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Abstract

The classical goodness-of-fit problem, in the case of a null continuous and completely specified distribution, is
faced by a new version of the Girone—Cifarelli test (see Girone, 1964; Cifarelli, 1974 & 1975). This latter test
was introduced for the two-sample problem and showed a substantial gain of power over other common tests
based on the empirical distribution function, notably over the Kolmogorov—Smirnov test. First, the problem of
the re-definition of the Girone—Cifarelli test-statistic is considered, by reviewing the literature on the subject. A
classical remark by Anderson (1962) is shown to be useful to choose the integrating function in the newly defined
test-statistic. The sample properties of such a test-statistic are then studied. A table of critical values is obtained
by simulation; moreover, the asymptotic null distribution is considered and its accuracy as an approximation of
the finite distribution is discussed. Finally, a simulation study, considering a wide set of distributions mostly
used in applications, is conducted to compare the proposed test with its classical competitors. The study gives
some indications to locate such situations where the Girone-Cifarelli test performs at its best, notably over the
Kolmogorov—Smirnov test.

Keywords: goodness-of-fit tests, empirical distribution function, Girone—Cifarelli test, nonparametric statistical
methods

1. Introduction

A random sample xi, ..., x,, is drawn from a population X with continuous distribution function F, to test the null
hypothesis Hy : F(x) = Fo(x) against the alternative H, : F(x) # Fo(x), x € R, where Fj is completely specified.
This common goodness-of-fit problem is usually faced by three classes of tests: the chi-square test, the tests based
on spacings and the tests based on the empirical distribution function (edf). In this latter class several test-statistics
can be considered, usually by adapting their versions for the two-sample problem.

The most known test based on the edf F, is surely the Kolmogorov—Smirnov test, which rejects Hy for large values
of the test-statistic
K, = sup [|Fo(1) - Fu(Dl. (1)
te(—00,+00)
As known, other test-statistics can be defined by considering the square of the difference |F(r) — F,(?)|, like in the
Cramér—Von Mises test

+00
Co=n f [Fo(0) - F, (0 dFo(0). @)
Notice that in the above considered test-statistics F, a continuous model, is compared with F,, which has dis-
continuities at xi, ..., x,. However, in (1) the supremum of the difference |F(t) — F,(?)| is taken, while in (2) the

squared difference [Fy(?) — F, (O] s integrated with respect to the continuous function F,. Because of these latter
choices, no particular care is needed in the definition of the value taken by the edf at its points of discontinuity.
This means that one can use the usual definition

Fo(x) = i for xg < x < X1y (i=0,....n), 3)

(where x(j),...,X@ denotes the ordered sample, x) = —oco and x(+1) = +oo0), which makes F, to be right-
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continuous, or equivalently set
i—-c .
Fu(x@) = W @=1,....,n), 4)

(where c is chosen in [0,1]), so that F,, can take every value of its jump at x;) (i = 1,...,n).

Turning back to (2), the function with which the squared difference [F(f)—F,(¢)]? is integrated could be substituted
by the edf itself. This choice allows to simplify the test-statistic as

C,=n f [Fo(t) = Fa? dF,(1) = )" [Fo(x) = Falx) T, %)
- i=1

but the definition of F,(x(;) becomes now relevant. However, Anderson (1962) pointed out that, when ¢ = 1/2 is
taken in (4), the test-statistics C,, and C;l are equivalent, as the former can be also written as

n

i—1217 1
C11=Z|:F0(X(i))_l l’l/ ] +E. (6)

i=1

Besides such a latter equivalence, setting ¢ = 1/2 in (4) is, as a matter of fact, a natural choice. Indeed, forcing
the edf to take the mid-point of its jump at x(;) seems less arbitrary than choosing any other value in the jump
(including the extremes i/n and (i — 1)/n,i = 1,...,n.

Notice again that any choice of F,(x;), made to give a final form to C’n in (5), does not affect the usual definition
of the edf in the open intervals (x(;), xi+1)), i = 1,...,n — 1. However, in the literature some modifications of the
edf in such intervals were also proposed. For instance, Green and Hegazy (1976) pointed out that when the edf is

re-defined as
F’( ) i+1/2
x) =
" n+1

the criterion C,, in (2) reduces, up to a multiplicative constant, to

for Xy < X < X(i+1) (l =1,...,n— 1), (7)

n . 2

Z [Fo(x(i)) - nﬁ , ®)

i=1

which is shown to lead to a powerful test under some circumstances. Notice that the test-statistic in (8) can be also
obtained from C), in (5) by re-defining accordingly the value of the edf at its discontinuities, that is by setting

, i
F (x3) = —— i=1,...,n),
o)== n) ©)
which is again the mid-point of the jump of F, at x;. Other modifications of the definition of the edf in the open
intervals (x(), Xi+1)) are known. By noticing that the term i/(n + 1) is actually the expectation of Fy(x(;) under
the null hypothesis, Pyke (1959) proposed a new version of the Kolmogorov—Smirnov criterion (1), which in turn
induces a further modification of the definition of the edf (see also Brunk, 1962).

