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Abstract

The classical goodness-of-fit problem, in the case of a null continuous and completely specified distribution, is

faced by a new version of the Girone–Cifarelli test (see Girone, 1964; Cifarelli, 1974 & 1975). This latter test

was introduced for the two-sample problem and showed a substantial gain of power over other common tests

based on the empirical distribution function, notably over the Kolmogorov–Smirnov test. First, the problem of

the re-definition of the Girone–Cifarelli test-statistic is considered, by reviewing the literature on the subject. A

classical remark by Anderson (1962) is shown to be useful to choose the integrating function in the newly defined

test-statistic. The sample properties of such a test-statistic are then studied. A table of critical values is obtained

by simulation; moreover, the asymptotic null distribution is considered and its accuracy as an approximation of

the finite distribution is discussed. Finally, a simulation study, considering a wide set of distributions mostly

used in applications, is conducted to compare the proposed test with its classical competitors. The study gives

some indications to locate such situations where the Girone-Cifarelli test performs at its best, notably over the

Kolmogorov–Smirnov test.

Keywords: goodness-of-fit tests, empirical distribution function, Girone–Cifarelli test, nonparametric statistical

methods

1. Introduction

A random sample x1, . . . , xn is drawn from a population X with continuous distribution function F, to test the null

hypothesis H0 : F(x) = F0(x) against the alternative H1 : F(x) � F0(x), x ∈ �, where F0 is completely specified.

This common goodness-of-fit problem is usually faced by three classes of tests: the chi-square test, the tests based

on spacings and the tests based on the empirical distribution function (edf). In this latter class several test-statistics

can be considered, usually by adapting their versions for the two-sample problem.

The most known test based on the edf Fn is surely the Kolmogorov–Smirnov test, which rejects H0 for large values

of the test-statistic

Kn = sup
t∈(−∞,+∞)

|F0(t) − Fn(t)|. (1)

As known, other test-statistics can be defined by considering the square of the difference |F0(t) − Fn(t)|, like in the

Cramér–Von Mises test

Cn = n
∫ +∞
−∞

[F0(t) − Fn(t)]2 dF0(t). (2)

Notice that in the above considered test-statistics F0, a continuous model, is compared with Fn, which has dis-

continuities at x1, . . . , xn. However, in (1) the supremum of the difference |F0(t) − Fn(t)| is taken, while in (2) the

squared difference [F0(t) − Fn(t)]2 is integrated with respect to the continuous function F0. Because of these latter

choices, no particular care is needed in the definition of the value taken by the edf at its points of discontinuity.

This means that one can use the usual definition

Fn(x) =
i
n
, for x(i) ≤ x < x(i+1) (i = 0, . . . , n), (3)

(where x(1), . . . , x(n) denotes the ordered sample, x(0) = −∞ and x(n+1) = +∞), which makes Fn to be right-
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continuous, or equivalently set

Fn(x(i)) =
i − c

n
(i = 1, . . . , n), (4)

(where c is chosen in [0,1]), so that Fn can take every value of its jump at x(i) (i = 1, . . . , n).

Turning back to (2), the function with which the squared difference [F0(t)−Fn(t)]2 is integrated could be substituted

by the edf itself. This choice allows to simplify the test-statistic as

C
′
n = n

∫ +∞
−∞

[F0(t) − Fn(t)]2 dFn(t) =
n∑

i=1

[F0(x(i)) − Fn(x(i))]
2, (5)

but the definition of Fn(x(i)) becomes now relevant. However, Anderson (1962) pointed out that, when c = 1/2 is

taken in (4), the test-statistics Cn and C
′
n are equivalent, as the former can be also written as

Cn =

n∑
i=1

[
F0(x(i)) − i − 1/2

n

]2
+

1

12n
. (6)

Besides such a latter equivalence, setting c = 1/2 in (4) is, as a matter of fact, a natural choice. Indeed, forcing

the edf to take the mid-point of its jump at x(i) seems less arbitrary than choosing any other value in the jump

(including the extremes i/n and (i − 1)/n, i = 1, . . . , n.

Notice again that any choice of Fn(x(i)), made to give a final form to C
′
n in (5), does not affect the usual definition

of the edf in the open intervals (x(i), x(i+1)), i = 1, . . . , n − 1. However, in the literature some modifications of the

edf in such intervals were also proposed. For instance, Green and Hegazy (1976) pointed out that when the edf is

re-defined as

F
′
n(x) =

i + 1/2

n + 1
for x(i) < x < x(i+1) (i = 1, . . . , n − 1), (7)

the criterion Cn in (2) reduces, up to a multiplicative constant, to

n∑
i=1

[
F0(x(i)) − i

n + 1

]2
, (8)

which is shown to lead to a powerful test under some circumstances. Notice that the test-statistic in (8) can be also

obtained from C
′
n in (5) by re-defining accordingly the value of the edf at its discontinuities, that is by setting

F
′
n(x(i)) =

i
n + 1

(i = 1, . . . , n), (9)

which is again the mid-point of the jump of F
′
n at x(i). Other modifications of the definition of the edf in the open

intervals (x(i), x(i+1)) are known. By noticing that the term i/(n + 1) is actually the expectation of F0(x(i)) under

the null hypothesis, Pyke (1959) proposed a new version of the Kolmogorov–Smirnov criterion (1), which in turn

induces a further modification of the definition of the edf (see also Brunk, 1962).

