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Abstract

Managing large complex stochastic systems, including competitive interests, when one or several players can control the
behavior of a large number of particles (agents, mechanisms, vehicles, subsidiaries, species, police units, etc), say Ny
for a player k, the complexity of the game-theoretical (or Markov decision) analysis can become immense as Ny — oo.
However, under rather general assumptions, the limiting problem as all Ny — oo can be described by a well manageable
deterministic evolution. In this paper we analyze some simple situations of this kind proving the convergence of Nash-
equilibria for finite games to equilibria of a limiting deterministic differential game.

Keywords: Markov control, Large complex systems, Dynamic law of large numbers, Differential games, Rates of con-
vergence, Nonlinear Markov games

1. Introduction

A steady increase in complexity is one of the characteristic features of the modern technological development. It requires
an appropriate (or better optimal) management of complex stochastic systems consisting of large number of interacting
components (agents, mechanisms, vehicles, subsidiaries, species, police units, etc), which may have competitive or com-
mon interests. Carrying out a traditional Markov decision analysis for a large state space is often unfeasible. However,
under rather general assumptions, the limiting problem as the number of components tends to infinity can be described by
a well manageable deterministic evolution, which represents a performance of a dynamic law of large numbers (LLN). In
general, this limiting deterministic evolution is measure-valued (it is an evolution of probability laws on the initial state
space), and its probabilistic analysis has led to the notion of a nonlinear Markov process, see monograph (Kolokoltsov,
2010) and references therein. Its controlled version can be naturally called a nonlinear Markov control process or (in
case of competitive interests) a nonlinear Markov game (Kolokoltsov, 2009). In case of finite initial state space, the cor-
responding space of measures is a finite-dimensional Euclidean space (more precisely its positive orthant R?), so that
the limiting measure-valued evolution becomes a deterministic control process or a differential game in R¢. This paper
is devoted to the analysis of simplest situations of this kind, aiming at the identification of deterministic limit and proof
of convergence with explicit rates. More precisely, we shall assume that there is a fixed number of players {1,--- , K}
each controlling a stochastic system consisting of a large number Ny, --- , Ny — oo components respectively. These can
be generals controlling armies, engineers controlling robot swamps, large banks managers controlling subsidiaries, etc.
The components can interact between themselves and with agents of other groups. The limit Ny,--- , Ny — oo will be
described by a differential game in RX.

The plan of the paper is as follows. In a preliminary Section 2 we set the stage by describing the dynamic law of large
numbers for interacting Markov chains (without control). This topic is rather well developed by now, but we present it on
the level of generality needed for what follows, including time nonhomogeneous chains (with discontinuous dependence
on time) and rates of convergence resulting from Holder continuity assumptions on the r.h.s. of the limiting ODE. Section
3 introduces control without competition. A strong progress for the analysis of such systems was made recently in (Gast,
Gaujal & Le Boudec, 2010). We present it in a quite different form (see discussion in the last Section), which paves the
road for the extension to competitive interests developed further. Main results are presented in Sections 3-5, where we
discuss consecutively two player zero-sum games with mean -field interaction, two player zero-sum games with binary
interaction and a K player noncooperative game. The proofs are given in Sections 6 and 7. The last section is devoted to
a short review of relevant literature and to further perspectives.
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The following (rather standard) notations for functional spaces will be used throughout the paper. For a closed subset Q
of a Euclidean space we shall denote by C(Q2) the Banach space of bounded continuous functions on Q equipped with
the usual sup-norm (which will be denoted simply ||.|| everywhere), and by C*(Q), k € N, the Banach space of k times
continuously differentiable functions in the interior of Q with f and all its derivatives up to and including order k£ having
continuous and bounded extension to €, equipped with norm || f||¢cx(q) which is the sum of the sup-norms of f and all its
derivatives up to and including order k. Finally, for @ € (0, 1], we denote by C*?(Q) the subspace of C¥(Q) consisting of
functions, whose kth order derivatives are Holder continuous of index . The Banach norm on this space is defined as the
sum of the norm in C*(Q) plus the minimal Holder constant. For an operator ® in a Banach space B we shall denote by
[|D]|5 the corresponding operator norm of .

2. Preliminaries: LLN for Interacting Markov Chains

Let us first recall the basic setting of mean-field interacting particle systems with a finite number of types. Suppose our
initial state space is a finite set {1, ...,d}, which can be interpreted as the types of particles (say, possible opinions of
individuals on a certain subject, or the levels of fitness in a military unit, or the types of robots in a robot swamp). Let
{0, x)} = {(Qij))(, x)} be a family of d X d square Q-matrices or Kolmogorov matrices (i.e. non-diagonal elements of
these matrices are non-negative and the elements of each row sum up to one) depending continuously on a vector x from

the closed simplex
d

Zi={x=(x1,...,x9) € Rﬁ : ij =1},
j=1
and piecewise continuously on time ¢t > 0. For any x, the family {Q(., x)} specifies a Markov chain on the state space
{1, ..., d} with the generator
QD) = D Ounlts ) fo = fi)s = fiso- s fo),
m#n
and with the intensity of jumps being
1Qi(t, )] = =Qi(t, ) = Y Qijit, x).
J#i

In other words, the transition matrices P(s, 1, x) = (P;;(s, t, )c))fj:1 of this chain satisfy the Kolmogorov forward equations

d
d
d_tPij(S, t,x) = ; Qij(t, X)Py(s,1,x), s

Remark 1. Instead of piecewise continuous dependence on ¢ we can assume that Q is uniformly bounded and depends
measurably on ¢. Everything remains the same. This extension is relevant if one is interested in arbitrary discontinuous
controls.