The above remarks will be used in this paper to propose a goodness-of-fit version of the Girone—Cifarelli test,
which was mainly studied for the two-sample problem. The definition of the test-statistic for goodness-of-fit
purposes raises some questions which will be addressed in the next section, where the sample properties of the
newly proposed test-statistic will be also analyzed. Section 3 will report some results of a simulation study, where
the proposed test is compared with its most important competitors based on the edf. Section 4 will provide a
real-data example and some conclusions.

2. Definition of the Test-statistic
Girone (1964) proposed a test for the equality of two populations X and Y, based on the statistic

(m + n)f ) IFn(1) = Gu(D)| dH (D), (10)

where F,, G,, and H,,,, denote respectively the edf’s of a n-sample from X, a m-sample from Y and the pooled
(m + n)-sample. The test was actually originally proposed in the special case n = m and its sample properties
were studied by Cifarelli (1974 & 1975). Generalizations for the case n < m were proposed by Goria (1972),
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by Borroni (2001) and independently by Schmid and Trede (1995). For the two-sample problem, the Girone—
Cifarelli test proved to be superior to other common tests, notably the Kolmogorov—Smirnov test, under a wide
set of circumstances. This fact is far from being unexpected, as in (10) the whole behavior of the difference
|F(t) — G,u(1)] is considered, while in the Kolmogorov—Smirnov test just its supremum is taken.

A goodness-of-fit version of the Girone—Cifarelli test would result useful. Using the same settings as in section
1, the edf F,, of the single n-sample is now to be compared with the null model Fy. The function with respect to
which the difference |F,(f) — Fo(¢)| is to be integrated could then be the null model Fy or the edf F,. As above
remarked, this latter choice highly simplifies the structure of the test statistic, as

+00 n
nf [Fo(n) = Fu(DldF, (1) = Z |Fo(x@) = Fu(xa)ls Y

o i=1

as a consequence, the definition of the value taken by the edf at its discontinuities becomes relevant. Following the
above suggestion by Anderson (1962) for C/,, we can then take

i—1/2

Fo(xp) = i=1,...,n), (12)

and define
i—1/2
Fo(xg) - | (13)

a,=>

i=1

The sample properties of A, are easily derived from its two-sample equivalent. First of all notice that, being F a
continuous model, the variables Fo(x), i = 1, ..., n, are uniform over [0,1] and hence A;, is distribution-free under
H,. For small sample sizes, the null distribution of A, can then be determined by simulation, as pointed out in the
next section. Moreover, following Cifarelli (1975), n"/? A’ is asymptotically distributed as the r.v.

1
f (o)l defw(1) = 0, (14)
0
where {w(7),t € [0, 1]} denotes the Brownian motion in [0,1]. A tabulation of the quantiles of (14) is found in
Johnson and Killeen (1983); see also Shepp (1982 & 1991) and Takécs (1993).

Differently from C),, A, is not equivalent to the statistic obtained by using Fy as an integrating function in (11).
This is shown by considering that

+00 L&
A” = f |F0(t)_Fn(t)|dF0([) = E Z|:

o i=1

.1 .1 . .
Fo(xq)) — IT‘ (Fo(x(i)) - ZT) = [Fo(xq)) — i' (Fo(x(i)) - i)} . (15)

Schmid and Trede (1996) considered y/n A, as a test-statistic and reported a small simulation study to evaluate
its performance. They concluded that the power of A, is quite close to the one of the Cramér—Von Mises test,
without reporting situations where A, performs definitely nor uniformly better than C,. It should be pointed out
that A;,, which has a rather simpler form, is not equivalent to A,,, even if the two tests have often similar powers.
Consequently, the next section will first present some results of a simulation study without distinguishing between
A, and A,. In the following, some insights about the situations where the two tests are likely to perform differently
will then be given. In a sense, the reported simulation study can be considered as an extension of the one by
Schmid and Trade (1996), because it will be able to locate some alternatives where the test based on A’ along with
the one based on A,,, performs definitely better than the Cramér—Von Mises test.

n’

3. Simulation Study

The first task to develop a goodness-of-fit test based on A, is to determine its critical values. As above mentioned,
being Fy completely specified and continuous, the transformation F(X) gives a Uniform distribution over (0,1).
Hence the null distribution of A, can be simulated by randomly generating a large number of samples from such
a distribution, with a fixed size n. The critical values of the test can then be determined by computing the value
taken by A, for each simulated sample as long as the related frequency distribution. For a selected range of sample
sizes and some common significance levels, Table 1 reports the critical values of n"'/? A’ based on 10° simulated
samples.