The above remarks will be used in this paper to propose a goodness-of-fit version of the Girone–Cifarelli test,

which was mainly studied for the two-sample problem. The definition of the test-statistic for goodness-of-fit

purposes raises some questions which will be addressed in the next section, where the sample properties of the

newly proposed test-statistic will be also analyzed. Section 3 will report some results of a simulation study, where

the proposed test is compared with its most important competitors based on the edf. Section 4 will provide a

real-data example and some conclusions.

2. Definition of the Test-statistic

Girone (1964) proposed a test for the equality of two populations X and Y , based on the statistic

(m + n)

∫ +∞
−∞
|Fn(t) −Gm(t)| dHm+n(t), (10)

where Fn, Gm and Hm+n denote respectively the edf’s of a n-sample from X, a m-sample from Y and the pooled

(m + n)-sample. The test was actually originally proposed in the special case n = m and its sample properties

were studied by Cifarelli (1974 & 1975). Generalizations for the case n ≤ m were proposed by Goria (1972),
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by Borroni (2001) and independently by Schmid and Trede (1995). For the two-sample problem, the Girone–

Cifarelli test proved to be superior to other common tests, notably the Kolmogorov–Smirnov test, under a wide

set of circumstances. This fact is far from being unexpected, as in (10) the whole behavior of the difference

|Fn(t) −Gm(t)| is considered, while in the Kolmogorov–Smirnov test just its supremum is taken.

A goodness-of-fit version of the Girone–Cifarelli test would result useful. Using the same settings as in section

1, the edf Fn of the single n-sample is now to be compared with the null model F0. The function with respect to

which the difference |Fn(t) − F0(t)| is to be integrated could then be the null model F0 or the edf Fn. As above

remarked, this latter choice highly simplifies the structure of the test statistic, as

n
∫ +∞
−∞
|F0(t) − Fn(t)| dFn(t) =

n∑
i=1

|F0(x(i)) − Fn(x(i))|; (11)

as a consequence, the definition of the value taken by the edf at its discontinuities becomes relevant. Following the

above suggestion by Anderson (1962) for C
′
n, we can then take

Fn(x(i)) =
i − 1/2

n
(i = 1, . . . , n), (12)

and define

A
′
n =

n∑
i=1

∣∣∣∣∣F0(x(i)) − i − 1/2

n

∣∣∣∣∣ . (13)

The sample properties of A
′
n are easily derived from its two-sample equivalent. First of all notice that, being F0 a

continuous model, the variables F0(x(i)), i = 1, ..., n, are uniform over [0,1] and hence A
′
n is distribution-free under

H0. For small sample sizes, the null distribution of A
′
n can then be determined by simulation, as pointed out in the

next section. Moreover, following Cifarelli (1975), n(−1/2)A
′
n is asymptotically distributed as the r.v.

∫ 1

0

|w(τ)| dτ
∣∣∣∣w(1) = 0, (14)

where {w(τ), t ∈ [0, 1]} denotes the Brownian motion in [0,1]. A tabulation of the quantiles of (14) is found in

Johnson and Killeen (1983); see also Shepp (1982 & 1991) and Takács (1993).

Differently from C
′
n, A

′
n is not equivalent to the statistic obtained by using F0 as an integrating function in (11).

This is shown by considering that

An =

∫ +∞
−∞
|F0(t)−Fn(t)| dF0(t) =

1

2

n∑
i=1

[∣∣∣∣∣F0(x(i)) − i − 1

n

∣∣∣∣∣
(
F0(x(i)) − i − 1

n

)
−
∣∣∣∣∣F0(x(i)) − i

n

∣∣∣∣∣
(
F0(x(i)) − i

n

)]
. (15)

Schmid and Trede (1996) considered
√

n An as a test-statistic and reported a small simulation study to evaluate

its performance. They concluded that the power of An is quite close to the one of the Cramér–Von Mises test,

without reporting situations where An performs definitely nor uniformly better than Cn. It should be pointed out

that A
′
n, which has a rather simpler form, is not equivalent to An, even if the two tests have often similar powers.

Consequently, the next section will first present some results of a simulation study without distinguishing between

A
′
n and An. In the following, some insights about the situations where the two tests are likely to perform differently

will then be given. In a sense, the reported simulation study can be considered as an extension of the one by

Schmid and Trade (1996), because it will be able to locate some alternatives where the test based on A
′
n, along with

the one based on An, performs definitely better than the Cramér–Von Mises test.