Suppose we have a large number of particles distributed arbitrary among the types {1, ...,d}. More precisely our state
space S is Zﬁ, the set of sequences of d non-negative integers N = (ny, ..., ng), where each n; specifies the number of
particles in the state i. Let |N| denote the total number of particles in state N: |N| = n; + ... + ng. For i # j and a state N
with n; > 0 denote by N/ the state obtained from N by removing one particle of type i and adding a particle of type j,
that is n; and n; are changed to n; — 1 and n; + 1 respectively. The mean-field interacting particle system specified by the
family {Q} is defined as the Markov process on S specified by the generator

d
Lif(N) = ZniQij(tsN/lND[f(NU)_f(N)]- ey
ij=1

Probabilistic description of this process is as follows. Starting from any time and current state N one attaches to each
particle a |Q;;|(N/|N|)-exponential random waiting time (where i is the type of this particle). If the shortest of the waiting
times 7 turns out to be attached to a particle of type i, this particle jumps to a state j according to the distribution
(Qii/1Qii)(N/INI). Briefly, with this distribution and at rate |Q;|(N/IN|), any particle of type i can turn (migrate) to a type
j.After any such transition the process starts again from the new state N'/. Notice that since the number of particles |N]| is
preserved by any jump, this process is in fact a Markov chain with a finite state space.

Remark 2. Yet another way of describing the chain generated by L, is via the forward Kolmogorov (or master) equation
for its transition probabilities Py (s, 1):

d < N d N
T Pun(s.1) = ,Zl(n + 10t T Paavi (5. 1) = ,Zl miQij(t PN, S S 1
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To shorten the formulas, we shall denote the inverse number of particles by #, that is 4 = 1/|N|. Normalizing the states to
N/IN| € X, where ZZ is a subset of £; with coordinates proportional to /, leads to the generator of the form

d d
LLFOVIND = 3 " (RalNIu (0, NIINDLFVIND = FOV/INDI, 2)
i=1 j=1
or equivalently
d d
1
LI'f(x) = Z x:0i;(t, x)E[f(x — he; + hej) — f(x)], x€hZl, 3)
i=1 j=1

J

where ey, ..., e; denotes the standard basis in R?. With some abuse of notation, let us denote by ~N"" the corresponding
Markov chain. The transition operators of this chain will be denoted by kI”S"t:

W1, f(N) = Eg f(N( ), s <1, @)

where E; , denotes the expectation of the chain started at x at time s. These operators are known to form a propagator, i.e.
they satisfy the chain rule (or Chapman-Kolmogorov equation)

h h _ \yh
v, ¥, =¥, s<t<r

s,

We shall be interested in the asymptotic behavior of these chains as # — 0. To this end, let us observe that, for f € C!(Z,),

of of

li NI[f(NY/IN|) - ND] = L (x) — =&
INIHOO,III\}’}\NIHxl ILANY/IND = f(N/IND] o, () ax, (x),
so that
. h _
wodim LEF/IND = Adf (),
where ., ,
of of of
A = iQij(t, [ — 7-1(x0) = iQik(t, x) — i(t, )] 7= (x). 5
f ) Z} ; %0yt Wl = Z-1(0) ; ;[x Qir(t,2) = Qi1 ] () 5)
The limiting operator A, f is a first-order PDO with characteristics solving the equation
d
i= Y [0t ) = 0 Qut, )] = ). xiQu(t,0),  k=1,...d, ©)

i+#k i=1

called the kinetic equations for the process of interaction described above. The characteristics specify the dynamics of
the deterministic time-nonhomogeneous Markov Feller process in X, defined via the generator A,. The corresponding
transition operators act on C(Z;) as

Oy f(x) = f(Xsu(D), s<1, )

where X (?) is the solution to (6) with the initial condition x at time s. These operators form a Feller propagator (i.e. @,
depend strongly continuous on s, ¢ and satisfy the chain rule ®;,®,, = @, ,, s <t < r). Of course in case of Q that do not
depend on time ¢ explicitly, @, depend only on the difference ¢ — s and the operators @, = @y, form a Feller semigroup.

Remark 3. 1t is easy to see that if x; # 0, then (X (t));r # O for any # > s. Hence the boundary of %, is not attainable
for this semigroup, but, depending on Q, it can be glueing or not. For instance, if all elements of Q never vanish, then the
points X; () never belong to the boundary of X, for ¢ > s, even if the initial point x does so.

The convergence of the Markov chains with generators of type (2) to a deterministic evolution and various versions of this
result are well known, see e.g. (Darling & Norris, 2008; Kolokoltsov, 2010; Benaim & Le Boudec, 2008) and references
therein.

We present here an extension (for time-nonhomogeneous chains with discontinuous time dependence) of a result from
(Kolokoltsov, 2011, Sect. 5.11), on a level of generality which allows us to get the corresponding convergence results for
controlled problems as more or less straightforward corollaries.

Theorem 1. (i) Let all the elements Q;i(t,.) belong to CY(2), a € (0, 1], with norms uniformly bounded in t. Then, if for
some s > 0 and x € R4, the initial data hN; converge to x in R4, as h — 0, the Markov chains hN(t, h) with the initial data
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hN; (generated by L' and with transitions W,) converge in distribution and in probability to the deterministic charac-
teristic X (t). For the corresponding converging propagators of transition operators the following rates of convergence
hold:
sup  sup W F(AN) - Dy, f(AN)] < CTYE = RN fllcrocs, - ®)
0<s<t<T NEZi:\NIzl/h

for f € CY(2) and

sup [Eguv f(AN(t, ) — f(X,x(1)] < C(T) ((t = 9N fllcras, + IfllcreylhN = XI), 9

0<s<t<T

where C(T) depends only on the supremum in t of C'%(Z)-norm of the functions Q(t, x).