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 2, No. 1; 2013

Table 1. Simulated critical values of n"!/2A
a n=5 n=10 n=20 n=30 n=50 00

0.01 0.7142 0.7364 0.7436 0.7465 0.7478 0.7518
0.05 0.5670 0.5747 0.5783 0.5791 0.5807 0.5821
0.10 0.4893 0.4942 0.4966 0.4972 0.4982 0.4993
0.15 0.4398 0.4439 0.4459 0.4462 0.4470 0.4480
0.20 0.4029 0.4064 0.4081 0.4088 0.4092 0.4103

As a term of comparison, the last column of Table 1 reports the critical values of the asymptotic distribution of
n"1"P A’ (see section 2). The fast convergence to the asymptotic approximation can be easily appreciated. In order
to get further indications about the accuracy of the asymptotic distribution and the sample sizes needed to use it,
the simulated cdf’s obtained for fixed values of n were compared with the asymptotic cdf, whose expression is
found in Johnson and Killeen (1983). Figure 1 reports the results obtained for n = 10. As seen, the asymptotic cdf
is very close to the “real” one, even if a certain difference is observed, especially for small values of the variable.
However, one can claim that, to develop a goodness-of-fit test based on A, just the right tail of its null distribution
is relevant. In effect, when the last part of the distribution is considered (say for such x so that Pr{A;Z < x}>0.8)
the finite cdf is rather close to the asymptotic cdf. To get into further details, Table 2 reports, for some selected
sample sizes, the greatest absolute difference of the two cdf’s and the same difference referred to the right tail of
the distribution. From such a table, a minimum value of n = 50 is to be advised to get a correct approximation of
the null distribution.
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Figure 1. Comparison of the “real” cdf and the asymptotic cdf of A,’i under Hy (n = 10)

Table 2. Greatest absolute difference between the “real” cdf and the asymptotic cdf of A, under Hy (whole distri-
bution and right tail)

n  whole distrib.  right tail

5 0.0626 0.0112
10 0.0330 0.0065
20 0.0173 0.0035
30 0.0123 0.0023
50 0.0068 0.0018
100 0.0042 0.0005

After computing the critical values of the test based on A/, its power can be estimated by simulation as well. This
section reports some results of a wide simulation study conducted at this aim. Notice that the power of a goodness-
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of-fit test will depend on the model Fjy chosen under Hy as long as on the real cdf of X under H;, which will be
denoted as Fj. Generally F; will belong to a family of distributions containing F) itself, which is hence obtained
by an appropriate choice of the parameter(s) of the family. In this paper we will focus on three models for Hy,
mostly used in applications: the standard Normal distribution, the unit exponential distribution and the uniform
distribution on the unit interval. For each null model, F; will belong to three different families of distributions
containing F.

Consider first the standard Normal as a null model. A suitable family for F; could be the skew-normal (SN)
distribution (see Azzalini, 1985) with density:

JS(x) =2 ¢(x) D(ax), xe R, (16)

where ¢(-) and @(-) denote the density and the cdf of a standard Normal respectively. The parameter a € R
regulates the skewness of the distribution, thus giving a standard Normal if set to zero. To this end, using family
(16) for F; in a simulation study, can result in an useful analysis of such situations where the researcher needs to
test normality against possible asymmetries of data. It is known, however, that data may depart from normality
due to heavy-tailedness. To simulate such latter situations, the Student’s T density can be used as a family for F :

rg) [ ey
f(x)= W—r(%)(l +E) , xe%, (17)

(T°(-) denotes the gamma function). The family (17) gives only symmetric distributions with heavy tails, such
phenomenon being reduced by increasing the parameter a > 0; as known, the family converges to the normal
distribution when a — oo. Finally, to simulate such cases where the normality of data depends on the application
of the central limit theorem, one can choose for F'; the gamma (GA) density with unit scale:

1 1
= a- —X’ > 0 18
f(x) @ xe X (18)
As an effect of the above theorem, when a — oo, family (18) gives a normal density (which can be then standardized

to be consistent with the null model F). However, in applications, @ may not be large enough to guarantee a good
convergence; the researcher may then need a powerful test to detect such a failed convergence.

