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Abstract

We consider the variable selection problem in linear regression. Suppose that we have a set of random variables

X1, · · · , Xm,Y, ε (m ≥ 1) such that Y =
∑

k∈π αkXk + ε with π ⊆ {1, · · · ,m} and reals {αk}mk=1
, assuming that ε is

independent of any linear combination of X1, · · · , Xm. Given n examples {(xi,1 · · · , xi,m, yi)}ni=1
actually indepen-

dently emitted from (X1, · · · , Xm, Y), we wish to estimate the true π based on information criteria in the form of

H + (k/2)dn, where H is the likelihood with respect to π multiplied by −1, and {dn} is a positive real sequence.

If dn is too small, we cannot obtain consistency because of overestimation. For autoregression, Hannan-Quinn

proved that the rate dn = 2 log log n is the minimum satisfying strong consistency. This paper solves the statement

affirmative for linear regression. Thus far, there was no proof for the proposition while dn = c log log n for some

c > 0 was shown to be sufficient.

Keywords: Hannan-Quinn, linear regression, the law of iterated logarithms, strong consistency, information crite-
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1. Introduction

We consider model selection based on information criteria such as AIC (Akaike’s information criterion) and BIC

(Bayesian information criterion).

For example, given independently and identically distributed (i.i.d.) random variables {εi}∞i=−∞ and nonnegative

reals {αi}ki=1
(k ≥ 0), we can define random variables {Xi}∞i=−∞ such that

Xi =

k∑
j=1

α jXi, j + εi

(autoregression). Suppose that we wish to know the minimum true k as well as the values of {αi}ki=1
from a number

of examples {xi}ni=1
(n ≥ 1) emitted from {Xi}ni=1

. Then, one way to estimate the order k is to prepare a positive real

sequence {dn}∞n=1
and to choose k minimizing the information criterion

n log S k +
k
2

dn

with respect to dn, where S k is the estimated variance based on the Yule-Walker algorithm.

The sequence {dn}∞n=1 balances fitness of the examples to the model and simplicity of the model. If dn is too small

and too large, the estimated model will be overestimated and underestimated, respectively. The information criteria

are said AIC and BIC if dn = 2 and dn = log n, respectively.

In this paper, we consider consistency of model selection: the estimation is weakly and strongly consistent if the

true model is obtained as n → ∞ in probability and almost surely, respectively. For autoregression, Hannan and

Quinn (1979) proved strong consistency for dn = (2 + ε) log log n with arbitrary ε > 0 based on the law of iterated

logarithms. They also showed the converse: dn = (2 − ε) log log n does not satisfy the property.

For linear regression, we can draw a similar scenario: given random variables {Xi}mi=1
and ε that is independent of

any linear combination of {Xi}mi=1
, we can define

Y =
k∑

j=1

α jX j + ε,
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where 0 ≤ k ≤ m and {α j}kj=1
are reals. We wish to know the minimum true k as well as the values of {α j}kj=1

from

n examples {[yi, xi1, · · · , xim]}ni=1
independently emitted from (Y, X1, · · · , Xm). Similarly, we can define information

criteria

n log S k +
k
2

dn

such as dn = 2 (AIC) and dn = log n (BIC), where S k is the empirical square error of the n examples.

However, currently, we do not know whether dn = (2+ ε) log log n with arbitrary ε > 0 achieves strong consistency

for linear regression. In fact, no proof was given for the proposition. Wu and Zen (1999) suggested that dn =

c log log n with some c > 0 realizes strong consistency. However, they did not obtain either the exact value of c or

any converse result.

On the other hand, for the problem of classification rules which has many applications such as Markov order

estimation, data mining, and pattern recognition, Suzuki (2006) proved the Hannan-Quinn proposition.

The main purpose of this paper is to prove the Hannan-Quinn proposition for linear regression. We do not assume

that the noise ε to be normal in the final result.

Section 2 gives preliminary for linear regression such as idempotent matrices and eigenspaces. In Section 3,

we derive the asymptotic error probability of model selection in linear regression when information criteria are

applied, which will be an important step to prove the main result. In Section 4, we give a proof of the Hannan-

Quinn proposition for linear regression. Section 5 summarizes the results in this paper and gives a future problem.

Throughout the paper, we denote by X(Ω) the image {X(ω)|ω ∈ Ω} of a random variable X : Ω → R, where Ω is

the underlying sample space.

2. Linear Regression

Let X1, · · · , Xm be random variables, ε ∼ N(0, σ2) a normal random variable with expectation zero and variance

σ2 > 0, and

Y :=

p∑
j=1

α jX j + ε,

where α := [α1, · · · , αp]T ∈ Rp (0 ≤ p ≤ m). We assume that ε is independent of any linear combination of

X1, · · · , Xm.

