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Abstract

A general representation of quadratic expressions in possibly singular elliptically contoured random vectors, as

well as a procedure for the numerical evaluation of their distributions, are proposed in this paper. First, such

quadratic expressions are represented as the difference of two positive definite elliptically contoured quadratic

forms plus an independently distributed linear combination of spherically distributed random variables. Their

distributions are then determined from a representation of elliptically contoured vectors in terms of scale mixtures

of Gaussian vectors. Quadratic forms and quadratic expressions in various types of elliptically contoured vectors

are considered. An accurate moment-based approximation to their density function is also provided. Several

numerical examples illustrate the results.

Keywords: quadratic expressions, elliptically contoured vectors, spherically distributed vectors, quadratic forms,

cumulant generating function, moments, density approximation

1. Introduction

Several fields of application involve elliptically contoured distributions, including, for instance, anomalous change

detection in hyperspectral imagery: Theiler et al. (2010); option pricing: Hamada and Valdez (2008); filtering

and stochastic control: Chu (1973); random input signal: McGraw and Wagner (1968); financial analysis: Zell-

ner (1976) and the references therein; the analysis of stock market data: Mandelbrot (1963) and Fama (1965);

and Bayesian Kalman filtering: Girón and Rojano (1994). Additionally, studies on the robustness of statistical

procedures when the probability model departs from the multivariate normal distribution to the broader class of

elliptically contoured distributions were carried out by King (1980) and Osiewalski and Steel (1993). Several

multivariate applications are also discussed in Devlin et al. (1976). Results related to regression analysis can be

found, for example, in Fraser and Ng (1980). Heavy-tailed time series models were discussed in Resnick (1997). A

new family of life distributions, generated from an elliptically contoured distribution, is discussed by Dı́az-Garcı́a

and Leiva-Sánchez (2005). Recently, Ip et al. (2007) derived some results applicable to Bayesian inference for

a general multivariate linear regression model with matrix variate elliptically distributed errors. In fact, the class

of elliptically contoured distributions, which contains the multivariate normal distribution, enjoys several of its

properties while allowing for more flexibility in modeling various random processes.

A p-dimensional vector X has an elliptically contoured or elliptical distribution with mean vector μ and scale

parameter matrix Σ if its characteristic function φ(t) can be written as

φ(t) = ei t′μξ(t′Σ t)

where μ is a p-dimensional real vector, Σ is a p × p nonnegative definite matrix and ξ(·) is a nonnegative function,

see, for instance, Cambanis et al. (1981); this will be denoted X ∼ Cp(μ,Σ; ξ).

Moreover, the densities associated with p-dimensional elliptically contoured vectors X are of the form h((x −
μ)′Σ−1(x − μ)) where h(·) is a density defined on (0,∞) whose (p/2 − 1)th moment exists, see for example Fang et
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al. (1990), Section 2.2.3. In particular, when μ is the null vector and Σ is the identity matrix of order p, X is said

to have a spherically symmetric or spherical distribution; this will be denoted X ∼ Sp(ξ).

In fact, whenever Y ∼ Cp(μ,Σ; ξ) and Σ is a positive definite matrix, Σ−
1
2 (Y − μ) ∼ Sp(ξ), where Σ−1/2 denotes

the inverse of the symmetric square root of Σ. Furthermore, spherical distributions are invariant under orthogonal

transformations, that is, for any orthogonal matrix P, X ∼ Sp(ξ) and P X are identically distributed. Other

characterizations and properties are available from Kelker (1970), Chmielewski (1981), Fang et al. (1990) and

Mathai et al. (1995), among others.

A decomposition of quadratic expressions in possibly singular elliptically contoured vectors is introduced in Sec-

tion 2 and representations of functions of elliptically contoured vectors such as the moments of a quadratic form,

are obtained in Section 3. A density approximation methodology that combines these results is described and

illustrated by several numerical examples in Section 4.

The distributional results derived in this paper for quadratic forms in elliptically contoured random vectors not

only extend, but also make use of, their Gaussian counterparts. Given that elliptically contoured distributions are

utilized as models in a host of applications, and quadratic forms are ubiquitous in statistics, the result presented

herein should prove useful in a variety of contexts and lead to the development of improved statistical inference

techniques.