Table 3. Simulated powers when the null model is a standard Normal distribution (@ = 0.01, 0.05,0.1)

’

n H] An Kn Cn Dn
.0101 .0099 .0099 .0103
10 null .0500 .0506 .0502 .0506

.1007 .1010 1013 .1002

1989 1575 1925 1707
10 SN(1) 4503 .3849 4392 4088
5948 .5308 .5841 5555

3320 2743 3291 2755
10 SN(1.5) .6460 .5739 .6399 .5908
7850 7243 71807 7431

.0312 .0243 .0284 4673
10 T(1.5) 1117 .0933 1044 .6088
.1948 1772 .1843 .6868

.0369 .0302 .0339 .5883
10 T(1.25) 1272 .1062 1197 7080
2185 .2007 2076 7703

.0119 .0203 .0158 .0146
10 GA(2) .0687 .0841 .0748 .0768
1363 .1485 1415 1525
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Table 3 (continued). Simulated powers when the null model is a standard Normal distribution (¢ = 0.01,0.05,0.1).

’

n H] An Kn Cn Dn
0132 0240 .0179 .0169
10 GA(1.5) 0769 0946 .0839 .0879
1508 1653 1556 1716
2022 1491 1904 1904
25 SN(0.5) 4215 .3494 4067 4054
5501 4809 .5385 .5350
.6637 5441 .6471 .6302
25 SN(1) 8716 7989 .8627 .8585
9317 .8894 9272 9251
0335 0274 .0313 .6016
25 T(1.75) 1299 1107 1219 7532
2321 .1986 2160 .8246
0392 0347 .0374 7334
25 T(1.5) 1528 1329 1434 .8468
2717 2355 .2543 8957
.0296 0455 .0363 .0316
25 GA(2) 1230 1403 1314 1395
2171 2295 .2201 2520
.0398 0592 .0483 .0427
25 GA(1.5) 1585 1745 1754 1817
2703 2692 2698 3192
2427 A775 2304 .2400
100 SN(0.25) 4684 .3886 4523 4626
5904 5198 S777 .5859
.8476 7331 .8315 .8439
100 SN(0.5) 9514 .9040 .9453 .9507
9762 9505 9730 .9760
0728 0677 .0675 9398
100 T(2) .2909 2545 2708 9839
AT79 4245 4563 9931
.1005 .1005 .0953 9811
100 T(1.75) 3682 3421 3225 9959
.5697 5291 .5558 9984
1959 2275 2179 2678
100 GA(2) 4719 4442 AT11 .6476
.6408 ST77 .6278 .8400
3151 3245 .3351 4569
100 GA(1.5) .6350 .5839 .6327 .8505
7863 .8208 7805 9635

Table 3 reports the results of a set of simulations, each based on 10° replications, for the null standard normal
model. Some selected alternative distributions, all belonging to the above described families, are chosen. Table 3
reports the powers of the tests based on A/, K,, and C,. Another classical goodness-of-fit test is also considered:
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the Anderson—Darling test,

+00 1
— _ 2 .
D, = f E0) = Fo0) s dFol0): (19)

here the squared difference [F,(f) — Fo(1)]* is weighted to get more sensibility in the tails of the distributions.
The powers reported in Table 3 were obtained by fixing three different values of the significance level a: 0.01,
0.05 and 0.1 (for each entry, the corresponding powers are listed in the latter order; the best power is highlighted
too). It seems, however, that the performance of none of the considered tests is really affected by the choice of
a. Moreover, the first row of Table 3 reports the estimated actual significance level, which is always very close to
the nominal one, even for a small sample size as n = 10 (similar results, not reported here for the sake of brevity,
were obtained for larger sample sizes). Notice that, for each considered alternative distribution, the values of the
related parameter were set to allow a relevant comparison of the estimated powers; this need implies, incidentally,
that the same value of the parameter cannot be chosen for all sample sizes in most cases. However, Table 3 (along
with the following tables) was built so that at least one same value of the parameter is chosen for adjacent sample
sizes. Table 3 emphasizes that, when used as a test of normality, the Girone—Cifarelli test has a good power against
some kinds of alternatives. More specifically, the test outperforms all the other considered tests (and notably
the Kolmogorov—Smirnov and the Cramér—Von Mises test) when the alternative distribution belongs to the skew-
normal class. The superiority of the Girone—Cifarelli test for skewed alternatives seems indeed to be a general rule,
at least among the considered tests, as further evidenced in the following simulations. When normality is to be
tested against heavy tailedness, like for the Student’s T alternatives considered in Table 3, the performance of the
Girone—Cifarelli test gets worse, notably over the Anderson—Darling test. This result is far from being unexpected,
but it has to be underlined that A, still keeps its superiority over the Cramér—Von Mises test (and the Kolmogorov—
Smirnov test). The superiority of the Anderson—Darling test still characterizes Gamma alternatives. In this chance,
however, the Girone—Cifarelli test gets worse even over the Cramér—Von Mises test and the Kolmogorov—Smirnov
test. A global evaluation of Table 3 shows that, as expected, the performances of the considered tests become
similar when the sample size increases, even if all the above conclusions still hold. Notably, A’ outperforms the
other considered tests for skew-normal alternatives, as D,, does for Student’s T and Gamma alternatives. However,
in this latter case, the Girone—Cifarelli test seems to grow better over its competitors as the sample size increases.

