n∗i + oP(1) (8.3)

Now we use the intermediate centering coefficient

gd0,n = J(G) −
K∑

i=1

n∗i
n

J(Gi).

to get from (8.2) and (8.3)∣∣∣∣∣∣∣∣
√

n(gdn − gd0,n) −
⎧⎪⎪⎪⎨⎪⎪⎪⎩γn −

K∑
j=1

(
n∗i
n

)1/2

γi,ni

⎫⎪⎪⎪⎬⎪⎪⎪⎭
∣∣∣∣∣∣∣∣ (ω1, ω2)→P1⊗P2

0, (8.4)

as n→ ∞. Then, we have

S ∗n = γn −∑K
j=1

( n∗i
n

)1/2
γi,n∗i = αn(g) −∑K

j=1

( n∗i
n

)1/2
αi,n∗i (gi) + βn(ν) −∑K

j=1

( n∗i
n

)1/2
βi,n∗i (νi).

Remark that
αn(g) = 1√

n

∑n
j=1

(
g(Yj) − Eg(Y)

)
=
√

n
(

1
n
∑n

j=1 g(Yj) − Eg(Y)
)

=:
√

n
(

1
n
∑n

j=1 g(Yj) −∑K
i=1

n∗i
n Eg(Yi)

)
+ D∗(n, 1)

with

D(n, 1) =

K∑
i=1

ni − npi√
npi

√
piEg(Yi),

and

D∗(n, 1) =

K∑
i=1

n∗i − npi√
npi

Eg(Yi)
√

pi.

This leads to

S ∗n =
√

n

⎛⎜⎜⎜⎜⎜⎜⎝1

n

n∑
j=1

g(Yj) −
K∑

i=1

n∗i
n
Eg(Yi)

⎞⎟⎟⎟⎟⎟⎟⎠ −
K∑

j=1

(
n∗i
n

)1/2

αi,n∗i (gi) + βn(ν) −
K∑

j=1

(
n∗i
n

)1/2

βi,n∗i (νi) + D∗(n, 1).

Now, by denoting

C∗(n, 1) =
√

n

⎛⎜⎜⎜⎜⎜⎜⎝1

n

n∑
j=1

g(Yj) −
K∑

i=1

n∗i
n
Eg(Yi)

⎞⎟⎟⎟⎟⎟⎟⎠ −
K∑

i=1

(
n∗i
n

)1/2

αi,n∗i (gi) ,

one has

C∗(n, 1) =

K∑
i=1

(
n∗i
n

)1/2
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1√
n∗i

n∗i∑
j=1

{
(g − gi)

(
Yi j

)
− E (g − gi) (Yi)

}⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (8.5)

We get

S ∗n = C∗(n, 1) + D∗(n, 1) + βn(ν) −
K∑

j=1

(
n∗i
n

)1/2

βi,n∗i (νi). (8.6)
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Further one has
K∑

j=1

(
n∗i
n

)
β∗i,ni

(νi) =
1√
n

K∑
i=1

n∗i∑
j=1

[Gi,n∗i (Yi j) −Gi(Yi j))]νi(Yi j). (8.7)

But

G(Yi j) =

K∑
h=1

phGh(Yi j),

and for x ∈ R,

Gn(x) =
1

n

n∑
i=1

I(Y j≤x) =
1

n

K∑
i=1

n∗i∑
j=1

I(Yi j≤x) =

K∑
i=1

(
n∗i
n

)
1

n∗i

n∗i∑
j=1

I(Yi j≤x) =

K∑
i=1

n∗i
n

Gi,n∗i (x).

Thus

βn(ν) =
1√
n

K∑
i=1

n∗i∑
j=1

⎡⎢⎢⎢⎢⎢⎣
K∑

h=1

(
n∗h
n

)
Gh,n∗h (Yi j) − phGh(Yi j)

⎤⎥⎥⎥⎥⎥⎦ ν(Yi j).