2. A Decomposition of Quadratic Expressions in Elliptically Contoured Vectors

Consider the quadratic expression Q∗(X) = (X−α)′A(X−α)+a′(X−α)+d where X ∼ Cp(μ,Σ; ξ), rank(Σ) = r ≤ p,

α is a p-dimensional real vector and A is a real symmetric matrix. Letting X = μ + B S, where Bp×r is such that

BB′ = Σ (cf. Example 4) and S ∼ Sr(ξ), one can write

Q∗(X) ≡ Q∗(S) = (μ + B S − α)′A(μ + B S − α) + a′(μ + B S − α) + d

= [(μ − α) + B S]′A[(μ − α) + B S] + a′[(μ − α) + B S] + d

= μ′1Aμ1 + 2μ′1A′B S + S′B′AB S + a′B S + a′μ1 + d

where μ1 = μ − α. Let P be an orthogonal matrix such that P′B′ABP = Diag(λ1, . . . , λr), λ1, . . . , λr de-

noting the eigenvalues of B′AB, with λ1, . . . , λr1
positive, λr1+1 = · · · = λr1+θ = 0 and λr1+θ+1, . . . , λr nega-

tive, m′ = (m1, . . . ,mr) = a′BP, b∗
′
= (b∗1, . . . , b

∗
r ) = μ′1ABP, c1 = μ

′
1Aμ1 + a′μ1 + d. Then, letting

W = (W1, . . . ,Wr1
, . . . ,Wr1+θ+1, . . . ,Wr)

′ = P′S ∼ Sr(ξ) and assuming that B′AB � O, one has

Q∗(X) ≡ Q∗(W) = W′P′B′ABPW + 2μ′1ABPW + a′BPW + μ′1Aμ1 + a′μ1 + d

= W′Diag(λ1, . . . , λr)W + (2b∗
′
+m′)W + c1

=

r1∑
j=1

λ jW2
j + 2

r1∑
j=1

n jWj −
r∑

j=r1+θ+1

|λ j|W2
j + 2

r∑
j=r1+θ+1

n jWj

+2

r1+θ∑
j=r1+1

n jWj + c1

=

r1∑
j=1

λ j

(
Wj +

n j

λ j

)2 −
r∑

j=r1+θ+1

|λ j|
(
Wj +

n j

λ j

)2
+ 2

r1+θ∑
j=r1+1

n jWj

+
(
c1 −

r1∑
j=1

n2
j

λ j
−

r∑
j=r1+θ+1

n2
j

λ j

)

≡ Q1(W+) − Q2(W−) + 2

r1+θ∑
j=r1+1

n jWj + κ1

≡ Q1(W+) − Q2(W−) + T1, (1)

where Q1(W+) = W+′Diag(λ1, . . . , λr1
)W+ and Q2(W−) = W−′Diag(λr1+θ+1, . . . , λr) W− are positive definite

quadratic forms with W+ = (W1 + n1/λ1, . . . ,Wr1
+ nr1

/λr1
)′ ∼ Cr1

(ν1, I; ξ), ν1 = (n1/λ1, . . . , nr1
/λr1

)′, W− =
(Wr1+θ+1 + nr1+θ+1/λr1+θ+1, . . . ,Wr + nr/λr)

′ ∼ Cr−r1−θ (ν2, I; ξ), ν2 = (nr1+θ+1/λr1+θ+1, . . . , nr/ λr)
′, θ being number

of null eigenvalues of B′AB, n j =
1
2
mj + b∗j , c1 = μ

′
1
Aμ1 + a′μ1 + d, κ1 =

(
c1 −∑r1

j=1
n2

j/λ j −∑r
j=r1+θ+1 n2

j/λ j

)
and
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T1 = (2
∑r1+θ

j=r1+1
n jWj + κ1) ∼ C1(κ1 , 4

∑r1+θ
j=r1+1

n2
j ; ξ) . If rank(AΣ) = rank(Σ) = r, T1 = κ1. Note that when α = 0

and μ = 0 (the central case), μ1 = 0 and b∗ = 0.