3. Simulation Study

The first task to develop a goodness-of-fit test based on A
′
n is to determine its critical values. As above mentioned,

being F0 completely specified and continuous, the transformation F0(X) gives a Uniform distribution over (0,1).

Hence the null distribution of A
′
n can be simulated by randomly generating a large number of samples from such

a distribution, with a fixed size n. The critical values of the test can then be determined by computing the value

taken by A
′
n for each simulated sample as long as the related frequency distribution. For a selected range of sample

sizes and some common significance levels, Table 1 reports the critical values of n(−1/2)A
′
n based on 106 simulated

samples.
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Table 1. Simulated critical values of n(−1/2)A
′
n

α n = 5 n = 10 n = 20 n = 30 n = 50 ∞
0.01 0.7142 0.7364 0.7436 0.7465 0.7478 0.7518

0.05 0.5670 0.5747 0.5783 0.5791 0.5807 0.5821

0.10 0.4893 0.4942 0.4966 0.4972 0.4982 0.4993

0.15 0.4398 0.4439 0.4459 0.4462 0.4470 0.4480

0.20 0.4029 0.4064 0.4081 0.4088 0.4092 0.4103

As a term of comparison, the last column of Table 1 reports the critical values of the asymptotic distribution of

n(−1/2)A
′
n (see section 2). The fast convergence to the asymptotic approximation can be easily appreciated. In order

to get further indications about the accuracy of the asymptotic distribution and the sample sizes needed to use it,

the simulated cdf’s obtained for fixed values of n were compared with the asymptotic cdf, whose expression is

found in Johnson and Killeen (1983). Figure 1 reports the results obtained for n = 10. As seen, the asymptotic cdf

is very close to the “real” one, even if a certain difference is observed, especially for small values of the variable.

However, one can claim that, to develop a goodness-of-fit test based on A
′
n, just the right tail of its null distribution

is relevant. In effect, when the last part of the distribution is considered (say for such x so that Pr{A′n ≤ x} > 0.8)

the finite cdf is rather close to the asymptotic cdf. To get into further details, Table 2 reports, for some selected

sample sizes, the greatest absolute difference of the two cdf’s and the same difference referred to the right tail of

the distribution. From such a table, a minimum value of n = 50 is to be advised to get a correct approximation of

the null distribution.

Figure 1. Comparison of the “real” cdf and the asymptotic cdf of A
′
n under H0 (n = 10)

Table 2. Greatest absolute difference between the “real” cdf and the asymptotic cdf of A
′
n under H0 (whole distri-

bution and right tail)

n whole distrib. right tail

5 0.0626 0.0112

10 0.0330 0.0065

20 0.0173 0.0035

30 0.0123 0.0023

50 0.0068 0.0018

100 0.0042 0.0005

After computing the critical values of the test based on A
′
n, its power can be estimated by simulation as well. This

section reports some results of a wide simulation study conducted at this aim. Notice that the power of a goodness-
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of-fit test will depend on the model F0 chosen under H0 as long as on the real cdf of X under H1, which will be

denoted as F1. Generally F1 will belong to a family of distributions containing F0 itself, which is hence obtained

by an appropriate choice of the parameter(s) of the family. In this paper we will focus on three models for H0,
mostly used in applications: the standard Normal distribution, the unit exponential distribution and the uniform

distribution on the unit interval. For each null model, F1 will belong to three different families of distributions

containing F0.

Consider first the standard Normal as a null model. A suitable family for F1 could be the skew-normal (SN)

distribution (see Azzalini, 1985) with density:

f (x) = 2 φ(x)Φ(ax), x ∈ �, (16)

where φ(·) and Φ(·) denote the density and the cdf of a standard Normal respectively. The parameter a ∈ �
regulates the skewness of the distribution, thus giving a standard Normal if set to zero. To this end, using family

(16) for F1 in a simulation study, can result in an useful analysis of such situations where the researcher needs to

test normality against possible asymmetries of data. It is known, however, that data may depart from normality

due to heavy-tailedness. To simulate such latter situations, the Student’s T density can be used as a family for F1 :

f (x) =
Γ
(

a+1
2

)
√

aπ Γ
(

a
2

)
(
1 +

x2

a

)− a+1
2

, x ∈ �, (17)

(Γ(·) denotes the gamma function). The family (17) gives only symmetric distributions with heavy tails, such

phenomenon being reduced by increasing the parameter a > 0; as known, the family converges to the normal

distribution when a → ∞. Finally, to simulate such cases where the normality of data depends on the application

of the central limit theorem, one can choose for F1 the gamma (GA) density with unit scale:

f (x) =
1

Γ(a)
xa−1e−x, x > 0. (18)

As an effect of the above theorem, when a→ ∞, family (18) gives a normal density (which can be then standardized

to be consistent with the null model F0). However, in applications, a may not be large enough to guarantee a good

convergence; the researcher may then need a powerful test to detect such a failed convergence.