(ii) Assuming a weaker regularity condition, namely that Q;(t,.) belong to C Y(Z) uniformly in t, the convergence of
Markov chains hN(t, h) in distribution and in probability to the deterministic characteristics still holds, but instead of (8),
we have weaker rates in terms of the modulus of continuity wy, of V f and Q (see (39) for the definition):

sup  sup [P f(hN) - Dy, f(AN)]
0<s<t<T NeZZ:|N|=1/h

<C(T)(E-s) (WhC(T)(Vf) + WhC(T)(VQ)”f“CI(Zd)) ,0 (10)
where C(T) depends on the C'(Z)-norm of Q. A similar modification of (9) holds.
Our objective is to extend this result to interacting and competitively controlled families of Markov chains.
3. Mean Field Markov Control

As a warm-up, let us start with mean-field controlled Markov chains without competition. Suppose we are given a family
of Q-matrices {Q(t,u, x)} = {(Qij)(t,u,x), i,j = 1,---d}, depending on x € X4, t > 0 and a parameter u from a metric
space interpreted as control. The main assumption will be that Q € C"%(Z,) as a function of x with the norm bounded
uniformly in #, u, and Q depends continuously on ¢ and u.

Any given bounded measurable curve u(t), t € [0, T], defines a Markov chain on ZZ with the time-dependent family of
generators of type (2), that is

N & N NiJ N
Lt,u(t)f(m) = ZniQij (L u(t), N) [f(m) - f(m)], (11)

LJ

or equivalently
d d
1
Lo f ) = ) D xiQij(tu(t). )2 [f(x — he; + hey) = )] (12)
i=1 j=1

! J

For simplicity (and effectively without loss of generality), we shall stick further to controls u(.) from the class C,.[0, T]
of piecewise-continuous curves (with a finite number of discontinuities).

Again for f € C'(Z,),

h:l/\NILi(I)n N/INl->x Lo fNIIND = Avan f 0.

where
d of
A F) = D 3 1 Quet, u(t), x) = ¢ Qua(t, u(1), )] 2 (x), (13)
k=1 ik Oxy
with the corresponding controlled characteristics governed by the equations
d
o= ) I Qut,u(), ) = i Qualt, u(h), ) = Y xiQult,u(t), ), k=1,....d. (14)
i#k i=1

For a given T > 0 and continuous functions J (current payoff) and Vr (terminal payoff), let I'(T', /) denote the problem of
a centralized controller of the chain with |N| = 1/h particles, aiming at maximizing the payoff

T N(s, h) N(T, h)
fo J(s,u(s), V] )ds+VT( ] ) (15)

80 ISSN 1927-7032  E-ISSN 1927-7040



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 1; May 2012

The optimal payoft will be denoted by V"(z, x):

T
Vit,x)= sup E [ f (J(s, u(s), AN(s, b))ds + Vi (hN(T, h))}, (16)
u()ECpelt,T] '

where E;‘i) denotes the expectation with respect to the Markov chain on EZ generated by (11) and started at x = AN at
time ¢.

We are aiming at approximating V” (¢, x) by the optimal payoff

T
V(t,x) = sup [f J(S9M(S)5Xt,x(s))ds+VT(XI,X(T))] a7)

u()eC [, T]

for the controlled dynamics (14).

We can also obtain approximate optimal synthesis for problems I'(7, ) with large [N| = 1/h, at least if regular enough
synthesis is available for the limiting system. Let us recall that a function y(, x) is called an optimal synthesis (or an
adaptive policy) for the problem I'(T, h) if

T
Vit x) = E/, [f (J(s,y(s,hN(s, h)), hN(s))ds + Vr(hN(T, h)) (18)

forallt < T and x € 22, where EZX denotes the expectation with respect to the Markov chain on ZZ generated by (11) with
u(t) = y(t, x) and starting at x = AN at time ¢. A function (%, x) is called an e-optimal synthesis or an e-adaptive policy, if
the r.h.s. of (18) differs from its L.h.s. by not more than €. Similarly an optimal synthesis or an adaptive policy are defined
for the limiting deterministic system.

Theorem 2. (i) Assume that Q, J depend continuously on t,u and Q,J € C"*(Zy), a € (0, 1], as functions of x, with the
norms bounded uniformly in t,u, and finally Vi € C*(Z,). Then

sup [V"(t, AN) — V(t, x)]

0<t<T

< C(DAT = Dh" + |hN — x]) (IIVrllcm(zd> +sup [lJ(t, u, llcras, | 19)

with C(T) depending only on the bounds of the norms of Q in CY*(Z4). Moreover; if u(t) is an e-optimal control for
deterministic dynamics (14), that is the payoff obtained by using u(.) differs by € from V(t, x), then u(.) is also an (€ +
C(T)h®)-optimal control for |N| = 1/h particle system.

(ii) Suppose additionally that u belong to a convex subset of a Euclidean space and that Q(t,u, x) depends Lipschitz
continuously on u. Let € > 0, and let y(t, x) be a Lipschitz continuous function of x uniformly in t that represents an

e-optimal synthesis for the limiting deterministic control problem. Then, for any 6 > 0, there exists hy such that, for
h < ho, y(, x) is an (€ + 0)-optimal synthesis for the approximate optimal problem I'(T, h) on ZZ.

Remark 4. As in Theorem (ii), there is a version of Theorem with Q € C'(Z,) and V; € C1(Z;). We omit the detail. The
same remark concerns other theorems given below.