From this, we put and subtract
∑k

h=1(
n∗h
n )Gh(Yi j) to have

βn(ν) =
1√
n

K∑
i=1

n∗i∑
j=1

⎡⎢⎢⎢⎢⎢⎣
K∑

h=1

(
n∗h
n

)
Gh,n∗h (Yi j) −

K∑
h=1

(
n∗h
n

)
Gh(Yi j)

⎤⎥⎥⎥⎥⎥⎦ ν(Yi j) +
1√
n

K∑
i=1

n∗i∑
j=1

⎡⎢⎢⎢⎢⎢⎣
K∑

h=1

(
n∗h
n
− ph

)
Gh(Yi j)

⎤⎥⎥⎥⎥⎥⎦ ν(Yi j)

=
1√
n

K∑
i=1

ni∑
j=1

K∑
h=1

(
n∗h
n

) {
Gh,nh (Yi j) −Gh(Yi j)

}
ν(Yi j) +

1√
n

K∑
i=1

ni∑
j=1

⎡⎢⎢⎢⎢⎢⎣
K∑

h=1

(
n∗h
n
− ph

)
Gh(Yi j)

⎤⎥⎥⎥⎥⎥⎦ ν(Yi j). (8.8)

Now we put together (8.7) and (8.8), while separating the two cases h = i and h � i in (8.8) to get

βn(ν) −
K∑

j=1

(
n∗i
n

)1/2

βi,n∗i (νi)

=

K∑
i=1

(
n∗i
n

)1/2
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1√
n∗i

n∗i∑
j=1

{
Gi,n∗i (Yi j) −Gi(Yi j)

} (n∗i
n
ν − νi

)
(Yi j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+

K∑
i=1

(
n∗i
n

)1/2 K∑
h�i

n∗h
n

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
n∗i

n∗i∑
j=1

{
Gh,n∗h (Yi j) −Gh(Yi j)

}
ν(Yi j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+
1√
n

K∑
i=1

n∗i∑
j=1

⎡⎢⎢⎢⎢⎢⎣
K∑

h=1

(
n∗h
n
− ph

)
Gh(Yi j)

⎤⎥⎥⎥⎥⎥⎦ ν(Yi j)

=: C∗(n, 2) +C∗(n, 3) + D∗(n, 2), (8.9)

with

C∗(n, 2) =

K∑
i=1

(
n∗i
n

)1/2
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1√
n∗i

n∗i∑
j=1

{
Gi,n∗i (Yi j) −Gi(Yi j)

} (n∗i
n
ν − νi

)
(Yi j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (8.10)

and

C∗(n, 3) =

K∑
i=1

(
n∗i
n

)1/2 K∑
h�i

n∗h
n

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
n∗i

n∗i∑
j=1

{
Gh,n∗h (Yi j) −Gh(Yi j)

}
ν(Yi j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (8.11)

We arrive, by comparing (8.6) and (8.9), at

S ∗n = C∗(n, 1) +C∗(n, 2) +C∗(n, 3) + D∗(n, 1) + D∗∗(n, 2). (8.12)
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Let us have a look at

D∗∗(n, 2) =
√

n
K∑

h=1

(
n∗h
n
− ph

) ⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑

i=1

(
n∗i
n

)
1

n∗i

n∗i∑
j=1

Gh(Yi j)ν(Yi j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
By the weak law of large numbers

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑

i=1

(
n∗i
n

)
1

n∗i

n∗i∑
j=1

Gh(Yi j)ν(Yi j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭→P

K∑
i=1

piEGh(Yi)ν(Yi) = Hh.

That is

D∗∗(n, 2) =

K∑
h=1

(
n∗h − nph√

nph

)
Hh
√

ph + oP(1) =: D∗(n, 2) + oP(1).

Finally

gd∗n = S ∗n +
√

n(gd0,n − gd). (8.13)

Hence

gd∗n = C∗(n, 1) +C∗(n, 2) +C∗(n, 3) + D∗(n, 1) + D∗(n, 2) −
K∑

i=1

(
n∗i − npi√

npi

)
Ji(Gi)

√
pi + oP(1),

=: C∗(n) + D∗(n) + oP(1), (8.14)

with

C∗(n) = C∗(n, 1) +C∗(n, 2) +C∗(n, 3) (8.15)

and

D∗(n) = D∗(n, 1) + D∗(n, 2) −
K∑

i=1

(
n∗i − npi√

npi

)
Ji(Gi)

√
pi

=

K∑
i=1

(
n∗i − npi√

npi

)
(Hi + Eg(Yi) − Ji(Gi))

√
pi =:

K∑
i=1

(
n∗i − npi√

npi

)
Fi
√

pi.