As a particular case, when α = 0, a = 0′ and d = 0, one has the following decomposition for the quadratic f orm
X′AX in the possibly singular elliptically contoured vector X ∼ Cp(μ,Σ; ξ),Σ being of rank r ≤ p:

Q(X) = X′AX =
r∑

j=1

λ jW2
j + 2

r∑
j=1

b∗jWj + c

=

r1∑
j=1

λ jW2
j + 2

r1∑
j=1

b∗jWj −
r∑

j=r1+θ+1

|λ j|W2
j + 2

r∑
j=r1+θ+1

b∗jWj

+2

r1+θ∑
j=r1+1

b∗jWj + c

=

r1∑
j=1

λ j

(
Wj +

b∗j
λ j

)2 −
r∑

j=r1+θ+1

|λ j|
(
Wj +

b∗j
λ j

)2
+ 2

r1+θ∑
j=r1+1

b∗jWj

+
(
c −

r1∑
j=1

b∗2j
λ j
−

r∑
j=r1+θ+1

b∗2j
λ j

)

≡ Q1(W1) − Q2(W2) + 2

r1+θ∑
j=r1+1

b∗jWj + κ

≡ Q1(W1) − Q2(W2) + T, (2)

where W′ = (W1, . . . ,Wr) ∼ Sr(ξ),Q1(W1) =W′
1Diag(λ1, . . . , λr1

)W1 and Q2(W2) =W′
2Diag(λr1+θ+1, . . . , λr)W2

are positive definite quadratic forms with W1 = (W1 + b∗1/λ1, . . . , Wr1
+ b∗r1

/λr1
)′ ∼ Cr1

(ν1, I; ξ), ν1= (b∗1/λ1, . . . ,
b∗r1
/λr1

)′, W2 = (Wr1+θ+1+b∗r1+θ+1/λr1+θ+1, . . . ,Wr+b∗r/λr)
′ ∼ Cr−r1−θ(ν2, I; ξ), ν2 = (b∗r1+θ+1/λr1+θ+1, . . . , b∗r/λr)

′, θ
is the number of null eigenvalues of AΣ, the λ j’s and b∗j’s being as previously defined, c = μ′Aμ, κ =

(
c −∑r1

j=1
b∗2j /λ j −∑r

j=r1+θ+1 b∗2j /λ j

)
and T = 2

∑r1+θ
j=r1+1

b∗jWj+κ ∼ C1(κ , 4
∑r1+θ

j=r1+1
b∗2j ) , whenever rank(AΣ) = r−θ, θ =

1, . . . , r − 1. When rank(Σ) = rank(AΣ) = r, T = κ.

3. Elliptically Contoured Distributions as Scale Mixtures of Gaussian Vectors

Normal scale mixtures have the stochastic representation μ+Σ1/2L Z, where μ is the mean of the distribution, Σ1/2

is such that Σ1/2(Σ1/2)′ = Σ, the positive semidefinite scale parameter matrix of the distribution, Z is a standard

Gaussian random vector, and L is a positive random variable that is distributed independently of Z. When Σ is

positive definite, the density function of Y ∼ Cp(μ,Σ; ξ) can be expressed in terms of a scale mixture of normal

densities as follows:

g(y) =
1

(2π)p/2|Σ|1/2
∫ ∞

0

r−p/2exp
{
− (y − μ)′Σ−1(y − μ)

2r

}
dU(r) (3)

where U(·), the distribution function of L2, is such that U(0) = 0. This representation can be found, for example, in

Muirhead (1982). A result due to Chu (1973) is extended to non-central elliptically contoured distributions in the

next theorem. This theorem enables one to express various distributional results involving elliptically contoured

vectors in terms of their Gaussian counterparts.

Theorem 1 Let Y ∼ Cp(μ,Σ; ξ), with Σ > 0, h(y) denote the density of y and f (s) be h(y) wherein (y − μ)′Σ−1(y −
μ)/2 is replaced by s. Then, when the inverse Laplace transform of f (s) exists, the density of Y denoted by h(y)

has the following integral representation:

h(y) =

∫ ∞
0

w(t) ηY(μ, t−1Σ) dt (4)

where ηY(μ, t−1Σ) denotes the density function of a p-dimensional Gaussian random vector with mean μ and
covariance matrix t−1Σ, and the weighting function w(t) is obtained as

w(t) = (2π)p/2 |Σ|1/2 t−p/2L−1 ( f (s)),
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L−1( f (s)) representing the inverse Laplace transform of f (s).

In fact, L−1( f (s)) exists whenever f (s) is an analytic function and f (s) is O(s−k) as s→ ∞ for k > 1; for additional

properties of the Laplace transform and its inverse, one may refer to Gradshteyn and Ryzhik (1980), Chapter 17. It

follows from Theorem 1 that an elliptical distribution is completely specified by its mean μ, scale parameter matrix

Σ and its weighting function w(t), whenever the latter exists. On letting t = 1/r and defining w(t) to be the density

function of 1/L2, it is seen that (3) and (4) are equivalent. On integrating h(y) as defined in Theorem 1 over Rp and

interchanging the order of integration, one can easily establish that w(t) integrates to 1. Thus, w(t) can be regarded

as a weighting function. Explicit representations of w(t) are given in Table 2 for several p-dimensional elliptically

contoured distributions.