Notice finally that by the standard dynamic programming, see e.g. (Fleming & Soner, 2006; McEneaney, 2006), the
optimal payoff V(z, x) given by (17) represents the unique viscosity solution of the HIB-Isaacs equation

d

L0+ max | 6,0 + pIRTACE D5 =0, (20)

and the optimal payoff V" (¢, x) given by (16) solves the HIB equation
V" -
70’ x) + max[J(t,u, x) + L, V'(t,x)] = 0. 21

Thus, as a corollary of Theorem , we have proved the convergence of the solutions of the Cauchy problem for equation
(21) to the viscosity solution of (20).
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4. Two Players with Mean-field Interaction

Let us turn to a game-theoretic setting starting with a simplest model of two competing mean-field interacting Markov
chains. Suppose we are given two families of Q-matrices {Q(t,u, x) = (Q;;))(u, x)} and {P(t,v,x) = (P;))(v,0)}, i,j =
1,---d, depending on x € X; and parameters « and v from two subsets U and V of Euclidean spaces. Any given bounded

measurable curves u(t), v(t), t € [0, T], define a Markov chain on 2(1/ I o 2[1/ M ', specified by the generator
d .
N M N NY M N M
Liwoow S =) = ) miQi(t, u(t), —)[ (——)— (——)]
oo G g = 25 @o 0 U (35 ) =4 i o
d P
M N MY N M
+ ) miPi(t,v(®), —) (——)— (——)] (22)
IZJ: ! |M| f INI" M f IN|" |M]
where N = (ny,--- ,ng), M = (my, -+ ,my).

We shall assume for simplicity that [N| = |[M| = 1/A.

Then (22) rewrites as

d d
1
Lo 63) = ) 3 xiQij(t,u(0). )2 [f(x = he; + hej.y) = fx.y)]

i=1 j=1

+

d d
1

ViPij(t, 0, )y = hei + hep) = fOx )], xy € hZ:. (23)

=1 j=1

J

For f € C'(Zy X Zq),
. h _
h0, N/|NI|IAI>I;,M/\M|~>\ Lt’u(f)’v(t)f(N/lNL M/|M|) - At,u(t),v(l)f(xa )’),

where

d
a
A f6) = D D 16 Qu(tu(t), %) = e Qualt, u(), x)]a—j;(x)

k=1 izk
d of
£ 30> Pt u(@), %) = yiPialt, v(0, 1) (). (24)
=1 ik Oy
The corresponding controlled characteristics are governed by the equations
d
i = ) [Qut u(0), %) = X Quilt, u(t), 0] = Y xiQu(t,u(d), ), k=1,...d, (25)
itk i=1
d
B = D Pt v(1), ) = yiPualt, 0,01 = 3 yiPalt, v(@),y), k= 1,...d. (26)
ik i=1

For a given T > 0, let us denote by I'(7', h) the stochastic game with the dynamics specified by the generator (22) and with
the objective of the player / (controlling Q via u) to maximize the payoff

T N(s,h) M(s,h) N(T,h) M(T,h)
foj(s’“(”’v(”’ N M| )d”VT( N 1M ) @7

for given functions J (current payoff) and Vr (terminal payoff), and with the objective of player I (controlling P via v) to
minimize this payoff (zero-sum game). As previously we want to approximate it by the deterministic zero-sum differential
game I['(T'), defined by dynamics (25), (26) and the payoft of player / given by

T
fo J(s,u(s),v(5), Xi.x(5), Y1,(5)) ds + Vi (X x(T), Y1 (T)). (28)

Recall the basic notions of the upper and lower values for a game I'(T), see e.g. (Fleming & Soner, 2006) or (Malaeyeyv,
2000). As above, we shall use controls u(.) and v(.) from the classes C,.([0,T]; U) and C,.([0,T]; V) of piecewise-
continuous curves with values in U and V respectively. A progressive strategy of player I is defined as a mapping 8
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from Cp([0,T]; V) to Cpe([0, TT; U) such that if v;(.) and v»(.) coincide on some initial interval [0,¢], ¢+ < T, then so
do u; = B(vi(.)) and u; = B(v,(.)). Similarly progressive strategies are defined for player /1. Let us denote the sets of
progressive strategies for players I and 11 by S ,([0,T]; U) and S ,([0, T']; V). Then the upper and the lower values for the
game I['(T') are defined as

Vi, x,y) =
A5 ﬂeS,iE(lFT];U)V<~>€C:<'I<1[0’T];V>
T
[ f J(s, BM)($), v(8), X1 x(8), Yi () dis + V(X (T), Yt.x(T))]’ (29)
t
V_(t,x,y) =

inf sup
BES p0.TEY) u(.)eCpe([0,T1:0)
T
[f J (S7 M(S), (ﬂ(u))(s)’ Xt,X(s)’ YI,X(S)) dS + VT (Xt,x(T)s Yt,x(T))] .
t

If the so called Isaac’s condition holds, that is, for any py, g,

max min
u vV

d d
J(t,u, v, x,y) + X Qir(t, v, X)qi + Z YiPi(t, v, X)Pk}
k=1 k=

d

d
= min max lJ(r, 1,0, + ) 50t v, )i+ Y ViPilt, v, 0)pi
v u
ik=1 ik=1

; (30)

then the upper and lower values coincide: V. (z, x,y) = V_(¢, x, ).
Similarly the upper and the lower values V/(, x, y) and V"(t, x, y) for the stochastic game I'(T, h) are defined.
Theorem 3. Assume that Q, P, J depend continuously on t,u and Q, P, J,Vy € C Lez ), @ € (0,1], as functions of x, with

the norms bounded uniformly in t,u,v. Then

sup [V(t, hN) — V.(t, x)]
0<t<T

< C(MUT - Hh™ + |hN — x) (”VT”CW(Zd) +sup 1@ w, v, Ilera,y | » (31

with C(T) depending only on the bounds of the norms of Q in C"*(Z;). Moreover, if B € S,(0,T];U) and v(.) €
C,c([0,T1; V) are e-optimal for the minimax problem (29), then this pair is also (e+C(T )h®)-optimal for the corresponding
stochastic game U'(T, h).