Table 3. Simulated powers when the null model is a standard Normal distribution (α = 0.01, 0.05, 0.1)

n H1 A
′
n Kn Cn Dn

10 null

.0101 .0099 .0099 .0103

.0500 .0506 .0502 .0506

.1007 .1010 .1013 .1002

10 SN(1)

.1989 .1575 .1925 .1707

.4503 .3849 .4392 .4088

.5948 .5308 .5841 .5555

10 SN(1.5)

.3320 .2743 .3291 .2755

.6460 .5739 .6399 .5908

.7850 .7243 .7807 .7431

10 T(1.5)

.0312 .0243 .0284 .4673

.1117 .0933 .1044 .6088

.1948 .1772 .1843 .6868

10 T(1.25)

.0369 .0302 .0339 .5883

.1272 .1062 .1197 .7080

.2185 .2007 .2076 .7703

10 GA(2)

.0119 .0203 .0158 .0146

.0687 .0841 .0748 .0768

.1363 .1485 .1415 .1525
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Table 3 (continued). Simulated powers when the null model is a standard Normal distribution (α = 0.01, 0.05, 0.1).

n H1 A
′
n Kn Cn Dn

10 GA(1.5)

.0132 .0240 .0179 .0169

.0769 .0946 .0839 .0879

.1508 .1653 .1556 .1716

25 SN(0.5)

.2022 .1491 .1904 .1904

.4215 .3494 .4067 .4054

.5501 .4809 .5385 .5350

25 SN(1)

.6637 .5441 .6471 .6302

.8716 .7989 .8627 .8585

.9317 .8894 .9272 .9251

25 T(1.75)

.0335 .0274 .0313 .6016

.1299 .1107 .1219 .7532

.2321 .1986 .2160 .8246

25 T(1.5)

.0392 .0347 .0374 .7334

.1528 .1329 .1434 .8468

.2717 .2355 .2543 .8957

25 GA(2)

.0296 .0455 .0363 .0316

.1230 .1403 .1314 .1395

.2171 .2295 .2201 .2520

25 GA(1.5)

.0398 .0592 .0483 .0427

.1585 .1745 .1754 .1817

.2703 .2692 .2698 .3192

100 SN(0.25)

.2427 .1775 .2304 .2400

.4684 .3886 .4523 .4626

.5904 .5198 .5777 .5859

100 SN(0.5)

.8476 .7331 .8315 .8439

.9514 .9040 .9453 .9507

.9762 .9505 .9730 .9760

100 T(2)

.0728 .0677 .0675 .9398

.2909 .2545 .2708 .9839

.4779 .4245 .4563 .9931

100 T(1.75)

.1005 .1005 .0953 .9811

.3682 .3421 .3225 .9959

.5697 .5291 .5558 .9984

100 GA(2)

.1959 .2275 .2179 .2678

.4719 .4442 .4711 .6476

.6408 .5777 .6278 .8400

100 GA(1.5)

.3151 .3245 .3351 .4569

.6350 .5839 .6327 .8505

.7863 .8208 .7805 .9635

Table 3 reports the results of a set of simulations, each based on 105 replications, for the null standard normal

model. Some selected alternative distributions, all belonging to the above described families, are chosen. Table 3

reports the powers of the tests based on A
′
n, Kn and Cn. Another classical goodness-of-fit test is also considered:
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the Anderson–Darling test,

Dn =

∫ +∞
−∞

[Fn(t) − F0(t)]2 1

F0(t)[1 − F0(t)]
dF0(t); (19)

here the squared difference [Fn(t) − F0(t)]2 is weighted to get more sensibility in the tails of the distributions.

The powers reported in Table 3 were obtained by fixing three different values of the significance level α: 0.01,

0.05 and 0.1 (for each entry, the corresponding powers are listed in the latter order; the best power is highlighted

too). It seems, however, that the performance of none of the considered tests is really affected by the choice of

α. Moreover, the first row of Table 3 reports the estimated actual significance level, which is always very close to

the nominal one, even for a small sample size as n = 10 (similar results, not reported here for the sake of brevity,

were obtained for larger sample sizes). Notice that, for each considered alternative distribution, the values of the

related parameter were set to allow a relevant comparison of the estimated powers; this need implies, incidentally,

that the same value of the parameter cannot be chosen for all sample sizes in most cases. However, Table 3 (along

with the following tables) was built so that at least one same value of the parameter is chosen for adjacent sample

sizes. Table 3 emphasizes that, when used as a test of normality, the Girone–Cifarelli test has a good power against

some kinds of alternatives. More specifically, the test outperforms all the other considered tests (and notably

the Kolmogorov–Smirnov and the Cramér–Von Mises test) when the alternative distribution belongs to the skew-

normal class. The superiority of the Girone–Cifarelli test for skewed alternatives seems indeed to be a general rule,

at least among the considered tests, as further evidenced in the following simulations. When normality is to be

tested against heavy tailedness, like for the Student’s T alternatives considered in Table 3, the performance of the

