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Abstract

This paper investigates the perturbation of an unstable linear differential equation by random noise that is a re-

flecting Brownian motion. A sufficient almost sure exponential stability condition for the perturbed system is

established and the corresponding sample Lyapunov exponent is estimated.
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1. Introduction

As known to all, an unstable deterministic dynamical system of ordinary differential equations can be stabilized

by random noise. In recent years, there have been lots of scholars devoted to study the phenomenon by taking

various forms of noise, and the achievements are outstanding. Hasminskii (1981) as one of the early pioneers

in stabilization chose two white noise to stabilize an certain linear system. Arnold et al. (1983) proved that

a zero mean stationary parameter noise can make an unstable linear system stable. Deng et al. (2001) solved

the stochastic stabilization problem of nonlinear systems using noise with unknown covariance. By adding a

multidimensional Brownian motion to the nonlinear system, Mao (1994, 1997) studied the stability of perturbed

system systematically and set up a general method of stochastic stabilization. Applebaum and Siakalli (2010)

extended this general theory to the stochastic stabilization of dynamical systems driven by a more general Lévy

process. As a transformation of Brownian motion, the reflecting Brownian motion has limited moving range.

However, up to now, there has been no research about the perturbation of unstable systems when they are driven

by this noise. The purpose of this paper is to attempt to study this case.

This paper focuses on an unstable linear ordinary differential equation that is added random disturbance-a reflecting

Brownian motion and investigates the exponential stability of the perturbed system. Section 2 introduces the

necessary preliminaries. Section 3 establishes the conditions to judge whether the perturbed system is stable.

Finally, an example is given to show the fact that the reflecting Brown motion noise can stabilize an unstable linear

system successfully.

2. Preliminaries

Let (Ω,F , P) be a complete probability space with a right continuous and increasing filtration {Ft}t≥0 containing

all P-null sets. Suppose that B = (B(t), t ≥ 0) is a Ft adapted standard Brownian motion taking values in R on the

probability space. If Y(t) = |B(t)|, then Y = (Y(t), t ≥ 0) is a Ft adapted reflecting Brownian motion on the half

line [0,∞).

Consider the following one-dimensional linear systems

dx(t)
dt
= ax(t), t ≥ 0, (1)

where the constant a > 0 and the initial value x(0) = x0 ∈ R is given. Obviously the linear system (1) is unstable

when x0 � 0. Now, to make this linear system stable, perturb the linear system by random noise that is a reflecting

Brownian motion and the stochastically perturbed system of (1) is described as

dx(t) = ax(t)dt + f (x(t))dY(t) (2)
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for all t ≥ 0, where the map f : R→ R is a Borel measurable function which satisfies the local Lipschitz assumption

that is to say, for every positive integer θ, there is a constant Kθ ≥ 0 such that, for all x, x̃ ∈ R with |x| ∨ |x̃| ≤ θ,
| f (x) − f (x̃)| ≤ Kθ |x − x̃|.

By using Proposition 6.1 in Gonglu (1995), the reflecting Brownian motion Y has a Skorohod decomposition that

is

Y(t) = Y(0) + B̃(t) + A(t), (3)

where B̃(t) is a standard Ft-adapted Brownian motion, A(t) is a Ft-adapted continuous increasing process with

the initial data A(0) = 0 a.s. Then by Theorem 1 of Bass (1990), the reflecting Brownian motion Y on the half

line [0,∞) is a continuous semimartingale. Based on the Skorohod decomposition (3), the system (2) turns the

following system

dx(t) = ax(t)dt + f (x(t))dB̃(t) + f (x(t))dA(t). (4)

The system (4) is equivalent to the stochastic integral form

x(t) = x0 +

∫ t

0

ax(s)ds +
∫ t

0

f (x(s))dB̃(s) +

∫ t

0

f (x(s))dA(s). (5)

Since f : R → R satisfies the local Lipschitz assumption, by using Theorem 3.2 in Gonglu (1995), one sees that

the system (5) exists a unique solution. We denote it by x(t) for every t ≥ 0. Obviously, the solution process is a

continuous semimartingale. Assume further that f (0) = 0, if the initial data x(0) = 0, then the equation (5) has the

trivial solution x(t) ≡ 0.

The purpose of this paper is to establish the conditions under which the trivial solution of (5) can come to the

stability state. To act this aim, some definitions for stochastic stability of the system shall be introduced.