Another set of simulations was conducted by setting the unit exponential distribution as a null model. This as-
sumption is typical for many datasets in reliability analyses. In this kind of applications, exponentiality is often to
be tested against some more complicate distributional assumptions. To this end, a natural choice for F; is again
the gamma (GA) density with unit scale. When a = 1, (18) reduces to the unit exponential. Another family of
distributions, mostly used in reliability analyses as well, is the Weibull (W) density with unit scale:

fx)=axte™, x>0, (20)

which was used as a family for F, after noticing that it reduces to the unit exponential when a = 1. Finally, a third
family was used to shape the alternative hypothesis:

F(x) = (1 +ax)y (1), x>0, @21)

that is the generalized-Pareto (GP) density with zero location and unit shape. (21) gives the unit exponential density
as a — 0. The best results for the Girone—Cifarelli test were obtained for the Gamma alternatives, as shown by
Table 4, which has the same settings as Table 3. A/, outperforms all the other considered tests, notably the Cramér—
Von Mises test. The Anderson-Darling test has generally a worse power than A, even if it becomes its main
competitor as n increases. It has to be emphasized that the simulated powers reported for Gamma alternatives in
Table 4 cannot be compared with the ones reported in Table 3, as the null distribution is quite different in the two
sets of simulations. More specifically, when the null model is the Normal distribution, the power of each considered
test is a decreasing function of the parameter a in (18); conversely, when the null model is the unit exponential
distribution, the power is an increasing function, at least if a > 1. This fact explains why, even if the sample size
and the value of @ may coincide, Table 4 and Table 3 report quite different values of the estimated powers. Turning
to other distributions considered in Table 4, one can notice that the above conclusions are reversed for alternatives
of the generalized-Pareto kind, as D, outperforms here all the other tests; A, has a similar power to the one of
the Cramér—Von Mises test, but it seems to worsen as n increases. The Weibull alternatives evidence a problem of
bias for some tests under some circumstances; apart from this fact, this case resembles the Student’s T alternatives
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of Table 3: except for n = 5, the test based on D, has definitely the best power, but A, clearly outperforms the
Cramér—Von Mises and the Kolmogorov—Smirnov tests.

Table 4. Simulated powers when the null model is a unit exponential distribution (o = 0.01,0.05,0.1)

’

n Hl An Kn Cn Dn
.0094 .0100 .0097 .0095
10 null .0494 .0495 .0494 .0492

.1001 .0992 .1001 .0989

1515 1152 .1437 1444
10 GA(1.5) 3560 2891 .3428 .3420
4827 4229 4710 4684

6191 4863 5928 .6048
10 GA(2) 8388 7511 8222 .8269
9088 .8507 .8988 .9004

.0021 0144 .0049 .0010
10 W(2) .0618 0984 0712 .0360
1951 2036 .1903 1315

.0038 .0501 .0105 .0007
10 W(@3) 2587 .2889 2579 .1469
5906 4925 .5440 4554

.0269 0215 .0257 0871
10 GP(0.35) .0946 .0829 .0908 2048
.1659 .1486 1585 3019

0411 .0323 .0337 .1469
10 GP(0.45) 1179 .1018 1119 2830
1892 .1964 1830 3821

.1098 .0818 1018 .1039
25 GA(1.25) 2772 .2249 2645 .2649
.3882 3334 3764 .3765

4973 3752 4711 4811
25 GA(1.5) 7339 .6351 7149 7226
8281 7538 .8140 .8201

.0224 .0554 .0326 .0235
25 W(1.75) .2296 2205 2199 2317
4582 .3806 4291 4618

.0708 1160 .0818 .0689
25 W(2) 4462 3758 4174 4549
7093 5743 .6680 7231

.0422 .0344 .0395 .1456
25 GP(0.35) 1339 1153 1271 3028
2168 .2007 2152 4181

.0647 .0531 .0616 2599
25 GP(0.45) 1743 1564 .1696 4433
2705 2531 2672 5603
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Table 4 (continued). Simulated powers when the null model is a unit exponential distribution (e = 0.01,0.05,0.1)