We have now to prove that gd∗n =
√

n(gdn − gd) weakly converges to a N(0, ϑ2
1 + ϑ

2
2) random variable. For this it

suffices, based on (8.14), to prove that S ∗∗n = C∗(n) + D∗(n) converges to N(0, ϑ2
1 + ϑ

2
2). Now put

N(K) = {n = (n1, ...nK), ni ≥ 0, n1 + ..., nK = n}.
Since n∗ = (n∗1, ...n

∗
K)→P1

{∞}K , we find for a fixed ε > 0, K positive numbers Ni (1 ≤ i ≤ K) such that for ni ≥ Ni

(1 ≤ i ≤ K), which implies that n ≥ N = N1 + ... + NK ,

P(∃(1 ≤ i ≤ K), n∗i < Ni) < ε.

Let

N(K, 1) = N(K) ∩ {n = (n1, ...nK),∃(1 ≤ i ≤ K), ni < Ni}
and N(K, 2) = N(K)�N(K, 1). We remark that conditionally on (n∗ = n), C∗(n) becomes C(n), does not depend

on ω1 and only include the independent random variables {Yi, j, 1 ≤ j ≤ ni, 1 ≤ i ≤ K}. From Lemma 1 below, we

have

C(n)→ N(0, ϑ2
1).

Also conditionally on (n∗ = n), D∗(n) becomes D(n) and we denote it D(n). Now for h2 = −1,

ψS ∗∗n (t) = E(exp(htS ∗∗n )) =
∑

n∈N(K) P(n∗ = n)E(exp(htC∗(n) + htD∗(n))�(n∗ = n))

=
∑

n∈N(K) P(n∗ = n)E(exp(htD(n)) E(exp(htC∗(n))�(n∗ = n)).

Recall that, by the classical limiting law of the multinomial K-vector,

D∗(n)→ D =
K∑

i=1

ZiFi
√

pi,
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where (Z1, ..., ZK)t is a Gaussian vector with V ar(Zi) = 1 − pi and Cov(Zi,Zj) = −√pi p j, for i � j. Then

D∗(n)→ N(0, ϑ2
2),

with

ϑ2
2 =

K∑
h=1

F2
h ph(1 − ph) −

∑
1≤h�k≤K

FhFk ph pk =

K∑
h=1

Fh
2 ph −

⎛⎜⎜⎜⎜⎜⎝
K∑

h=1

Fh ph

⎞⎟⎟⎟⎟⎟⎠
2

.

We remark that this is the variance of the function Fh of h ∈ [1,K] with respect to the probability measure∑
1≤h≤K phδh.

Put now

N(K, 1) = N(K) ∩ {n = (n1, ...nK),∃(1 ≤ i ≤ K), ni < Ni}
and N(K, 2) = N(K)�N(K, 1). Then∑

n∈N(K)

exp(htD(n))P(n∗ = n)E(exp(htC(n)))) = B(n, 1) + B(n, 2)

with

|B(n, 1)| =
∣∣∣∣∣∣∣∣

∑
n∈N(K,1)

exp(htD(n))P(n∗ = n)E(exp(htC(n)))

∣∣∣∣∣∣∣∣
≤ P(∃(1 ≤ i ≤ K), n∗i < Ni)→ 0, (8.16)

and ∣∣∣∣∣∣∣∣B(n, 2) −
∑

n∈N(K,2)

exp(−(ϑ1t)2/2) exp(htD(n))P(n∗ = n)

∣∣∣∣∣∣∣∣ (8.17)

≤ ε
∑

n∈N(K,2)

P(n∗ = n) ≤ ε.