Suppose we do not know the values of order p and coefficients α, and that we are given independently emitted n
examples

zn := {[yi, xi,1, · · · , xi,m]}ni=1

with

yi ∈ Y(Ω), [xi,1, · · · , xi,m] ∈ X1(Ω) × · · · × Xm(Ω),

where {[x1, j, · · · , xn, j]}mj=1
are to be linearly independent. If we define

Xp :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1,1 . . . x1,p
...
. . .

...
xn,1 . . . xn,p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , y :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1

...
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ε :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1
...
εn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

we can write y = Xpα + ε. Suppose that we estimate p by q (0 ≤ q ≤ m). If we wish to minimize the quantity∑n
i=1(yi − ∑q

j=1
α̂ jqxi j)

2 given the n examples, then α̂q = [α̂1,q, · · · , α̂q,q]T := (XT
q Xq)−1XT

q y is the exact solution

(minimum square error estimation), where

Xq :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1,1 . . . x1,q
...
. . .

...
xn,1 . . . xn,q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Suppose p ≤ q. If we define Pq := Xq(XT

q Xq)−1XT
q , we have

P2
q = Pq
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and

(I − Pq)2 = I − Pq,

so that the square error is expressed by

S q :=

n∑
i=1

(yi −
q∑

j=1

α̂ j,qxi, j)
2 = ||y − Xqα̂q||2 = ||(I − Pq)y||2 = yT (I − Pq)y.

Similarly, if q = p, for Pp := Xp(XT
p Xp)−1XT

p and α̂p = [α̂1,p, · · · , α̂p,p]T := (XT
p Xp)−1XT

p y, the square error is

expressed by

S p = yT (I − Pp)y.

Thus, the difference between the square errors is

S p − S q = yT (I − Pq)y − yT (I − Pq)y = yT (Pq − Pp)y.

On the other hand, we have

PT
q = (XT

q )T {(XT
q Xq)−1}T XT

q = Xq{(XT
q Xq)T }−1XT

q = Pq

and PT
p = Pp. From PqXp = Xp and PpXp = Xp, we obtain

PqPp = PqXp(XT
p Xp)−1XT

p = Xp(XT
p Xp)−1XT

p = Pp

and

PpPq = PT
p PT

q = (PqPp)T = PT
p = Pp.

Thus, not just for Pp, I − Pp but also for Pq − Pp, the property

(Pq − Pp)2 = P2
q − PqPp − PpPq + P2

p = Pq − Pp

holds. Such square matrices satisfying the property are called idempotent matrices (Chatterjee-Hadi, 1987).

In general, for idempotent matrix P ∈ Rn×n, the inner product (Px, (I − P)x) = 0 for any x = Px + (I − P)x ∈ Rn,

so that the eigenspaces are

1) V1 := {Px|x ∈ Rn} with dim(V1) = rank(P), and

2) V0 := {(I − P)x|x ∈ Rn} with dim(V0) = n − rank(P).

Since the eigenvalues are one and zero, the multiplicity of eigenvalue one is the same as the trace. Notice that for

(XT
q Xq) = [y jk] and (XT

q Xq)−1 = [z jk],

trace(Pq) = trace(Xq(XT
q Xq)−1XT

q ) =

n∑
i=1

q∑
j=1

q∑
k=1

xi jz jk xki =

q∑
j=1

q∑
k=1

yk jz jk =

q∑
k=1

1 = q ,

and trace(Pp) = p, so that we have the following table.

P trace(P) dim(V1) dim(V0) rank(P)

Pp p p n − p p
I − Pp n − p n − p p n − p

Pq − Pp q − p q − p n − q + p q − p

3. Error Probability in Model Selection

3.1 Overestimation

Proposition 1 If p < q,
S p − S q

S p/n
asymptotically obeys the χ2 distribution with freedom q − p.

Proof. Given Xp, we choose an orthogonal matrix U = [u1, · · · ,un] of I − Pp so that U1 =< u1, · · · ,un−p > and

U0 =< un−p+1, · · · ,un > are the eigenspaces of eigenvalues one and zero, respectively. Notice that

(I − Pp)y = y − (Xpα + Ppε) = ε − Ppε = (I − Pp)ε. (1)
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For j = 1, · · · , n − p, multiplying uT
j in both hands from left, we get a normal random variable

z j := uT
j y = uT

j ε.

Since the expectation and variance of εi are zero and σ2 (independent), and

uT
j uk =

{
1, j = k,
0, j � k,

we have E[z j] = 0 and

E[z jzk] = E[uT
j ε · uT

k ε] = σ
2uT

j uk =

{
σ2, j = k,
0, j � k.