’

n H] A Kn Cn Dn

1843 1332 1737 .1829
100 GA(1.15) 3945 3228 3812 3916
5202 4504 5064 5144

5705 4317 .5476 5675
100 GA(1.25) 7873 .6902 7700 7868
8705 7996 8578 .8696

.2994 2756 2920 4657
100 W(1.5) 7534 .6165 71201 8719
.9046 7945 .8842 9605

.8391 7054 .8199 9463
100 W(1.75) .9880 9462 9832 9986
.9982 9850 9977 9999

.1441 .1424 1504 5048
100 GP(0.35) 3378 3432 .3488 7313
4754 4844 4865 8288

.2359 2712 2604 7616
100 GP(0.45) 4807 5287 5124 9028
.6251 .6670 .6529 9461

In the simulations reported in Table 4, both the null and the alternative distributions are skewed. To consider other
cases where a null symmetric model is to be tested against skewed alternatives, like for the above standard Normal
case, a third set of simulations is finally reported. The uniform distribution on the unit interval (0, 1) is used as a
null model. Some “modifications” of the uniform density are considered as alternatives. The first has density

| a@o! 0<x<05,
f = { a2-2x)°"" 05<x<l, @2)
(where a > 0) and it is labeled as MU; the second,
fx=(0-2a", a<x<l-a, (23)

is essentially a “compressed” uniform (CU) distribution over the interval (a, 1 — @), where 0 < a < 1/2. Both
densities reduces to the uniform distribution on the unit interval when a = 0. They were drawn from the study
conducted by Schmid and Trede (1996). To complete such an investigation, a third alternative family is here
considered for F;:

_ T(a+b)
- [(a)T(b)

The Beta (B) density in (24) reduces to the uniform distribution on (0, 1) when @ = b = 1. In the reported simulation
study, b is then set to 1 and a > O is left to vary. Notice that, as a grows over 1, the distribution becomes more
skewed, thus giving exactly the needed kinds of alternatives.

f(x) X1 = x0T, 0<x<l. (24)
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Table 5. Simulated powers when the null model is a uniform distribution on the unit interval (e = 0.01,0.05,0.1)

’

n H] An Kn Cn Dn
.0100 .0097 .0101 .0098
10 null .0507 .0501 .0501 .0503
.1000 .1001 .0998 .1004
.0001 .0047 .0001 .0000
10 MU®#4.5) 2705 2974 2263 1042
6944 4963 .6357 .5301
.0001 .0051 .0001 .0000
10 MU(5) 3862 2588 3115 1569
7963 .5793 7432 .6469
.0001 .0032 .0003 .0000
10 CU(0.3) 1621 .0890 1219 .0480
.6449 3176 5732 4564
.0002 .0039 .0005 .0000
10 CU(0.35) 5598 2214 4939 2308
9814 .8019 9931 9715
1951 1556 .1898 .1686
10 B(2) 4501 .3830 4378 4085
5941 .5289 .5829 5548
6371 5259 .6251 5755
10 B(3) 8780 .8048 .8689 8451
9408 .8998 9372 9243
3870 2725 3411 3740
25 MU(3.5) .9392 778 9174 9474
9922 .9349 9873 9940
6321 4205 5783 .6197
25 MU#4) 9874 .8985 9812 .9906
.9992 9811 9982 9994
0242 .0234 .0202 .0232
25 CU(0.2) 4149 2214 .3596 5457
7733 5318 7540 9305
0574 .0432 .0466 .0620
25 CU(0.225) 6697 4173 .6478 .8581
9374 .8782 9554 9985
1833 .1386 1740 1661
25 B(L.5) 4043 .3390 .3935 .3831
5395 4766 .5280 5210
6650 .5449 .6490 .6319
25 B(2) 8694 1972 8621 .8561
9314 .8894 9265 9244
.0648 .0901 .0668 .1444
100  MU(1.5) 4222 .3506 .3963 5674
.6748 .5539 .6434 7775