Finally, for

B∗(n, 2) =
∑

n∈N(K,2)

exp(−(ϑ1t)2/2) exp(htD(n))P(n∗ = n), (8.18)

we are able to use (8.18) and to get

lim sup
n→∞

∣∣∣∣∣∣∣∣B
∗(n, 2) −

∑
n∈N(K)

exp(htD(n))P(n∗ = n)E(exp(−(ϑ1t)2/2))

∣∣∣∣∣∣∣∣ = 0. (8.19)

But

E exp(thD∗(n)) =
∑

n∈N(K)

exp(htD∗(n)/(n∗ = n))P(n∗ = n) (8.20)

=
∑

n∈N(K)

exp(htD(n))P(n∗ = n)→ exp(−(ϑ2t)2/2))

By putting together the previous formulas, and by letting ε ↓ 0, we arrive at

ψd∗∗n (t)→ exp(−(ϑ2
1 + ϑ

2
2)t2/2).

This proves the asymptotic normality of dg∗n of the theorem corresponding to S ∗∗n . That of dg∗n,0 corresponds to S ∗n.

This latter is achieved by omitting the term
√

n
∑K

i=1(
n∗i
n − pi)Ji(Gi) in (8.13). This leads to Mh obtained from Fh

by dropping Ji(Gi). This completes the proofs.

We now prove this lemma used in the proof.

Lemma 1 Let C(n) = C(n, 1) + C(n, 2) + C(n, 3), where the C(n, i) are respectively defined in (8.5), (8.10) and
(8.11) for i = 1, 2, 3. Then, as n→ +∞,

C(n) � N(0, ϑ2
1).
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Proof. Recall that

C(n) = C(n, 1) +C(n, 2) +C(n, 3). (8.21)

Let for each i ∈ [1,K], Gni (i, f ) be the functional empirical process based on {Gi(Yi, j), 1 ≤ i ≤ ni}, 1 ≤ i ≤ K}.We

consider the three terms in (8.21), that is the C(n, i), 1 ≤ i ≤ 3, defined in (8.5), (8.10) and in (8.11), and prove that

each of them converges to a random variable C(i) depending on the limiting Gaussian processes G(i, ·) of Gni (i, ·).
This is enough to prove the asymptotic normality. The variance ϑ2

1 will be nothing else but that of C(1)+C(2)+C(3).

Firstly, we treat C(n, 1). Remark that conditionally on (n∗ = n), the random sequences {Yi, j, 1 ≤ i ≤ ni, 1 ≤ i ≤ K}
are independent and only depend on the ω2 ∈ Ω2.We have

K∑
i=1

(ni

n

)1/2

αni (gi) =
1√
n

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

i=1

ni∑
j=1

gi(Yi j) −
K∑

i=1

niE(gi(Yi))

⎤⎥⎥⎥⎥⎥⎥⎦ = √n

⎡⎢⎢⎢⎢⎢⎢⎣1

n

K∑
i=1

ni∑
j=1

gi(Yi j) −
K∑

i=1

(ni

n

)
E

(
gi(Yi)

)⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

αn(g, 1) =
√

n

⎛⎜⎜⎜⎜⎜⎜⎝1

n

n∑
j=1

g(Yj) −
K∑

i=1

(ni

n

)
E

(
g(Yi)

)⎞⎟⎟⎟⎟⎟⎟⎠ = √n

⎛⎜⎜⎜⎜⎜⎜⎝1

n

K∑
i=1

ni∑
j=1

g(Yi j) −
K∑

i=1

(ni

n

)
E

(
g(Yi)

)⎞⎟⎟⎟⎟⎟⎟⎠ .
Then, by (8.5) and replacing n∗i by ni, i = 1, ...,K, we get

C(n, 1) = αn(g, 1) −
K∑

i=1

(ni

n

)
αni (gi)

=

K∑
i=1

(ni

n

)1/2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
ni

ni∑
j=1

{
(g − gi) (Yi j) − E (g − gi) (Yi))

}⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (8.22)

This implies that

C(n, 1) =

K∑
i=1

(ni

n

)1/2

Gni

(
i, (g − gi) G−1

i

)
.

We finally have that

C(n, 1)→ C(1) =

K∑
i=1

p1/2
i G(i, (g − gi)G−1

i ).