First the operators L,M,N associated with the equation (5) are defined by

L =
∂

∂t
+ ax

∂

∂x
+

1

2
f 2(x)

∂2

∂x2
,

M = f (x)
∂

∂x
,

N =
∂

∂y
+ f (x)

∂

∂x
,

and then the definition of exponential stability is given below.

Definition 2.1 By the Definition 3.1 in Mao (1997), the trivial solution of (5)is said to be almost surely exponen-

tially stable if

λ = lim sup
t→∞

1

t
log |x(t)| < 0 a.s. (6)

for each x0 ∈ R, where λ is called the sample Lyapunov exponent of the solution.

3. Stochastic Stabilization

Let C2,1,1(R × R+ × R+; R+) be the family of all functions W : R × R+ × R+ → R+, which are continuously once

differentiable in y, t ∈ R+ and twice in x ∈ R. For every W ∈ C2,1,1(R×R+ ×R+; R+), according to Itô’s formula for

continuous semimartingales, it is reduced that

W(x(t), A(t), t) −W(x0, 0, 0) =

∫ t

0

LW(x(s), A(s), s)ds +
∫ t

0

MW(x(s), A(s), s)dB̃(s) +

∫ t

0

NW(x(s), A(s), s)dA(s).

(7)

All through this paper, the following assumption is always satisfied.

Assumption 3.1 Assume that f is a function satisfied the local Lipschitz condition, W(x, y, t) ∈ C2,1,1(R × R+ ×
R+; R+), and that

NW(x, y, t) ≤ 0. (8)

Lemma 3.2 Assume that the inequality (8) holds, then

P{x(t) � 0 on t ≥ 0} = 1. (9)
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for all x0 � 0.

Proof. Assume that the lemma is not true, so there will be some x0 � 0 such that P(ξ < ∞) > 0, where ξ is the first

time that the solution reaches the origin, i.e.

ξ = inf{t ≥ 0 : x(t) = 0}.
So we can find two constants T > 0 and θ > 1 sufficiently large for P(B) � 0, where

B = {ξ ≤ T and |x(t)| ≤ θ − 1 f or all 0 ≤ t ≤ ξ}.
For 0 < |x| ≤ θ and 0 ≤ t ≤ T , let W(x, y, t) = |x|−1, we compute

LW(x, y, t) = −a|x|−3x2 + |x|−3 f 2(x)

≤ (a + K2
θ )|x|−1 = MθW(x, y, t), (10)

where Mθ = a+K2
θ . The inequality is guaranteed from the assumption that f satisfies the local Lipschitz condition

and that f (0) = 0.

Now for every 0 < ε < |x0|, the stopping time is defined by

ξε = inf{t ≥ 0 : |x(t)| ≤ ε or |x(t)| ≥ θ}.
According to Itô’s formula for continuous semimartingales and the equality [7], we get that

E[e−Mθ(ξε∧T )W(x(ξε ∧ T ), A(ξε ∧ T ), ξε ∧ T )]

= W(x0, 0, 0) + E
∫ ξε∧T

0

e−Mθ s[−MθW(x(s), A(s), s) + LW(x(s), A(s), s)]ds

+ E
∫ ξε∧T

0

e−Mθ sNW(x(s), A(s), s)dA(s).

Apply (8), (10) and A(t) ≥ 0 one sees that

E[e−Mθ(ξε∧T )W(x(ξε ∧ T ), A(ξε ∧ T ), ξε ∧ T )] ≤ |x0|−1.

If ω ∈ B, then ξε ≤ T and |x(ξε)| ≤ ε. So

E[e−MθTε−1IB] ≤ E[e−Mθξε |x(ξε)|−1IB]

= E[e−Mθ(ξε∧T )W(x(ξε ∧ T ), A(ξε ∧ T ), ξε ∧ T )IB]

≤ |x0|−1.

Hence,

P(B) ≤ ε|x0|−1eMθT .

When ε→ 0, P(B) = 0, however the result goes against the definition of B and the lemma holds.