Thus, from the strong law of large numbers, with probability one as n→ ∞,

1

n
S p =

1

n

n−p∑
j=1

z2
j → σ2. (2)

On the other hand, given Xq, we choose an orthogonal matrix V = [v1, · · · , vn] of Pq − Pp so that V1 =<
v1, · · · , vq−p > and V0 =< vq−p+1, · · · , vn > are the eigenspaces of eigenvalues one and zero, respectively. No-

tice that from (1), we have

(Pq − Pp)y = Pq(I − Pp)y = Pq(I − Pp)ε = (Pq − Pp)ε.

For j = 1, · · · , q − p, multiplying v j in both hands from left, we get a normal random variable

r j := vT
j y = vT

j ε.

Since the expectation and variance of εi are zero and σ2 (independent), and

vT
j vk =

{
1, j = k,
0, j � k,

we have E[r j] = 0 and

E[r jrk] = E[vT
j ε · vT

k ε] = σ
2vT

j vT
k =

{
σ2, j = k,
0, j � k.

Hence, as n→ ∞,

S p − S q

σ2
=

q−p∑
j=1

r2
j

σ2
∼ χ2

q (3)

where the fact that the square sum of q − p independent random variables with the standard normal distribution

obeys the χ2 distribution of freedom q − p has been applied. Equations (2)(3) imply Proposition 1.

In the sequel, for π ⊆ {1, · · · ,m}, we write the square error of {Xj} j∈π and Y by S (π), and put

L(zn, π) := n log S (π) +
k(π)

2
dn

and k(π) = |π|, given zn = {[yi, xi,1, · · · , xi,m]}ni=1
. Let π∗ ⊆ {1, · · · ,m} be the true π.

Theorem 1 For π ⊃ π∗, the probability of L(zn, π) < L(zn, π∗) is
∫ ∞

n{1−exp[− k(π)−k(π∗)
2n dn]}

fk(π)−k(π∗)(x)dx,

where fl is the probability density function of the χ2 distribution of freedom l.

Proof. Notice that

2{L(zn, π) − L(zn, π∗)} = 2n log
S (π)

S (π∗)
+ {k(π) − k(π∗)}dn = 2n log(1 − S (π∗) − S (π)

S (π∗)
) + {k(π) − k(π∗)}dn,
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so that

L(zn, π) < L(zn, π∗) ⇐⇒ S (π∗) − S (π)

S (π∗)/n
> n{1 − exp[−k(π) − k(π∗)

2n
dn]}. (4)

From Proposition 2, we obtain Theorem 1.

3.2 Underestimation

Hereafter, we do not assume that ε to be normally distributed.

Theorem 2 For π � π∗, L(zn, π) > L(zn, π∗) with probability one as n→ ∞.

Proof. Suppose q < p. Given Xp, we choose an orthogonal matrix W := [w1, · · · ,wn] of Pp − Pq so that

W1 =< w1, · · · ,wp−q > and W0 =< wp−q+1, · · · ,wn > are the eigenspaces of eigenvalue one and zero, respectively.

If we define ti :=
∑p

k=q+1
xi,kαk + εi and

s j :=

n∑
i=1

wi jyi =

n∑
i=1

wi j(

p∑
k=1

xikαk + εi) =

n∑
i=1

wi j(

p∑
k=q+1

xikαk + εi) = (w j, t)

for w j = [w1 j, · · · ,wn j]
T and t = [t1, · · · , tn]T , then ||w j||2 = ∑n

i=1 w2
i j = 1, and ||t||2/n = ∑n

i=1 t2
i /n converges to a

positive constant with probability one. Otherwise, ε = −∑p
k=q+1

Xkαk with probability one (contradiction). If w j

and t are orthogonal, the t should be in the form

(

q∑
k=1

x1kβk, · · · ,
q∑

k=1

xnkβk)

for some [β1, · · · , βq] ∈ Rq, which means that ε =
∑q

k=1
Xkβk − ∑p

k=q+1
Xkαk with probability one (contradiction).

Hence,

1

n
(S q − S p) =

1

n

p∑
j=q+1

s2
j =

p∑
j=q+1

||w j||2||t||2/n · cos(w j, t)2 (5)

converges to a positive value, which implies the theorem when π ⊂ π∗. Suppose π � π∗. In the same way, since (5)

converges to a positive value even for q = |π ∩ π∗|, we have

lim
n→∞

1

n
{S (π ∩ π∗) − S (π∗)} > 0. (6)

Furthermore, if we replace π∗ by π ∩ π∗, from a similar discussion as in Theorem 1, we have

lim
n→∞

1

n
{S (π) − S (π ∩ π∗)} = 0. (7)

The statements (6)(7) imply the theorem.

4. Proof of the Hannan-Quinn Proposition

In this section, we do not assume that ε ∼ N(0, σ2) but that ε is an independently identically distributed random

variable with expectation zero and variance σ2.