Since the G
(
i, (g − gi) G−1

i

)
are independent, centered and Gaussian, we get that

A1 = EC2(1) =

K∑
i=1

piEG
2(i, (g − gi)G−1

i ) =

K∑
i=1

pi

{
E(g − gi)

2(Yi) − (E(g − gi)(Yi))2
}
.

In the sequel we take

g0 (x) = g0 (x) × e(x) and ν0 (x) = ν0 (x) × e(x),

and

(g0, ν0) ∈ (g, g1, ..., gK) × (ν, ν1, ..., νK) and i = 1, ...,K.

Then we arrive

A1 =

K∑
i=1

pi

⎧⎪⎪⎨⎪⎪⎩
∫ Gi(Z)

0

(g − gi)
2(G−1

i (t))dt −
(∫ Gi(Z)

0

(g − gi)(G
−1
i (t))dt

)2
⎫⎪⎪⎬⎪⎪⎭ .

Secondly, one has

C(n, 2) =

K∑
i=1

(ni

n

)1/2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
ni

ni∑
j=1

{
Gi,ni (Yi j) −Gi(Yi j)

} (ni

n
ν − νi

)
(Yi j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

We have

1√
ni

ni∑
j=1

{
Gni (Yi j) −Gi(Yi j)

} (ni

n
ν − νi

)
(Yi j) =

∫ 1

0

−εni (i, s)(piν − νi)(G−1
i (s))ds + oP(1)
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=

∫ 1

0

Gni (i, s)(piν − νi)(G−1
i (s))ds + oP(1)→

∫ 1

0

G(i, s)(piν − νi)(G−1
i (s))ds,

and thus

C(n, 2)→ C(2) =

K∑
i=1

p1/2
i

∫ 1

0

G(i, s)(piν − νi)(G−1
i (s))ds. (8.23)

Finally, one has

C(n, 3) =

K∑
i=1

(ni

n

)1/2 K∑
h�i

nh

n

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
ni

ni∑
j=1

{
Gh,nh (Yi j) −Gh(Yi j)

}
ν(Yi j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
But, for each fixed i ∈ {1, ..,K},

1√
ni

ni∑
j=1

{
Gh,nh (Yi j) −Gh(Yi j)

}
ν(Yi j) =

∫ 1

0

√
ni

{
Gh,nh (G−1

i (Vni (i, s))) −Gh(G−1
i (Vni (i, s)))

}
× ν(G−1

i (Vni (i, s)))ds.

We remember that ν is of the form

ν(y) = ν(y)I(y≤Z)

where νa is continuous on compact sets [0, L], L > 0. Since, as n→ ∞,
sup

s∈(0,1)

∣∣∣Vni (i, s) − s
∣∣∣→ 0, a.s,

we see that, for large values of n, theses integrals are performed at most on some interval [0,Gi(Z) + ε], which

includes those s satisfying Vni (i, s) ≤ Gi(Z). By the assumptions, the functions ν and G are continuous on such

compact sets. Thus

1√
ni

ni∑
j=1

[Gh,nh (Yi j) −Gh(Yi j)]ν(Yi j)

=

√
ni

nh

∫ 1

0

Gnh (h,Gh(G−1
i (Vni (i, s))) × ν(G−1

i (Vni (i, s)))ds

=

√
ni

nh

∫ 1

0

Gnh (h,Gh(G−1
i (Vni (i, s))) × ν(G−1

i (s))ds + oP(1).

Next

=

√
ni

nh

∫ 1

0

Gnh (h,Gh(G−1
i (s)) × ν(G−1

i (s))ds + Rn + oP(1),

with

Rn =

∫ 1

0

{
Gnh (h,Gh(G−1

i (Vni (i, s))) −Gnh (h,Gh(G−1
i (s))

}
× ν(G−1

i (s))ds

and

|Rn| ≤
∫ Gi(Z)+ε

0

∣∣∣Gnh (h,Gh(G−1
i (Vni (i, s))) −Gnh (h,Gh(G−1

i (s))
∣∣∣ × ν(G−1

i (s))ds.