Theorem 1 enables one to determine the distribution of functions of elliptically contoured vectors in terms of their

Gaussian counterparts. For instance, let Y ∼ Cp(μ,Σ; ξ) and its associated weighting function be w(t). Then, the

moment-generating function of the non-central quadratic form Y′AY can be obtained as follows:

MY′AY(θ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

∫ ∞
0

e θ y′Ay w(t) ηY(μ, t−1Σ) dt dy

=

∫ ∞
0

w(t) M∗Q(W)(θ) dt (5)

where

M∗Q(W)(θ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eθ y′Ay ηY(μ, t−1Σ) dy

is the moment-generating function of the quadratic form Q(W) =W′AW wherein W ∼ Np(μ, t−1 Σ).

Similarly, the moments of Y′AY can be evaluated as follows:

E(Y′AY)h =

∫ ∞
0

w(t) E
[
(W′AW)h] dt , (6)

where W ∼ Np(μ, t−1 Σ) and E
[
(W′AW)h] can be determined from (7).

In general, the moments of a random variable can be obtained from its cumulants by means of a recursive relation-

ship derived in Smith (1995), which can also be deduced for instance from Theorem 3.2b.2 in Mathai and Provost

(1992). For example, the hth moment of Q(W) =W′AW is given by

E(W′AW)h = μh =

h−1∑
i=0

(h − 1)!

(h − 1 − i)! i!
k(h − i) μi (7)

where k(h), the hth cumulant of Q(W), is

k(h) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2h−1h!

(
tr(t−1AΣ)h

h + μ′(t−1AΣ)h−1Aμ
)
, h ≥ 2 ,

tr(t−1AΣ) + μ′Aμ , h = 1.

4. Illustrative Examples

Four numerical examples involving quadratic forms and quadratic expressions in various types of elliptically con-

toured vectors are presented in this section. The steps of the proposed methodology for determining their distribu-

tions are described in the first example.

Example 1 Consider the quadratic form QI(X) = X′AX where X has a noncentral t−distribution with 10 degrees

of freedom whose density function is as given in Table 1 with s = (x − μ)′Σ−1(x − μ)/2 , μ = (0, 1, 3, 2)′,

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1/2 2/5 1/2

1/2 1 1/4 3/8
2/5 1/4 1 1/3
1/2 3/8 1/3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −6 2 1

−6 7 0 4

2 0 −4 1

1 4 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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The proposed methodology comprises the following steps:

1) QI(X) is expressed as QI
1(W1) − QI

2(W2) + κ in accordance with Equation (2).

2) The moments of QI
i(Wi), i = 1, 2 are determined from Equations (6) and (7).

3) A generalized gamma density function,

ψ(z) =
γ

βαγΓ(α)
zαγ−1e−(z/β)γ I(0,∞)(z) , α > 0, β > 0, γ > 0, (8)

is taken as base density for QI
i(Wi), i = 1, 2.

4) The parameters α, β and γ are determined by simultaneously solving the following nonlinear equations

μ j = mj for j = 1, 2, 3,

where

mj =
β j Γ(α + j/γ)
Γ(α)

, j = 0, 1, . . .

are the moments associated with a generalized gamma density function and μ j can be determined from the recursive

formula (7).

5) A polynomial adjustment of degree d can be made as explained in the Appendix, the resulting density ap-

proximation being

fd(z) = ψ(z)

d∑
j=0

ξ j z j ;

in this case, we set d = 7.

6) Given the density approximations determined for QI
1(W1) and QI

2(W2), the approximate density of the differ-

ence is obtained by applying the transformation of variables technique. Shifting this density by κ then yields the

desired approximation.

Certain values of the resulting approximate distribution function of QI(X) are included in Table 1. The percentiles

were obtained by simulation on the basis of 1,000,000 replications. The plot shown in Figure 1 confirms that the

proposed approach yields a very accurate approximation to the distribution of QI(X).

Table 1. Approximate cdf of QI(X) evaluated at certain percentiles obtained by simulation (Simul%)

CDF Simul% Approx.