Girone–Cifarelli test gets worse, notably over the Anderson–Darling test. This result is far from being unexpected,

but it has to be underlined that A
′
n still keeps its superiority over the Cramér–Von Mises test (and the Kolmogorov–

Smirnov test). The superiority of the Anderson–Darling test still characterizes Gamma alternatives. In this chance,

however, the Girone–Cifarelli test gets worse even over the Cramér–Von Mises test and the Kolmogorov–Smirnov

test. A global evaluation of Table 3 shows that, as expected, the performances of the considered tests become

similar when the sample size increases, even if all the above conclusions still hold. Notably, A
′
n outperforms the

other considered tests for skew-normal alternatives, as Dn does for Student’s T and Gamma alternatives. However,

in this latter case, the Girone–Cifarelli test seems to grow better over its competitors as the sample size increases.

Another set of simulations was conducted by setting the unit exponential distribution as a null model. This as-

sumption is typical for many datasets in reliability analyses. In this kind of applications, exponentiality is often to

be tested against some more complicate distributional assumptions. To this end, a natural choice for F1 is again

the gamma (GA) density with unit scale. When a = 1, (18) reduces to the unit exponential. Another family of

distributions, mostly used in reliability analyses as well, is the Weibull (W) density with unit scale:

f (x) = a xa−1 e−xa
, x > 0, (20)

which was used as a family for F1, after noticing that it reduces to the unit exponential when a = 1. Finally, a third

family was used to shape the alternative hypothesis:

f (x) = (1 + a x)−(1+ 1
k ) , x > 0, (21)

that is the generalized-Pareto (GP) density with zero location and unit shape. (21) gives the unit exponential density

as a → 0. The best results for the Girone–Cifarelli test were obtained for the Gamma alternatives, as shown by

Table 4, which has the same settings as Table 3. A
′
n outperforms all the other considered tests, notably the Cramér–

Von Mises test. The Anderson–Darling test has generally a worse power than A
′
n, even if it becomes its main

competitor as n increases. It has to be emphasized that the simulated powers reported for Gamma alternatives in

Table 4 cannot be compared with the ones reported in Table 3, as the null distribution is quite different in the two

sets of simulations. More specifically, when the null model is the Normal distribution, the power of each considered

test is a decreasing function of the parameter a in (18); conversely, when the null model is the unit exponential

distribution, the power is an increasing function, at least if a > 1. This fact explains why, even if the sample size

and the value of a may coincide, Table 4 and Table 3 report quite different values of the estimated powers. Turning

to other distributions considered in Table 4, one can notice that the above conclusions are reversed for alternatives

of the generalized-Pareto kind, as Dn outperforms here all the other tests; A
′
n has a similar power to the one of

the Cramér–Von Mises test, but it seems to worsen as n increases. The Weibull alternatives evidence a problem of

bias for some tests under some circumstances; apart from this fact, this case resembles the Student’s T alternatives
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of Table 3: except for n = 5, the test based on Dn has definitely the best power, but A
′
n clearly outperforms the

Cramér–Von Mises and the Kolmogorov–Smirnov tests.

Table 4. Simulated powers when the null model is a unit exponential distribution (α = 0.01, 0.05, 0.1)

n H1 A
′
n Kn Cn Dn

10 null

.0094 .0100 .0097 .0095

.0494 .0495 .0494 .0492

.1001 .0992 .1001 .0989

10 GA(1.5)

.1515 .1152 .1437 .1444

.3560 .2891 .3428 .3420

.4827 .4229 .4710 .4684

10 GA(2)

.6191 .4863 .5928 .6048

.8388 .7511 .8222 .8269

.9088 .8507 .8988 .9004

10 W(2)

.0021 .0144 .0049 .0010

.0618 .0984 .0712 .0360

.1951 .2036 .1903 .1315

10 W(3)

.0038 .0501 .0105 .0007

.2587 .2889 .2579 .1469

.5906 .4925 .5440 .4554

10 GP(0.35)

.0269 .0215 .0257 .0871

.0946 .0829 .0908 .2048

.1659 .1486 .1585 .3019

10 GP(0.45)

.0411 .0323 .0337 .1469

.1179 .1018 .1119 .2830

.1892 .1964 .1830 .3821

25 GA(1.25)

.1098 .0818 .1018 .1039

.2772 .2249 .2645 .2649

.3882 .3334 .3764 .3765

25 GA(1.5)

.4973 .3752 .4711 .4811

.7339 .6351 .7149 .7226

.8281 .7538 .8140 .8201

25 W(1.75)

.0224 .0554 .0326 .0235

.2296 .2205 .2199 .2317

.4582 .3806 .4291 .4618

25 W(2)

.0708 .1160 .0818 .0689

.4462 .3758 .4174 .4549

.7093 .5743 .6680 .7231

25 GP(0.35)

.0422 .0344 .0395 .1456

.1339 .1153 .1271 .3028

.2168 .2007 .2152 .4181

25 GP(0.45)

.0647 .0531 .0616 .2599

.1743 .1564 .1696 .4433

.2705 .2531 .2672 .5603
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Table 4 (continued). Simulated powers when the null model is a unit exponential distribution (α = 0.01, 0.05, 0.1)