Theorem 3.3 Suppose that there exists constants p, b1, b3 ∈ R+, b2 ∈ R , and a positive function W ∈ C2,1,1(R ×
R+ × R+; R+), such that for all x � 0, y > 0, t > 0,

(i) b1|x|p ≤ W(x, y, t),

(ii) LW(x, y, t) ≤ b2W(x, y, t),

(iii) (MW(x, y, t))2 ≥ b3W2(x, y, t),

(iv) NW(x, y, t) ≤ 0.

Then
λ ≤ 2b2 − b3

2p
a.s. (11)
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for all x0 ∈ R. In particular, when 2b2 < b3, the stochastic integral equation (5) is almost surely exponentially
stable.

Proof. Obviously, (11) holds for x0 = 0 since x(t) ≡ 0. Therefor (11) only needs to be shown for x(0) � 0.

According to the Lemma 3.2, for all t ≥ 0, we know that x(t) � 0 a.s. Due to Itô’s formula for continuous

semimartingales and the equality [7], for each t ≥ 0, we therefor have that

log W(x(t), A(t), t) − log W(x0, 0, 0)

=

∫ t

0

LW(x(s), A(s), s)

W(x(s), A(s), s)
ds +

∫ t

0

MW(x(s), A(s), s)

W(x(s), A(s), s)
dB̃(s)

+

∫ t

0

NW(x(s), A(s), s)

W(x(s), A(s), s)
dA(s) − 1

2

∫ t

0

[MW(x(s), A(s), s)

W(x(s), A(s), s)

]2
ds.

By condition (iv) and the conditions that W(x, y, t) ≥ 0 and A(t) ≥ 0, we get that

log W(x(t), A(t), t) − log W(x0, 0, 0)

≤
∫ t

0

LW(x(s), A(s), s)

W(x(s), A(s), s)
ds +

∫ t

0

MW(x(s), A(s), s)

W(x(s), A(s), s)
dB̃(s) − 1

2

∫ t

0

[MW(x(s), A(s), s)

W(x(s), A(s), s)

]2
ds.

Using condition (ii), it can be easily shown that for each t ≥ 0,

log W(x(t), A(t), t) ≤ log W(x0, 0, 0) + M(t) + b2t − 1

2

∫ t

0

[MW(x(s), A(s), s)

W(x(s), A(s), s)

]2
ds, (12)

where

M(t) =
∫ t

0

MW(x(s), A(s), s)

W(x(s), A(s), s)
dB̃(s)

is a continuous martingale whose initial value is M(0) = 0. The following arguments are exactly the same as

described in the page 121-122 of Mao (1997), and we get

lim sup
t→∞

1

t
log W(x(t), A(t), t) ≤ 1

2
[2b2 − (1 − ε)b3] a.s.

Finally, using condition (i) , then

λ ≤ 2b2 − (1 − ε)b3

2p
a.s.

and the required assertion (11) follows from the arbitrariness of ε > 0. When 2b2 < b3, the almost sure exponential

stability of the system (5) is guaranteed by Definition 2.1. The proof is therefor complete.

Conclusion 3.4 From Theorem 3.3, it is easy to see that a one-dimensional unstable linear system can be stabilized

by the reflecting Brownian motion .In contrast to the Theorem 3.3 in Mao (1997), while the random noise is

Brownian motion, we get that Brownian motion can stabilize an unstable system better.

4. An Example

Consider a simple and unstable linear system

dx(t)
dt
= 2x(t), t ≥ 0 (13)

and give the initial condition x(0) = 3. Then the corresponding system perturbed by a reflecting Brownian motion

is described below.

dz(t) = 2z(t)dt − 4z(t)dY(t) (14)

with the initial condition z(0) = 3. Here the random noise Y(t) is a reflecting Brownian motion with Y(t) = |B(t)|.
And the solution of system (14) is denoted by z(t) for all t ≥ 0. Now apply Theorem 3.3 to judge whether the

system (14) is stable. Let W(z, y, t) = z2. Then

LW(z, y, t) = 20z2,
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(MW(z, y, t))2 = 64z4,

NW(z, y, t) = −8z2 < 0.

Hence, when p = 2, b1 = 1, b2 ≥ 20, b3 ≤ 64, by Theorem 3.3, the solution of (14) satisfies

λ ≤ −6 < 0 a.s.

So the system (14) turns stable, and this shows that the reflecting Brownian motion has stabilized the unstable

system(13). And the following simulation (Figure 1) demonstrates the phenomenon well.
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Figure 1. Simulation
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