As in Theorem (ii), one can also approximate optimal (equilibrium) adaptive polices for I'(T, h), if regular enough (i.e.
Lipschitz continuous) equilibrium adaptive policies exist for the limiting game I'(T"). In fact, as is known from differential
games, see e.g. (Fleming & Soner, 2006; Malaeyev, 2000) or (Petrosjan & Zenkevich, 1996), the upper value V. (¢, x,y)
represents the unique viscosity solution of the upper Isaac’s equation

av.
a—;(t, x,¥) + minmax [J(t,u,v, %,3) + Ay Vilt, 6, 9)], - V(T x,5) = Vr(x,), (32)

and V_(t, x, y) of the lower Isaac’s equation (with min and max placed in a different order). Similar equations are satisfied
by the values of stochastic games V/(z, x, ), see e.g. (Fleming & Souganidis, 1989). Now, if V* is a solution to the Cauchy
problem (32) and there exist Lipschitz continuous functions v*(t, x, y) and u*(z, v, x, y) such that

u'(t,v, x,y) € argmax[J(t,u,v,x,y) + A, V' (1, X, 9)],
V(t,x,y) € argmin max[J(t,u, v, x,y) + A, V' (8, x, )],
v

then V* is a saddle point for the differential game I'*(T') giving the information advantage to maximizing player I, see e.g.
(Fleming & Soner, 2006, Theorem 3.1). Analogously to Theorem (ii), we can conclude by Theorem that the policies
V¥(t, x,y) and u*(¢, v, x, y) represent e-equilibria for the corresponding stochastic game I'* (7, h).
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5. Two Players with Binary Interaction

In a slightly different setting one can assume that changes in a competitive control process occur as a result of group
interactions, and are not determined just by the overall mean field distribution. Let us discuss a simple situation with
binary interaction.

As in the previous section, assume we have two groups of d states (of objects or agents) controlled by players I and II
respectively. Suppose now that any particle from a state i of the first group can interact with any particle from a state j of
the second group (binary interaction) producing changes i to / and j to r with certain rates Qf;.(t, u,v) that may depend on
controls u# and v of the players. Assuming, as usual, that our particles are indistinguishable (any particle from a state is
selected for interaction with equal probability), leads to the process, generated by the operators

d
_ Ir N - il r
Ly in S (N, M) —i’;lnm,Ql,a (0, v, 7o Ml)[f(N M) = f(N, M)].

Again let us assume for simplicity that |M| = |N| and define 7 = 1/|N| = 1/|M|. To get a reasonable scaling limit, it is
necessary to scale time by factor 4 leading to the generators

d
N M il jr

Lo f(|N| |M|) hiﬂzrlzlniju(t u(t), v(t), — |1v| M) [F(N", M7™y = F(N, M), (33)

which, for x = AN, y = hM and h — 0, tends to
d
af of of 6f
Ao f(x,y) = X1y QU (t, u(t), (), x, )[— — - = - —=|(xy). (34)
ta( (0 S (X, Y i,j,l,zrl—l Yikij Y Ox;  dy, Ox; 6yj HY

The corresponding kinetic equations (characteristics of this first order partial differential operator) have the form

d
= 7 [0k u, ve) — x5 Qi u, ()],

i,jr=

—_

o=y w0k u), ) — Qe u(n), )|

i,J

*M&
i

1

As in the previous section, we are interested in the zero-sum stochastic game, which will again be denoted by I'(T, h),
with the dynamics specified by generator (33) and with the objective of the player I (controlling Q via u) to maximize
the payoft of the same type (27), and in an approximation of this game by the limiting deterministic zero-sum differential
game ['(T), defined by the payoff (28) of player /.

Theorem 4. Assume that Q, J depend continuously on t,u,v and Q, J, Vi € CH*(Zy), a € (0, 1], as functions of x, with
the norms bounded uniformly in t,u,v. Then the same estimate (31) holds for the difference of upper and lower values of
limiting and approximating games.

Moreover, literally the same approximations (as in the game of the previous section) hold for optimal strategies and
policies.

6. Several Players with Coupled Mean-field Interaction

Suppose now that there are K players, each one controlling a mean-field interacting Markov chain, which are coupled via
the joint mean-field distribution. Namely, suppose we are given K families of Q-matrices {Q" = (ij)(t, Uy 15 5 UKD}
k=1,---K,i,j=1,---d, depending on a parameter u; from a metric space Uj (control space of the player k) and K
vectors y; € ;. Any bounded measurable vector-valued curve u(f) = (u(¢), - - - ug(f)), t € [0,T], and natural numbers

INil,-- -, [Nl define a Markov chain on Sy, X - -+ X S, (each S consists of sequences of d negative integers Ny =
(n’l‘ o ,n’;) totting up to a given number |Ny|), specified by the generator
K d
NK k NK
Lu f( lel (tuk() ’_)
o |N| Nl ;Zl el T
UesJk
N N NYCON N
)| M S Nea | My M N (35)
|V INi—1l™ INk| [ Nia1l |NK| [N’ INk]|
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where Ny = (nf, -, n}) with elements totting up to |Ni|. For
N, nk nk
Xp = "—( ! J ehz!, k=1,---K
INd LN N

this rewrites as

Lzu(f)f(xh“' ,.Xk) Z Z Qi(kjk(l’ Mk(t)9 X150 ,)CK)

=1 i, jk=1
X[fCer, -, Ximt, Xk — ey, + hej, Xppr, -+ Xk) — f(x1,-+ -, xp)], (36)
where we denote by 4 the maximum of all |N;|™".