10
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Table 5 (continued). Simulated powers when the null model is a uniform distribution on the unit interval (o =
0.01,0.05,0.1)

’

n H, A K, C, D,

3958 .3005 3642 .6086
100 MU(1.75) 8715 177 .8446 9441
.9659 .8822 9549 9871

.0805 .0474 .0635 3127
100 CU(0.1) 4913 2932 4456 9256
7670 .5883 7563 9996

2246 1208 1959 7489
100 CU(0.12) 7880 .6817 .8031 9996
.9500 .9990 9712 9999

2458 1851 2351 2413
100 B(1.25) 4830 4078 4704 4801
6123 5431 .6008 .6099

.8400 1374 .8276 8410
100 B(1.5) 9523 9100 9474 9544
9777 .9563 9755 9796

Table 5 reports some results of this last set of simulations. The alternatives of kind (22) and (23) evidence that
all the considered tests suffer from a problem of bias, to which the Anderson—Darling test seems to be the most
exposed. A second remark is that the performance of A, is similar to the one of C,, even if the former has almost
everywhere a higher estimated power. Both the Girone—Cifarelli and the Cramér—Von Mises test are outperformed
by the Anderson—Darling test for as large sample sizes as n = 100 (for alternatives (23) even from n = 25). These
conclusions add few extra details to the ones obtained by Schmid and Trede (1996) for the test based on A,, in (15),
which has actually a performance similar to the Girone—Cifarelli test. However, the alternatives of the Beta class
represent a considerable addition in the evaluation of such tests of uniformity: the power of A, as long as the one
of A, (unreported), is here steadily over the one of the other considered tests, notably over the one of C,,, with some
minor exceptions for D,.. Even if Table 5 reports just the results for selected values of the parameter a in (24), the
simulation study showed the Girone—Cifarelli test to be uniformly more powerful than the Cramér—Von Mises test
fora > 1.

The discussion of Table 5 raises an important issue to be considered before giving some general conclusions in the
next section. As stated from the very beginning, the Girone—Cifarelli test performs often similarly to the test based
on A, in (15); this fact resulted clearly from the conducted simulation study and it is essentially the reason why no
separate results about A, are reported in the above discussion. However, the two test-statistics A, and A, are not
equivalent, as evidenced by the following simple decomposition:

Anzzz

€A

n n

i—1)2 i i—1\ 1
Fo(xg) - +2 [ Fo(xg) — = (Fo(x(i)) - )+ —], (25)
' ; ( n) 2n?

where A = {i s EL < Folxp) < ﬁ} Notice that the set A is not empty (and thus A, and A, are not equivalent)
as long as the empirical distribution function is not dominated by the null model F, (or conversely). Hence the
possible differences in the powers of A, and A, are likely to be observed when the alternative distribution does
not dominate the null model (or conversely), a fact that can be partially guaranteed by letting the two distributions
have the same location. A last set of simulations was then conducted where the alternative distribution was forced
to have the same mean of the null model. In effect, some of the above-reported alternative distributions do not
guarantee such a requirement. In addition, small values of the sample size were chosen, as the effect of the second
summand in (25) is likely to decrease with n. Table 6 reports some results when A, and A, are used to test unit
exponentiality against other skewed alternatives, a situation which proved to be good for both tests against their
classical competitors. On the average, A, turns out to perform still similarly to A,, even if there are cases where
the difference in their powers becomes relevant. Notice that, with some minor exceptions, the Girone—Cifarelli

11
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test has never a lower power with respect to A,.. A,, outperforms A, for Gamma and notably for generalized-Pareto
alternatives. The Weibull case is less definite, as A, has only a minor advantage over A, and not for very small
same sizes.

Table 6. Comparison between the powers of A, and A, when the null and the alternative distributions have the
same location (H, = unit exponential, @ = 0.01,0.05,0.1)

’

n H] An An
0625 .0615
5 GAQ2) 1534 1504
2464 2411
0885 .0874
5 GAQ3) .1909 .1866
3120 .3043
.1058 .1045
5 GA4) 2167 2106
3601 .3503
.0000 .0000
5 W(3) 0354 0382
2207 2278
.0000 .0000
5 W(4) .0353 .0459
.3403 3526
.0000 .0000
5 W(5) .0401 0572
4746 4870
2889 .2866
5 GP(0.45) 4406 4323
5734 .5635
3162 3138
5 GP(0.47) 4659 4574
.6032 5937
3428 .3409
5 GP(0.49) 4953 4864
.6322 .6226
.0624 .0618
7 GA(Q2) .1665 .1645
2778 2749
.0849 .0839
7 GAQ3) 2275 2242
3745 .3709
.1030 1019
7 GA(4) 2745 2698
4475 4418
.0014 .0015
7 W(@3) 1873 1876
S175 5172