n H1 A
′
n Kn Cn Dn

100 GA(1.15)

.1843 .1332 .1737 .1829

.3945 .3228 .3812 .3916

.5202 .4504 .5064 .5144

100 GA(1.25)

.5705 .4317 .5476 .5675

.7873 .6902 .7700 .7868

.8705 .7996 .8578 .8696

100 W(1.5)

.2994 .2756 .2920 .4657

.7534 .6165 .7201 .8719

.9046 .7945 .8842 .9605

100 W(1.75)

.8391 .7054 .8199 .9463

.9880 .9462 .9832 .9986

.9982 .9850 .9977 .9999

100 GP(0.35)

.1441 .1424 .1504 .5048

.3378 .3432 .3488 .7313

.4754 .4844 .4865 .8288

100 GP(0.45)

.2359 .2712 .2604 .7616

.4807 .5287 .5124 .9028

.6251 .6670 .6529 .9461

In the simulations reported in Table 4, both the null and the alternative distributions are skewed. To consider other

cases where a null symmetric model is to be tested against skewed alternatives, like for the above standard Normal

case, a third set of simulations is finally reported. The uniform distribution on the unit interval (0, 1) is used as a

null model. Some “modifications” of the uniform density are considered as alternatives. The first has density

f (x) =

{
a (2x)a−1 0 ≤ x ≤ 0.5,

a (2 − 2x)a−1 0.5 ≤ x ≤ 1,
(22)

(where a > 0) and it is labeled as MU; the second,

f (x) = (1 − 2a)−1, a < x < 1 − a, (23)

is essentially a “compressed” uniform (CU) distribution over the interval (a, 1 − a), where 0 ≤ a ≤ 1/2. Both

densities reduces to the uniform distribution on the unit interval when a = 0. They were drawn from the study

conducted by Schmid and Trede (1996). To complete such an investigation, a third alternative family is here

considered for F1:

f (x) =
Γ(a + b)

Γ(a) Γ(b)
xa−1(1 − x)b−1, 0 < x < 1. (24)

The Beta (B) density in (24) reduces to the uniform distribution on (0, 1) when a = b = 1. In the reported simulation

study, b is then set to 1 and a > 0 is left to vary. Notice that, as a grows over 1, the distribution becomes more

skewed, thus giving exactly the needed kinds of alternatives.

9
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Table 5. Simulated powers when the null model is a uniform distribution on the unit interval (α = 0.01, 0.05, 0.1)

n H1 A
′
n Kn Cn Dn

10 null

.0100 .0097 .0101 .0098

.0507 .0501 .0501 .0503

.1000 .1001 .0998 .1004

10 MU(4.5)

.0001 .0047 .0001 .0000

.2705 .2974 .2263 .1042

.6944 .4963 .6357 .5301

10 MU(5)

.0001 .0051 .0001 .0000

.3862 .2588 .3115 .1569

.7963 .5793 .7432 .6469

10 CU(0.3)

.0001 .0032 .0003 .0000

.1621 .0890 .1219 .0480

.6449 .3176 .5732 .4564

10 CU(0.35)

.0002 .0039 .0005 .0000

.5598 .2214 .4939 .2308

.9814 .8019 .9931 .9715

10 B(2)

.1951 .1556 .1898 .1686

.4501 .3830 .4378 .4085

.5941 .5289 .5829 .5548

10 B(3)

.6371 .5259 .6251 .5755

.8780 .8048 .8689 .8451

.9408 .8998 .9372 .9243

25 MU(3.5)

.3870 .2725 .3411 .3740

.9392 .7778 .9174 .9474

.9922 .9349 .9873 .9940

25 MU(4)

.6321 .4205 .5783 .6197

.9874 .8985 .9812 .9906

.9992 .9811 .9982 .9994

25 CU(0.2)

.0242 .0234 .0202 .0232

.4149 .2214 .3596 .5457

.7733 .5318 .7540 .9305

25 CU(0.225)

.0574 .0432 .0466 .0620

.6697 .4173 .6478 .8581

.9374 .8782 .9554 .9985

25 B(1.5)

.1833 .1386 .1740 .1661

.4043 .3390 .3935 .3831

.5395 .4766 .5280 .5210

25 B(2)

.6650 .5449 .6490 .6319

.8694 .7972 .8621 .8561

.9314 .8894 .9265 .9244

100 MU(1.5)

.0648 .0901 .0668 .1444

.4222 .3506 .3963 .5674

.6748 .5539 .6434 .7775

10
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Table 5 (continued). Simulated powers when the null model is a uniform distribution on the unit interval (α =
0.01, 0.05, 0.1)