For f € C1(Zy X - X Zy),

. Nx
h—>0,Nk/|1\}:|11’1Xk,k=],“ ”‘(’)f(IN " Nk I) Avato f (1572 Xk,
where
K d f
A fO) = D" > 50t (), 1, - g ) (37)

k=1 ji=1

The corresponding controlled characteristics are governed by the equations

d

d ; .

Ex,’( = E X Qij(tug(0), x1,- - ,xg), j=1l,.d, k=1,--- K (38)
p

For a given T > 0, suppose the objective of player k is to maximize the payoff

Vit xi, - X u()

T
Ni(s.h)  Nk(s.h) N(T.h)  Ng(T.h)
Eu() f J) > > s, d +Vk LI

R N ST Nl )T\ T Nk

with given functions J; (current payoffs) and V§ (terminal payoffs). Let us denote by 'k (7, &) the corresponding stochastic
game. In the limit 4 — 0 with all ratios N;/N; uniformly bounded we get the deterministic differential game I'g(T') of K
players with separated dynamics (38) and the payoffs

T
V(t, x1,0 0, X, u(l) = f Ji(s, g (5), x1(5), -+, X (8)) ds + Vi(xy(T), -+, xg(T)).
0

K-player differential games are much less understood as two-player zero-sum games, see e.g. (Friedman, 1971; Malafeyev,
2000; Olsder, 2001; Ramasubraanian, 2007; Tolwinski, Haurie & Leitmann, 1986) for informative discussions, including
links with viscosity solutions of the systems of HIB equations. It is not our objective here to contribute to this develop-
ment. We just want to stress that, as our method shows, most of the natural equilibria of various kinds that can be analyzed
for the limiting differential game I'x(7T") do approximate the corresponding equilibria for games I'x (T, h). As simplest ex-
amples, let us consider open-loop equilibria and K-player analogs of upper and lower values of zero-sum games. A vector
curve u*(f) = (uj(t),- - - , uy(?)) is called an open-loop Nash equilibrium for the game I'x(T), if forany k = 1,--- , K,

V(t’ X1yt s Xk M*()) = I}:{E(li( V(t’ X155 Xk MT(), o u]t_l(')’ Mk(.), u]t.'.l(')’ e MK()))

Similarly open-loop Nash equilibria are defined for the games ' (T, h).

On the other hand, for any permutation x of K players one can define a vector-value V. arising from information discrim-
ination specified by &. That is, the set of strategies of player m(1) is just C,.([0, T']; Ux)), and the progressive strategies
for a player n(k) # n(1) are defined as mapping

Bi = X Cpe(0, T1; Ur) = Cpe([0, T1; Ur,)

such that if u! = (Ur1)()s -+ Ure—1)(.)) and W = (Ur1)(), -+, Unk—1)(.)) coincide on some initial interval [0,¢], t <
T, then so do ﬂk(ul) and ,Bk(uz). Let us denote the sets of progressive strategies for players (k) by S ,([0, T]; Ur)).
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The discriminated vector-value V,.(t, xi,-- ,xg) = (V;, e ,Vf)(t, X1, , xg) of the game I'}(T) is defined as a Nash-
equilibrium payoff of the game (in normal form) with these strategy spaces.

Theorem 5. Assume that Qy, Ji depend continuously on all parameters and Qy, J, Vf e C(Zy), a € (0,1, as functions
of x1,- -+, X, with the norms bounded uniformly in t,u,v. Then the same estimate (31) holds for the difference of payoffs in
open-loop Nash equilibria of limiting and approximating games, as well as for the difference of payoffs in Nash equilibria
of the limiting and approximating discriminatory games specified by any permutation m.

There does not seem to exits any general results on the regularity of adaptive policies for N player game. On the other
hand, in many examples, see (Case, 1967), and in some sense in a general position, see (Malafeyev, 2000), the state
space can be decomposed into a finite number of open sets, where equilibrium adaptive policies are smooth, with these
sets being separated by lower dimensional manifolds, where switching occurs. Under this condition, one could possibly
prove the convergence of adaptive policies for large |N|-approximations to adaptive policies of the limiting deterministic
differential games, but such analysis is beyond the present contribution.

7. Auxiliary Lemmas

We shall need two simple lemmas (possibly well known for experts), one on the bounds for semigroups arising from
deterministic processes, and another on the coupling of jump-type Markov processes.

Let us recall that the modulus of continuity for a continuous function ¢ on X, is defined as follows:

wi(@) = sup{lg(x1) — ¢(x2)l = [x1 — x| <h},  h>0. (39)
Below we denote by V the derivative operator with respect to variable x € ;.

Lemma 1. (i) Let Q(t, x) € C'(Z,) as a function of x uniformly in t and depends measurably on t. Let ®, denote the
linear operators (7), where X, () is the solution to (6) with the initial condition x at time s. Then @, preserve the space
CY(Zy) and

1D ler s, < e, (40)

or more explicitly
1D fllcr s,y < €w(l_s)||f||cl(z¢,),

where w is the supremum over t of the norms of the functions xQ(t, x) (as functions of x) in C'(X4). Moreover, let Wy,
denote the supremum over t of the modulus of continuity of the functions V(xQ(t, x)) (as functions of x). Then

WiV @y)) < €0 Wi (V) + Wpes | fllcrs, |- (41)

(ii) Supposes additionally that Q(t,.) € C"*(Zy), a € (0, 1], uniformly in t, and let w, denote any uniform upper bound
for the corresponding Holder constants. Then the space C*(Zy) is preserved by @, and

Dy llcrece,) < [1+ (7 = $)wgle®™. (42)
Proof. (1) The derivative of X ,(f) with respect to x solves the linear ODE

d oXx(t) 0 0X,.1(1)
sl _9 . 0X,.(1)
dt  0x dy OO y=x,.0 o

implying

! 0X; (1)
0x

and hence (40). The proof of (41) is the same as of (42) below, and therefore is omitted.