We surely have, by continuity of Gh on
(
0,G−1

i (G(Z) + ε)
)
,

sup
s≤Gi(Z)+ε

∣∣∣Gh(G−1
i (Vni (i, s))) −Gh(G−1

i (s))
∣∣∣ = an → 0.

We obtain here a continuous modulus of the uniform empirical process (see Shorack & wellner, 1986, p. 531) and

then

sup
s≤Gi(Z)+ε

∣∣∣∣{Gnh (h,Gh(G−1
i (Vni (i, s))) −Gnh (h,Gh(G−1

i (s))
}∣∣∣∣ = O(

√−an log an).

We finally get

Rn = O
( √−an log an

) ∫ 1

0

ν(G−1
i (s))ds→ 0
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and we arrive at

C(n, 3)→ C(3) =

K∑
i=1

pi

K∑
h�i

√
ph

∫ 1

0

G(h,Gh(G−1
i (s)) × ν(G−1

i (s))ds. (8.24)

We are now going to compute the variance ϑ2
1 based on the independent functional Browian bridges G(i, ·) which

are limits of the functional empirical process Gn(i, ·) respectively associated with {Gi(Yi, j), 1 ≤ i ≤ ni}, i = 1, ..,K.
Straightforward calculations give what comes. First

A1 = EC2(1) =

K∑
i=1

piEG
2(i, (g − gi)G−1

i ).

We denote li = (g − gi)G−1
i in the sequel for sake of simplicity. Next for

C(2) =

K∑
i=1

p1/2
i

∫ 1

0

G(i, s)(piν − νi)(G−1
i (s))ds

we have

A2 = E(C2(2)) =

K∑
i=1

pi

∫ 1

0

∫ 1

0

(s ∧ t − st)ci(t)ci(s)dsdt

=

K∑
i

pi

∫ Gi(Z)

0

∫ Gi(Z)

0

(s ∧ t − st)(piν − νi)(G−1
i (s))(piν − νi)(G−1

i (t))dsdt,

where ci(t) = (piν − νi)
(
G−1

i (t)
)
. Now for

C(3) =

K∑
i=1

pi

K∑
h�i

√
ph

∫ 1

0

G(h,Gh(G−1
i (s))) × ν(G−1

i (s))ds,

we have

A3 = E(C2(3)) = E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∑

i=1

p2
i

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

h�i

Ki,h

⎞⎟⎟⎟⎟⎟⎟⎠
2

+

K∑
i=1

K∑
j�i

pi p j

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

h�i

Ki,h

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

K∑
h′� j

K j,h′

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Put

Ki,h =
√

ph

∫ 1

0

G(h,Gh(G−1
i (s))) × ν(G−1

i (s))ds,

split A3 into

A31 = E

⎛⎜⎜⎜⎜⎜⎜⎜⎝
K∑

i=1

p2
i

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

h�i

Ki,h

⎞⎟⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠

and

A32 = E

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

i=1

K∑
j�i

pi p j

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

h�i

Ki,h

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

K∑
h′� j

K j,h′

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ .

Now by using the independence of the centered stochastic process G(h, ·) for differents values of h ∈ {1, ...,K}, one

gets

A31 = E

⎛⎜⎜⎜⎜⎜⎜⎜⎝
K∑

i=1

p2
i

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

h�i

Ki,h

⎞⎟⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠

and then

A31 =

K∑
i=1

p2
i

K∑
h�i

ph

∫ Gi(Z)

0

∫ Gi(Z)

0

[
Gh(G−1

i (s)) ∧Gh(G−1
i (t)) −Gh(G−1

i (s))Gh(G−1
i (t))

]
ν(G−1

i (s))ν(G−1
i (t))dsdt.
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Next, one has

A32 = E

K∑
i=1

pi

K∑
j�i

p j

K∑
h�i

p1/2
h

K∑
h′� j

p1/2
h′

∫ 1

0

∫ 1

0

G(h,Gh(G−1
i (s))G(h′,Gh′(G−1

j (t)))ν(G−1
i (s))ν(G−1

j (t))dtds

=

K∑
i=1

pi

K∑
j�i

p j

K∑
h�{i, j}

ph

∫ Gi(Z)

0

∫ G j(Z)

0

[
Gh(G−1

i (s)) ∧Gh(G−1
j (t)) −Gh(G−1

i (s))Gh(G−1
j (t))

]
ν(G−1

i (s))ν(G−1
j (t))dsdt.