n H1 A
′
n Kn Cn Dn

100 MU(1.75)

.3958 .3005 .3642 .6086

.8715 .7177 .8446 .9441

.9659 .8822 .9549 .9871

100 CU(0.1)

.0805 .0474 .0635 .3127

.4913 .2932 .4456 .9256

.7670 .5883 .7563 .9996

100 CU(0.12)

.2246 .1208 .1959 .7489

.7880 .6817 .8031 .9996

.9500 .9990 .9712 .9999

100 B(1.25)

.2458 .1851 .2351 .2413

.4830 .4078 .4704 .4801

.6123 .5431 .6008 .6099

100 B(1.5)

.8400 .7374 .8276 .8410

.9523 .9100 .9474 .9544

.9777 .9563 .9755 .9796

Table 5 reports some results of this last set of simulations. The alternatives of kind (22) and (23) evidence that

all the considered tests suffer from a problem of bias, to which the Anderson–Darling test seems to be the most

exposed. A second remark is that the performance of A
′
n is similar to the one of Cn, even if the former has almost

everywhere a higher estimated power. Both the Girone–Cifarelli and the Cramér–Von Mises test are outperformed

by the Anderson–Darling test for as large sample sizes as n = 100 (for alternatives (23) even from n = 25). These

conclusions add few extra details to the ones obtained by Schmid and Trede (1996) for the test based on An in (15),

which has actually a performance similar to the Girone–Cifarelli test. However, the alternatives of the Beta class

represent a considerable addition in the evaluation of such tests of uniformity: the power of A
′
n, as long as the one

of An (unreported), is here steadily over the one of the other considered tests, notably over the one of Cn, with some

minor exceptions for Dn. Even if Table 5 reports just the results for selected values of the parameter a in (24), the

simulation study showed the Girone–Cifarelli test to be uniformly more powerful than the Cramér–Von Mises test

for a > 1.

The discussion of Table 5 raises an important issue to be considered before giving some general conclusions in the

next section. As stated from the very beginning, the Girone–Cifarelli test performs often similarly to the test based

on An in (15); this fact resulted clearly from the conducted simulation study and it is essentially the reason why no

separate results about An are reported in the above discussion. However, the two test-statistics A
′
n and An are not

equivalent, as evidenced by the following simple decomposition:

An =
2

n

∑
i∈A

∣∣∣∣∣F0(x(i)) − i − 1/2

n

∣∣∣∣∣ + 2
∑
i∈A

[(
F0(x(i)) − i

n

) (
F0(x(i)) − i − 1

n

)
+

1

2n2

]
, (25)

where A ≡
{
i : i−1

n < F0(x(i)) <
i
n

}
. Notice that the set A is not empty (and thus A

′
n and An are not equivalent)

as long as the empirical distribution function is not dominated by the null model F0 (or conversely). Hence the

possible differences in the powers of A
′
n and An are likely to be observed when the alternative distribution does

not dominate the null model (or conversely), a fact that can be partially guaranteed by letting the two distributions

have the same location. A last set of simulations was then conducted where the alternative distribution was forced

to have the same mean of the null model. In effect, some of the above-reported alternative distributions do not

guarantee such a requirement. In addition, small values of the sample size were chosen, as the effect of the second

summand in (25) is likely to decrease with n. Table 6 reports some results when A
′
n and An are used to test unit

exponentiality against other skewed alternatives, a situation which proved to be good for both tests against their

classical competitors. On the average, A
′
n turns out to perform still similarly to An, even if there are cases where

the difference in their powers becomes relevant. Notice that, with some minor exceptions, the Girone–Cifarelli

11
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test has never a lower power with respect to An. A
′
n outperforms An for Gamma and notably for generalized-Pareto

alternatives. The Weibull case is less definite, as A
′
n has only a minor advantage over An and not for very small

same sizes.

Table 6. Comparison between the powers of A
′
n and An when the null and the alternative distributions have the

same location (H0 = unit exponential, α = 0.01, 0.05, 0.1)

n H1 A
′
n An

5 GA(2)

.0625 .0615

.1534 .1504

.2464 .2411

5 GA(3)

.0885 .0874

.1909 .1866

.3120 .3043

5 GA(4)

.1058 .1045

.2167 .2106

.3601 .3503

5 W(3)

.0000 .0000

.0354 .0382

.2207 .2278

5 W(4)

.0000 .0000

.0353 .0459

.3403 .3526

5 W(5)

.0000 .0000

.0401 .0572

.4746 .4870

5 GP(0.45)

.2889 .2866

.4406 .4323

.5734 .5635

5 GP(0.47)

.3162 .3138

.4659 .4574

.6032 .5937

5 GP(0.49)

.3428 .3409

.4953 .4864

.6322 .6226

7 GA(2)

.0624 .0618

.1665 .1645

.2778 .2749

7 GA(3)

.0849 .0839

.2275 .2242

.3745 .3709

7 GA(4)

.1030 .1019

.2745 .2698

.4475 .4418

7 W(3)

.0014 .0015

.1873 .1876

.5175 .5172
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Table 6 (continued). Comparison between the powers of A
′
n and An when the null and the alternative distributions