[| < e, (43)

(i1) The function

00X, (1) X, (1)
¢S,t(xl9 -xz) - 0x = ax =
satisfies the linear ODE
d 0 0X;.x(1) 0 0X;..(1)
—d. R = — t, — - t, )=
dt‘f’.s,z()ﬂ X) ay(yQ( Why=x,., x i, 6y(YQ( Wy=x,.,, ) Fra

The r.h.s. of this equation rewrites as

0X; (1)
ox

0 0
(;y(YQ(f, Wy=x,., ) = a—y()’Q(f, Wh=x,., (z))

X=X]
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X=X2)

0X; x(1)
ox

and hence, by (40), is bounded in magnitude by the expression

0X; (1)
x=x| Ox

0
+6_y(y O, Yly=x,., (

W€V Nx1 = x| + Wl 4 (x1, X))
By Gronwall’s lemma,
|5, (x1, X2)| < (= $)wae™ ™V |x; — xa|".

Hence the Holder constant (of index a) for the function dX; (¢)/0x, as a function of x, is bounded by w,e“?* implying
(42), because

0 0
af(xs,x(t))h:xl - af(xs,x(t))bc:xg

0 0 0X,
- [—f(xs,xl ) - a—f(x (t))} )
x ox

ox
X (1)
x=xy Ox

X=X
of 0X.x(1)
—_ ch t _ .
55 ‘,2())( o .
The next lemma will be used only for the proof of the second part of Theorem 2. It is needed to compare the effects of
applying different adaptive policies.

Lemma 2. Let Z.(t) and W,,(t) be two jump-type Markov processes in R? (z and w stand for the initial points) with
integral generators

L f(x) = f (f(x+y) = fQWxM(dy), L"f(x) = f (f(x +y) = fO))ulx, y)M(dy),

with a certain probability measure M on R and uniformly bounded non-negative functions v(x,y), u(x,y) such that
f [yIv(x, y)M(dy) and f [ylu(x, y)M(dy) are bounded for any x and

fIyIV(xl,y) = v(x2, )IM(dy) < x; = xa,

f v(x, y) — p(x, y)IM(dy) < €
fora s> 0andan e > 0.

Then there exists a Markov process X.,,(t) on R? x R? that couples Z,(t) and W,,(t) in the sense that the distribution of the
first (respectively second) coordinate of X ,,(t) coincides with the distribution of Z,(t) (respectively W,,(t)), and such that,
with respect to this coupling,

E|Z, (1) - W,,(0)| < (|2 — w| + te). (44)

Proof. Let X_ ,,(¢) be specified by the so called marching coupling, that is by the generator

Lf(x1,x) = f[f(xl +y,x2 +y) = f(x1, x2)|m(x1, x2, y)M(dy)

+ f[f(m +y,x2) = f(x1, x)1[v(x1, ) — m(xq, x2,y)|M(dy)

. f L Gera 2 +3) = fer )]s y) — mGxr, 2, y)IM(dy).

where
m(x1, X2,y) = min(v(x1,y), u(x2,)).

Clearly, if f does not depend on the second argument, then Lf(x;, x;) = Lz f(x1), and if f does not depend on the first
argument, then Lf(x;,x2) = LY f(x,), so that X w(?) is really a coupling of Z,(¢) and Z,,(#). Moreover, as one sees by
inspection, for f(x, x;) = [x; — x2|,

Lf(xi,x) < f [yllmax(v(x1, y), u(x2,y)) — m(x1, x2, )1 M(dy).
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Consequently,
L) < [ biv(.) = ptee )IM@) < s - ol + €
By Dynkin’s formula, the process

f(Xxl,xz(l)) - fo‘ Lf(Xx]’XZ(S))dS

is a martingale. Hence
EX, ()= X3, 0

X1,X2 X1,X2

!
<xp = x|+ %f EIX! (s)= X2 _(s)lds + te
0
(where X = (X', X?)), which by Gronwall’s lemma implies

() - X2

X1,X2

EX!

s (0] < & (Ix1 = x2| + t€),
that is (44).

8. Proof of the Theorems

Proof of Theorem 1.

Let us start by noting that the transition operators ‘Pﬁ?’r of the Markov chains AN"" satisfy (outside the finite number of
discontinuity points of Q(¢, x)) the standard Kolmogorov equations

d
—‘P?,f = —leP?,,f, 0<s<t, (45)

d h F
—¥ =YY" L.f,
/’t s,tf s,t tf lS

for any function f on ZZ. Similarly, the transition operators @, of the deterministic Markov process X; .(¢) satisfy the

equations

d d
—O,,f=0" A f, —O,f=-AD,f, 0<s<t (46)
dr > ds 7 ’

(again outside the discontinuity points of Q(t, x)), for any f € C'(Z,), which is of course easily checked.

To compare these propagators, we shall use the following standard trick. We write
! d !
Vit = 0uf =0l f = [ S ofdr= [ L A0
: : Cdr s At

if only ®@,,f € C'(Z,) for any r. Let us apply this equation to an f € C*(Z,). By Lemma 1 (ii), ®,.f € C*(Z,) for all r
with a uniform bound, so that the above equation applies. Moreover, from (3) and (5) we conclude that

(L = ANl < CARN flicracs,)s (47
with a constant C(T") depending on the sup-norm of Q(z, x) only. Consequently, by (42),
W%, f = Do fll < (¢ = YCDR[L + (1 = H)wele” | flicras,)-

implying (8). The estimate (9) is a straightforward corollary, taking into account (40). The convergence of the chains in
distribution follows from the convergence of transition operators by a well known general result, see e.g. (Kallenberg,
2002), or (Kolokoltsov, 2011). Moreover, weak convergence of random variables to a constant implies their convergence
in probability.