12
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Table 6 (continued). Comparison between the powers of A, and A, when the null and the alternative distributions

have the same location (H, = unit exponential, @ = 0.01,0.05,0.1)

n Hl A;, An
.0007 .0007
7 W(4) 3404 3422
7563 1557
.0005 .0004
7 W(5) 5029 5108
.8934 .8941
.3406 .3386
7 GP(0.45) 5568 5522
.6969 .6937
.3689 .3666
7 GP(0.47) .5898 .5853
7280 7246
.3999 3971
7 GP(0.49) 6216 6167
1578 7550
0643 .0638
9 GA(Q2) 1834 1815
3042 3014
.0933 .0927
9 GA(3) 2655 2623
4319 4276
1147 .1140
9 GA4) 3358 3314
.5240 5189
0163 .0168
9 W(@3) 4135 4128
7501 7486
0297 .0305
9 W4) .6895 .6878
9370 .9365
.0546 .0539
9 W(5) .8668 .8649
9874 9871
4183 4166
9 GP(0.45) .6565 .6532
7814 1778
4593 4579
9 GP(0.47) .6923 .6891
8124 .8097
4943 4927
9 GP(0.49) 7261 7232
.8381 .8355

13
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4. A Real-Data Example and Some Conclusions

Before drawing some conclusions, a simple example where the test proposed in this paper is applied to real data
is reported. The “warp breaks” dataset in Pearson (1963) has fast become a term of comparison of the results of
various goodness-of-fit tests where the null distribution Fj is completely specified. In this case, one has to test
if the places where some warp breaks occur on a loom can be considered as uniformly distributed on the whole
length of the warp. More specifically, the following distances of n = 20 breaks from the beginning of the warp
are recorded: 30, 36, 104, 286, 291, 658, 893, 955, 1149, 1195, 1208, 1240, 1277, 1282, 1363, 1384, 1421, 1477,
1504, 1510 (see Pearson, 1963 for further details) and the ratios of these distances with respect to the total length
(1520) are considered; a goodness-of-fit test is then applied to verify if such a sample of ratios comes from a
population with unit uniform distribution. The observed value of A, is 2.9964, so that n"!/2A’ = 0.6633 and, by
looking at Table 1, the null hypothesis is to be rejected at the 5%-level but not at the 1%-level. More specifically,
by using the simulated null distribution of A, a p-value 0.0213 is obtained. As a term of comparison, the p-values
of the other considered tests are: 0.0090 for the Kolmogorov—Smirnov test, 0.0156 for the Cramér—Von Mises test
and 0.0110 for the Anderson—Darling test. The results of all tests are then consistent, even if some differences can
be appreciated.

This paper presents a simulations study which gives some new insights about goodness-of-fit tests based on the
empirical distribution function. The main conclusion is that a good analysis should never neglect tests based
on the averaged absolute difference |F,(f) — Fo(f)|. The tests based on A;l and A, will both serve at this aim,
even if the former can give some slight advantages over the latter, at least for small sample sizes. Moreover,
the test-statistic A, has a rather simple form and it can be computed very easily. A second important conclusion
is that A; (and A,) has very often a different performance from the one of C,, which is based on the averaged
squared difference [F,(f) — F o(H]*. The reported simulations give a good evidence of such alternatives where A’n
outperforms C,. It seems, specifically, that this happens more frequently for skewed alternatives. Concerning the
Kolmogorov—Smirnov test K,, which takes into consideration the supremum and not an average of the difference
|F,.(t)— Fo(2)|, the reported study shows that there are few practical situations where it performs better than the other
considered tests, and notably than A,. The superiority, under some circumstances, of the Girone—Cifarelli test over
the Kolmogorov—Smirnov test has been evidenced, in effect, in other studies concerning the two-samples problem.
As a last issue, one can claim that the real competitor of A, (and similarly for A,) is the Anderson-Darling test
D,, rather than K,, or C,. The discussion in this paper shows that there are cases where D, outperforms all other
considered tests and that it leaves A, as a second best. These are mainly cases of alternatives with heavy tails,
probably thanks to the weighting function in the definition of D,. An important element of a future research could
then be to evaluate the effect of the introduction of suitable weighting functions in the definition of A}, as well.
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