0.01 −93.013 0.009429

0.05 −56.312 0.052101

0.10 −40.539 0.101342

0.50 7.9373 0.509682

0.90 77.615 0.893073

0.95 106.51 0.942475

0.99 179.76 0.988139

Figure 1. Simulated cdf of QI(X) and cdf approximation (dots)
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Example 2 Consider the quadratic form QII(X) = X′AX where X is a contaminated normal random vector as

specified in Table 2, for which φ = 0.4, μ = (1, 2, 3)′,

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0.2 0.7

0.2 1 0.2
0.7 0.2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ and A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
5 3 2

3 −5 5

2 5 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
It this case, a gamma distribution (as defined by (8) with γ = 1) was utilized as base density to obtain an ap-

proximate distribution for each quadratic form in decomposition of QII(X). Letting the integer moments of a

non-negative definite quadratic form be denoted by μ j, j = 1, 2, . . . , a gamma approximation can be specified

by equating its first two moments to μ1 and μ2, respectively, and solving for α and β, that is, αβ = μ1 and

α(α + 1)β2 = μ2, which yields

α =
μ2

1

μ2 − μ2
1

and β =
μ2

μ1

− μ1. (9)

The methodology described in Example 1 was applied in conjunction with polynomial adjustments of degree

six to determine the approximate distribution of QII(X). The plot shown in Figure 2 indicates that the resulting

approximation is very accurate.

Figure 2. Simulated cdf of QII(X) and cdf approximation (dots)

Table 2. Some elliptically contoured distributions and their weighting functions

Distribution Density function Weighting function

Gaussian
e−s/((2π)p/2 |Σ|1/2) with δ(t − 1)

s = x′Σ−1x/2 throughout The Dirac delta function

Contaminated Normal
{φλp/2e−λs+(1 − φ)e−s}/ φ δ(t − λ)+ (1 − φ) δ(t − 1)

{(2π)p/2 |Σ|1/2}

t−distribution with ν d.f.

{
νν/2Γ((ν + p)/2)|Σ|−1/2

{
ν(νt/2)(ν/2)−1e−νt/2

}
/{2Γ(ν/2)}

×(ν + 2s)−(ν+p)/2
}
/{πp/2Γ(ν/2)}

Multivariate Analog of the
{
Γ(p/2) e−

√
2s
}
/

{
Γ(p/2) e−1/2t

}
/
{
Γ(p)

Bilateral Exponential Density
{
2πp/2Γ(p)|Σ|1/2

}
× 2(3−p)/2

√
π t(p+3)/2

}

The Generalized Slash Distribution
νs−p/2−v|Σ|−1/2 ×

{
Γ(p/2 + v)

⎧⎪⎪⎨⎪⎪⎩
ν tν−1, 0 < ν < 1

0 , ν ≥ 1−Γ(p/2 + v, s)
}
/(2π)p/2

Example 3 Consider the quadratic form QIII(X) = X′AX where X follows a generalized slash distribution whose

density function is as defined in Table 2 with μ = (0, 1, 2)′,

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1/2 2/5

1/2 1 1/4
2/5 1/4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ and A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −6 2

−6 7 0

2 0 −4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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By making use of the weighting function associated with the generalized slash distribution in order to determine

the moments (Equation (7)) of the quadratic forms occurring in its decomposition and implementing the steps

described in Example 1 in conjunction with a gamma distribution or a generalized gamma distribution whose

associated densities are taken as base densities, one can determine an approximate distribution for QIII(X).

The left and right panels of Figure 3 respectively show the distribution functions resulting from gamma and gener-

alized gamma approximations, which are superimposed on the simulated distribution function determined on the

basis of 1,000,000 replications.

Figure 3. Simulated cdf of QIII(X) and approximations based on polynomially adjusted gamma (left panel) and

generalized gamma (right panel) distributions (dots)

Example 4 Let Q∗
1
(X) = (X − α)′A(X − α) + a′(X − α) + d be a quadratic expression in a singular t−vector with

10 degrees of freedom where X ∼ C5(μ,Σ; ξ), μ = (4, 1,−1, 3, 2)′,

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 3 3 2 0

3 3 3 2 0

3 3 5 2 0

2 2 2 2 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is singular, α = (1, 1, 0, 1, 1)′, A is the following indefinite matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 3 −5

1 1 2 3 −5

2 2 0 0 0

3 3 0 0 0

−5 −5 0 0 −26

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

a = (1, 2, 3, 4, 5)′ and d = 6.