Finally, (10) is proved analogously, if instead of (47), one uses the estimate
L = A Sl < CTWR(V ) (48)

together with (41).
Proof of Theorem 2.

(1) By Theorem 1 (and taking into account that the integral of the function J can be approximated by Riemannian sums),
for any u(.) € Cpe(t,T),

T
Vi, x,u()) = E/ [ f (J(s, u(s), AN(s, h))ds + V7 (hN(T, h))
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differs from ;
Vi, x,u() = f J (s, u(s), Xix(8)) ds + V(X (T))

by
C(T(T — A" + |hN — x|) (||VT||CI»~(2,1) +sup 1@, u, cres, |-

Hence the same estimate holds for the difference of the suprema of these two functions of u(.).

(ii) First of all approximating J by a smooth function (and noting that all payoffs will be then uniformly approximated)
reduces the problem to the case of a smooth J. Next, we can approximate (¢, x) arbitrary close by a smooth function
#(t, x) in x, so that the corresponding V(z, x,y) and V(t, x, %) differ by arbitrary small amounts. By Theorem 1, V/(t, x, ¥)
will converge to V(¢, x,¥) as h — 0, and hence ¥ becomes an (€ + §)-optimal policy of I'(T, k) for small enough A. It
remains to compare V’(z, x, %) and V"(t, x,y). But they are close by Lemma 2.

Proof of Theorems 3, 4, 5. It is the same as the proof of Theorem 2, being based on Theorem 1 and an evident observation
that if two families of functions are uniformly close, then so are also their minimax values.

9. Conclusion and Bibliographical Comments

The work on deterministic LLN limits for interacting particles and its representation in terms of nonlinear kinetic equations
goes back to (Leontovich, 1935) and (Bogolyubov, 1946). A deduction of kinetic equations in a very general setting of kth
order (binary, ternary, etc) interaction can be found in (Maslov & Tariverdiev, 1982) or (Belavkin & Kolokoltsov, 2003).
In particular, for the corresponding limit in a game-theoretic setting (replicator dynamics), we can refer to (Benaim &
Weibull, 2003) or the last section of (Kolokoltsov & Malafeyev, 2010).

For the introduction to nonlinear Markov processes we refer to (Kolokoltsov, 2007, 2010) and references therein, or, for
more physical point of view, to (Frank, 2008) or (Zak, 2002).

Mean-field control is a rapidly expanding area, see e.g. (Andersson & Djehiche, 2003; Buckdahn, B. Djehiche, J. Li, &
S. Peng, 2009) and references therein, for diffusion based models, and (Le Boudec, McDonald, & Mundinger, 2007; Gast
& B. Gaujal, 2009; Gast, Gaujal, & Le Boudec, 2010; Bordenave, McDonald, & Proutiere, 2007; Benaim & Le Boudec,
2008; Milutinovic & Lima, 2006) for discrete models, more engineering application oriented. In these papers one can
find various concrete applications (from robot swamps to transportation theory and networks), which are also relevant to
the mathematical models discussed in the present paper.

The closest to our setting seems to be the recent work (Gast, Gaujal, & Le Boudec, 2010), which is devoted to a con-
vergence result similar to our Theorem 2. However, in (Gast, Gaujal, & Le Boudec, 2010) a continuous time mean-field
control model is obtained as a limit of discrete-time models, and we work directly with continuous time models. More
essentially, under a slightly stronger regularity assumptions on the model (basically continuous differentiability of coef-
ficients instead of Lipschitz continuity) we obtain explicit rate of convergence for the averages over empirical measures,
and in some cases even for adaptive control policies. Moreover, our main objective was to develop a general framework
to treat competitive control problems presented in Sections 4-6. Even further, we developed a method to treat not only the
simplest mean-field type interactions, but more involved binary or ternary ones.

As was mentioned, our initial state space was finite, resulting in the corresponding measure-valued limit being a finite-
dimensional differential game. In more general setting (which will be discussed elsewhere), for an arbitrary initial state
space of a single particle (in our large ensemble), the corresponding limit becomes truly measure-valued controlled nonlin-
ear evolution (controlled nonlinear Markov process) specified by kinetic equations of rather general type. Other possible
extensions can include models with variable number of particles (robots becoming out of order, or military units destroyed,
etc).

A slightly different class of models describe the situations when each agent in a large group pursue his/her own interests.
These class of models is often referred to as mean-field games. Related equilibrium concept was called the Nash certainty
equivalence principle, see (Lasry & Lions, 2006; Achdou & Capuzzo-Dolcetta, 2010; Gomes, Mohr, & Souza, 2010;
Huang, Caines, & Malhamé, 2003; Huang, Malhamé, & Caines, 2006; Huang, 2010; Kolokoltsov, Li, & Yang, 2011)
and references therein. Unlike our centralized setting above, analysis of these models does not lead to the control of
distributions in the limit, but rather to certain consistency condition on homogeneous individual controls (Nash certainty
equivalence). However, recent paper (Huang, Malhamé, & Caines, 2007) aims at linking individual and centralized
controls.

The main objective of this paper was to approximate discrete stochastic systems with large number of particles by a
simpler continuous state limit. One can also look at these results from an opposite point of view: as approximating

Published by Canadian Center of Science and Education 89



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 1, No. 1; May 2012

differential games by discrete Markov chains. This point of view would relate our results with Kushner (2002), Kushner
and Dupuis (2001).
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