Now we have

C(1)C(2) =

⎛⎜⎜⎜⎜⎜⎝
K∑

i=1

p1/2
i G(i, 	i)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

K∑
i=1

p1/2
i

∫ 1

0

G(i, s)ci(s) ds

⎞⎟⎟⎟⎟⎟⎠ =
K∑

i=1

p1/2
i

K∑
j=1

p1/2
j

∫ 1

0

G(i, s)c(s)G( j, 	 j) ci(s) ds.

And get

B1 = EC(1)C(2) =

K∑
i=1

pi

∫ 1

0

E(G(i, s)G(i, 	i) ci(s)ds

=

K∑
i=1

pi

∫ 1

0

⎧⎪⎪⎨⎪⎪⎩
∫ G−1

i (s)

−∞
(g − gi)(y)dGi(y) − sE(g − gi)(Yi)

⎫⎪⎪⎬⎪⎪⎭ ci(s)ds

=

K∑
i=1

pi

∫ Gi(Z)

0

{∫ s∧Gi(Z)

0

(g − gi)(G
−1
i (t))dt −s

∫ 1

0

(g − gi)(G
−1
i (t))dt

}
(piν − νi)(G−1

i (s))ds.

We have next

C(2)C(3) =

⎛⎜⎜⎜⎜⎜⎝
K∑

i=1

p1/2
i

∫ 1

0

G(i, s)ci(s)ds

⎞⎟⎟⎟⎟⎟⎠ ×
⎛⎜⎜⎜⎜⎜⎜⎝

K∑
i=1

pi

K∑
h�i

p1/2
h

∫ 1

0

G(h,Gh(G−1
i (s)) × ν(G−1

i (s))ds

⎞⎟⎟⎟⎟⎟⎟⎠

=

K∑
i=1

p1/2
i

K∑
j=1

p j

K∑
h� j

p1/2
h

∫ 1

0

∫ 1

0

G (i, s)G(h,Gh(G−1
j (t))ci(s)ν(G−1

j (t)))dsdt.

It comes that

B2 = EC(2)C(3) =

K∑
j=1

p j

K∑
i� j

pi

∫ Gi(Z)

0

∫ G j(Z)

0

[s ∧Gi(G−1
j (t)) − sGi(G−1

j (t))] × (piν − νi)(G−1
i (s))ν(G−1

j (t))dsdt.

Now finally for

C(1)C(3) =

⎛⎜⎜⎜⎜⎜⎝
K∑

i=1

p1/2
i G(i, 	i)

⎞⎟⎟⎟⎟⎟⎠ ×
⎛⎜⎜⎜⎜⎜⎜⎝

K∑
i=1

pi

K∑
h�i

p1/2
h

∫ 1

0

G(h,Gh(G−1
i (s)) × ν(G−1

i (s))ds

⎞⎟⎟⎟⎟⎟⎟⎠

=

K∑
i=1

p1/2
i

K∑
j=1

p j

K∑
h� j

p1/2
h

∫ 1

0

G(h,Gh(G−1
j (s))G(i, 	i) × ν(G−1

j (s))ds,

where the 	′i s are defined in (4.6), we have

B3 = EC(1)C(3) =

K∑
j=1

p j

K∑
i� j

pi

∫ 1

0

E
{
G(i, 	i)G(i,Gi(G−1

j (s))
}
× ν(G−1

j (s))ds

=

K∑
j=1

p j

K∑
i� j

pi

∫ G j(Z)

0

⎧⎪⎪⎨⎪⎪⎩
∫ Gi(G−1

j (s))∧Gi(Z)

0

(g − gi)(G
−1
i (t))dt −Gi(G−1

j (s))

∫ Gi(Z)

0

(g − gi)(G
−1
i (t))dt

}
ν(G−1

j (s))ds.

We have now finished the variance computation, that is

ϑ2
1 = A1 + A2 + A3 + 2(B1 + B2 + B3)
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