When Σp×p is a singular matrix of rank r < p, we make use of the spectral decomposition theorem to express Σ as

UWU′ where W is a diagonal matrix whose first r diagonal elements are positive, the remaining diagonal elements

being equal to zero. Next, we let B∗p×p = UW1/2 and remove the last p − r columns of B∗, which are null vectors,

to obtain the matrix Bp×r. Then, it can be verified that Σ = BB′. In this case, the matrices B and P were found to be

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.66591 0.39015 0 −0.26930

1.66591 0.39015 0 −0.26930

2.03287 −0.92672 0 0.09291

1.18171 0.49418 0 0.59945

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−0.97731 0.00042 −0.14936 −0.15022

0.05695 −0.58347 −0.72923 0.35290

0.13922 0.69384 −0.66277 −0.24484

−0.14916 0.42208 0.08157 0.89048

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
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respectively. One can utilize the decomposition of Q∗(X), which is provided in Equation (1), to determine an

approximation to the distribution function of Q∗1(X). The approximate density functions of Q1(W+) and Q2(W−)

are obtained by making use of a gamma approximation, as explained in Example 2. We first apprximated density

of Q1(W+) − Q2(W−) and then, determined the density function of Q1(W+) − Q2(W−) + T1 by applying the

transformation of variables technique.

Referring again to the decomposition (1), the eigenvalues of B′AB were found to be λ1 = 65.8197, λ2 = −29.5759,

λ3 = −2.24383, λ4 = 0, and it was determined that n1 = −43.6247, n2 = 31.6913, n3 = 2.87613, and

n4 = −0.154303, and that μ1 = −0.662791, μ2 = (−1.07153,−1.2818)′ and c1 = −4. The resulting distribu-

tion function was evaluated at certain simulated percentiles obtained on the basis of 500,000 replications. The

results are presented in Table 3 and the approximate cdf is plotted in Figure 4.

Table 3. Approximate cdf of Q∗1(X) evaluated at certain percentiles obtained by simulation (Simul%)

CDF Simul% Approx.

0.01 −364.29 0.011478

0.05 −188.33 0.058634

0.10 −123.21 0.110176

0.50 6.1069 0.506286

0.90 233.11 0.893207

0.95 360.83 0.943116

0.99 722.56 0.988926

Figure 4. Simulated cdf of Q∗1(X) and approximation (dots)

Appendix

A.1 Polynomially Adjusted Gamma Density Approximations

As explained in Provost (2005), the density functions of numerous statistics distributed on the positive half-line

can be approximated from their exact moments by means of gamma-type density functions that are adjusted with

linear combinations of Laguerre polynomials. For conditions ensuring that a distribution be uniquely defined by

its moments, the reader is referred to Rao (1965).

Consider a random variable Y defined on the interval [0,∞), whose jth moment is denoted by μ j, j = 0, 1, 2, . . . ,

and let c = (μ2 − μ2
1)/μ1, v = (μ1/c)− 1 and X = Y/c. Denoting the jth moment of X by μ∗j = E

[
(Y/c) j

]
, the density

function of the random variable X, also defined on the interval [0,∞), can be expressed as

f (x) = xνe−x
∞∑
j=0

δ jL j(ν, x), (10)

where

Lj(v, x) =

j∑
k=0

(−1)k Γ(v + j + 1) x j−k

k! ( j − k)!Γ(v + j − k + 1)
(11)
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is a Laguerre polynomial of order j in x with parameter v and

δ j =

j∑
k=0

(−1)k j !

k! ( j − k)! Γ(v + j − k + 1)
μ∗j−k , (12)

see for instance Szegö (1959) or Devroye (1989). Then, on truncating the series appearing in Equation (10) and

making the change of variable Y = cX, one obtains the following density approximant for Y:

fd(y) =
yve−y/c

cv+1

d∑
j=0

δ jL j (v, y/c) . (13)

Remark A.1 Note that f0(y) is a gamma density function with parameters α ≡ v + 1 = μ2
1/
(
μ2 − μ2

1

)
and β ≡ c =

(μ2 − μ1
2)/μ1 whose mean, α β = μ1, and variance, α β2 = μ2 − μ1

2, match the mean and variance of Y and that,

in light of Equation (13), one can express fd(y) as the product of an initial gamma density approximation specified

by f0(y) times a polynomial adjustment:

fd(y) =
yα−1e−y/β

βα Γ(α)

d∑
j=0

ω jL j

(
α − 1,

y
β

)
, (14)

where ω j = Γ(α) δ j.
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