Proposition 2 If q > p, with probability one,

1 ≤ lim sup
n→∞

{S p − S q

S p/n
/ log log n} ≤ q − p (8)

Proof. The notation is similar to Proposition 2, and let p + 1 ≤ j ≤ q.

Let λ1, · · · , λq−p and [β1,1, · · · , β1,q]T , · · · , [βq−p,1, · · · , βq−p,q]T be the nonzero eigenvalues and corresponding unit

eigenvectors of

Xp,q := (
1

n
XT

q Xq)−1 −
(

( 1
n XT

p Xp)−1 0

0 0

)
.
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Then, from

n(S q − S p) = nεT (Pq − Pp)ε = n(εT Xq)Xp,q(εT Xq)T =

q−p∑
j=1

λ j(

q∑
k=1

β j,k

n∑
i=1

xi,kεi)
2

and E[r2
j ] = E[ε2i ] = σ2, we require λ j = [

∑n
i=1(
∑q

k=1
β jk xik)2]−1, thus,

vi j =

∑
k β jk xik√∑n

i=1(
∑

l β jl xil)2
.

Since Xp,q converges to a constant matrix as n→ ∞ and limn→∞ β jk exists with probability one, so does

γ jk := lim
n→∞

β jk√
1
n
∑n

i=1(
∑

l β jl xil)2

.

Let Zi =
∑

k γ jk xikεi/σ. Then, E[
∑n

i=1 Zi] = 0, E[
∑n

i=1 Z2
i ] = n, and {Zi}ni=1

are independent. From the law of

iterated logarithms (Stout 1974), we have

lim sup
n→∞

∑
i
√

nvi jεi/σ√
n log log n

= lim sup
n→∞

∑
i(
∑

k γ jk xik)εi/σ√
n log log n

= lim sup
n→∞

∑n
i=1 Zi√

n log log n
= 1 ,

namely,

lim sup
n→∞

r j

σ
√

log log n
= 1

with probability one. Since

lim sup
n→∞

r j

σ
√

log log n
≤ lim sup

n→∞

q∑
j=p+1

r j

σ
√

log log n
≤

q∑
j=p+1

lim sup
n→∞

r j

σ
√

log log n
,

and from (2) and (3), we have (8) with probability one.

The following equation is useful in derivation of the final result.

1

2
{k(π) − k(π∗)}dn − 1

4n
[{k(π) − k(π∗)}dn]2 ≤ n[1 − exp{−k(π) − k(π∗)

2n
dn}] ≤ 1

2
{k(π) − k(π∗)}dn (9)

Theorem 3 For dn := (2 + ε) log log n (ε > 0), L(zn, π) > L(zn, π∗) with probability one.

Proof. From Theorem 2, the error for π∗ � π is almost surely zero as long as
dn

n
→ 0 (n → ∞), so that we only

need to consider the case π∗ ⊂ π. However, dn = (2 + ε) log log n with ε > 0 implies the left hand side of (9) is

strictly larger than (q − p) log log n with p = k(π∗) and q = k(π) for large n, which from Proposition 2 and (4)

implies Theorem 3.

Theorem 4 For dn := (2 − ε) log log n (ε > 0), L(zn, π) ≤ L(zn, π∗) with nonzero probability as n → ∞ for π such
that k(π) = k(π∗) + 1.

Proof. dn = (2 − ε) log log n with ε > 0 implies the right hand side of (9) is strictly smaller than (q − p) log log n
with p = k(π∗) and q = k(π) = p + 1 for large n, which from Proposition 2 and (4) implies Theorem 4.

For example, suppose p = 0 and q = 1. Then, X0,1 =
1
n
∑n

i=1 x2
i1, vi1 =

xi1√
1
n
∑n

h=1 x2
h1

, and γ11 = E[X2
1]−1/2. In this

case, S 0 − S 1 =

∑n
i=1 x2

i1ε
2
i∑n

h=1 x2
h1

and
S 0

n
=

1

n

n∑
i=1

ε2i . Thus, with probability one,

S 0 − S 1

S 0/n
=

n
∑n

i=1 x2
i1ε

2
i∑n

h=1 x2
h1

∑n
l=1 ε

2
l

exceeds (1 + ε) log log n finitely many times and (1 − ε) log log n with nonzero probabiolity, so that the model

selection procedure makes wrong results at most finitely many times.
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5. Conclusion

We proved that the Hannan-Quinn proposition is true for linear regression as well as for auto regression (Hannan-

Quinn, 1979) and for classification (Suzuki, 2006): the minimum rate of dn satisfying strong consistency is (2 +

ε) log log n for arbitrary ε > 0.

The future problems contain finding strong consistency conditions that are good for all the cases including linear

regression, auto regression, and classification. Making clear why the same dn = 2 log log n is the crucial rate for

those problems would be the first step to solve the problem.
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