have the same location (H0 = unit exponential, α = 0.01, 0.05, 0.1)

n H1 A
′
n An

7 W(4)

.0007 .0007

.3404 .3422

.7563 .7557

7 W(5)

.0005 .0004

.5029 .5108

.8934 .8941

7 GP(0.45)

.3406 .3386

.5568 .5522

.6969 .6937

7 GP(0.47)

.3689 .3666

.5898 .5853

.7280 .7246

7 GP(0.49)

.3999 .3971

.6216 .6167

.7578 .7550

9 GA(2)

.0643 .0638

.1834 .1815

.3042 .3014

9 GA(3)

.0933 .0927

.2655 .2623

.4319 .4276

9 GA(4)

.1147 .1140

.3358 .3314

.5240 .5189

9 W(3)

.0163 .0168

.4135 .4128

.7501 .7486

9 W(4)

.0297 .0305

.6895 .6878

.9370 .9365

9 W(5)

.0546 .0539

.8668 .8649

.9874 .9871

9 GP(0.45)

.4183 .4166

.6565 .6532

.7814 .7778

9 GP(0.47)

.4593 .4579

.6923 .6891

.8124 .8097

9 GP(0.49)

.4943 .4927

.7261 .7232

.8381 .8355
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4. A Real-Data Example and Some Conclusions

Before drawing some conclusions, a simple example where the test proposed in this paper is applied to real data

is reported. The “warp breaks” dataset in Pearson (1963) has fast become a term of comparison of the results of

various goodness-of-fit tests where the null distribution F0 is completely specified. In this case, one has to test

if the places where some warp breaks occur on a loom can be considered as uniformly distributed on the whole

length of the warp. More specifically, the following distances of n = 20 breaks from the beginning of the warp

are recorded: 30, 36, 104, 286, 291, 658, 893, 955, 1149, 1195, 1208, 1240, 1277, 1282, 1363, 1384, 1421, 1477,

1504, 1510 (see Pearson, 1963 for further details) and the ratios of these distances with respect to the total length

(1520) are considered; a goodness-of-fit test is then applied to verify if such a sample of ratios comes from a

population with unit uniform distribution. The observed value of A
′
n is 2.9964, so that n(−1/2)A

′
n = 0.6633 and, by

looking at Table 1, the null hypothesis is to be rejected at the 5%-level but not at the 1%-level. More specifically,

by using the simulated null distribution of A
′
n, a p-value 0.0213 is obtained. As a term of comparison, the p-values

of the other considered tests are: 0.0090 for the Kolmogorov–Smirnov test, 0.0156 for the Cramér–Von Mises test

and 0.0110 for the Anderson–Darling test. The results of all tests are then consistent, even if some differences can

be appreciated.

This paper presents a simulations study which gives some new insights about goodness-of-fit tests based on the

empirical distribution function. The main conclusion is that a good analysis should never neglect tests based

on the averaged absolute difference |Fn(t) − F0(t)|. The tests based on A
′
n and An will both serve at this aim,

even if the former can give some slight advantages over the latter, at least for small sample sizes. Moreover,

the test-statistic A
′
n has a rather simple form and it can be computed very easily. A second important conclusion

is that A
′
n (and An) has very often a different performance from the one of Cn, which is based on the averaged

squared difference [Fn(t) − F0(t)]2 . The reported simulations give a good evidence of such alternatives where A
′
n

outperforms Cn. It seems, specifically, that this happens more frequently for skewed alternatives. Concerning the

Kolmogorov–Smirnov test Kn, which takes into consideration the supremum and not an average of the difference

|Fn(t)−F0(t)|, the reported study shows that there are few practical situations where it performs better than the other

considered tests, and notably than A
′
n. The superiority, under some circumstances, of the Girone–Cifarelli test over

the Kolmogorov–Smirnov test has been evidenced, in effect, in other studies concerning the two-samples problem.

As a last issue, one can claim that the real competitor of A
′
n (and similarly for An) is the Anderson–Darling test

Dn, rather than Kn or Cn. The discussion in this paper shows that there are cases where Dn outperforms all other

considered tests and that it leaves A
′
n as a second best. These are mainly cases of alternatives with heavy tails,

probably thanks to the weighting function in the definition of Dn. An important element of a future research could

then be to evaluate the effect of the introduction of suitable weighting functions in the definition of A
′
n as well.
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