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Abstract

Count data sets often produce many zeros. It is sometimes potentially questionable to use a linear predictor to

model the effect of a continuous covariate of interest in zero-inflated count data. To relax the restriction, Li (2011)

proposed a semiparametric zero-inflated Poisson (ZIP) regression model by using fixed-knot cubic basis splines

or B-splines to model the covariate effect, and used the likelihood ratio test to assess the validity of the linear

relationship between the natural logarithm of the Poisson mean and the covariate. A score test is conducted to

assess whether the extra proportion of zeros in the semiparametric ZIP regression model is equal to zero.

Keywords: B-spline, score test, semiparametric Poisson regression model, semiparametric zero-inflated Poisson

regression model

1. Introduction

It is common to see count data with large numbers of zeros in many disciplines, e.g., biomedical studies, crim-

inology, environmental economics, traffic accidents, et al. To handle count data with excess zeros, a so-called

zero-inflated Poisson (ZIP) distribution is employed (Singh, 1963; Johnson, Kotz, & Kemp, 1992). The ZIP distri-

bution is a mixture of a Poisson distribution and a degenerated distribution at zero as follows:

P(Y = y; λ, π) = πI{y=0} + (1 − π) e−λλy

y!
, y = 0, 1, 2, . . . ,

=
[
π + (1 − π)e−λ

]I{y=0}
[
(1 − π) e−λλy

y!

]I{y>0}
. (1)

Here I{·} is the indicator function for an event. The π ∈ [0, 1] is a mixing weight to accommodate extra zeros. The

ZIP distribution is reduced to a Poisson distribution when π = 0. The λ is the mean of the Poisson distribution.

One can think of the ZIP distribution in (1) as a population that consists of two parts: the proportion π consisting

of subjects who are not at risk of an event of interest and the other part consisting of subjects who are at risk of the

event and may have the event several times during a specific time period (Dietz & Böhning, 1997). The zeros from

the first part are generally referred to as structural zeros and those from the Poisson distribution are called sampling

zeros. This mixture distribution has become the foundation of much methodological development in zero-inflated

count data analysis. Some authors have made the inferences on the existence of zero inflation in the count data

(e.g., El-Shaarawi, 1985; van den Broek, 1995; Deng & Paul, 2000; Ridout, Hinde, & Demétrio, 2001; Jansakul &

Hinde, 2002; Thas & Rayner, 2005); others have constructed various ZIP regression models. The seminal work on

ZIP regression by Lambert (1992) was used to model the extra proportion of zeros π and the mean of the Poisson

distribution λ simultaneously with linear predictors using the appropriate link functions, and the parametric ZIP

regression model was applied to the manufacturing data. Many authors adopted this basic modeling structure, and

a number of important extensions have been made (e.g., Welsh, Cunningham, Donnelly, & Lindenmayer, 1996;

Shankar, Milton, & Mannering, 1997; Böhning, Dietz, Schlattmann, Mendonca, & Kirchner, 1999; Yau & Lee,

2001; Cheung, 2002; Hall & Zhang, 2004; Lu, Lin, & Shih, 2004; Min & Agresti, 2005; Hall & Wang, 2005; Hu,

Li, & Lee, 2011). For example, Hu et al. (2001) applied the ZIP models to assess casualty risk of railroad-grade

crossing crashes in Taiwan.

Each variant of these ZIP regression models has unique features, but modeling the effect of the covariate via a lin-

ear predictor is a common characteristic. Although it may be completely suitable to use a linear predictor in some
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applications, it may not be appropriate in other cases. Therefore, Li (2011) proposed a flexible procedure to model

the covariate effect as a linear combination of fixed-knot cubic basis-spline or B-spline functions (Schoenberg,

1946; Curry & Schoenberg, 1966). Semiparametric analysis of (longitudinal) zero-inflated count data also has

been proposed by, e.g., Lam, Xue, and Cheung (2006), Chiogna and Gaetan (2007), and Feng and Zhu (2011),

but they did not conduct tests to assess the validity of a postulated parametric function for a covariate effect. For

example, Chiogna and Gaetan (2007) proposed semiparametric zero-inflated Poisson models that use penalized

regression splines to study the relationship between the number of indigo bunting and five land use predictors in

an animal abundance study.

The semiparametric ZIP regression model proposed by Li (2011) not only enhances fitting flexibility, but also can

be used to assess the adequacy of a postulated linear relationship between the natural logarithm of the Poisson mean

and the covariate. However, no tests have been proposed for the extra proportion of zeros π in the semiparametric

ZIP regression model equal to 0. Motivated by this, we conduct a score test for π = 0. The score test has an

advantage over the likelihood ratio and Wald tests because it only requires the parameter estimates under the null

hypothesis π = 0, i.e., under the semiparametric Poisson regression model. It is noted that van den Broek (1995)

proposed a score test for the extra proportion of zeros, comparing the parametric ZIP regression model with a

constant proportion of excess zeros to a parametric Poisson regression model.

Section 2 introduces first briefly the semiparametric ZIP regression model (Li, 2011) and then the score test in

detail. The practical use of the score test is illustrated with a real-life data set in Section 3. Some concluding

remarks are given in Section 4.

2. Method

2.1 A Semiparametric ZIP Regression Model

Let Y be the event count random variable. Let W be a binary latent variable to indicate a subject’s risk state: W = 0

if the subject is not at risk of an event; W = 1 if the subject is at risk of the event. Therefore, if Y > 0, W = 1, and

if Y = 0, W is unobserved. Let z = (x, u), where x = (x1, . . . , xp), for x1 = 1, is a vector of p covariates and u is a

continuous covariate of interest.

In the parametric ZIP regression model proposed by Lambert (1992), both the mixing weight π = P(W = 0; z) and

the Poisson mean λ = E(Y |W = 1; z) are modeled as functions of z. However, in this work we are concerned with

the z that only affects the Poisson mean λ and not the probability parameter π. Hence, one can write the ZIP model

as follows:

P(Y = y; z) = πI{y=0} + (1 − π) e−λ(z) [λ(z)]y

y!
, y = 0, 1, . . . ,

=
[
π + (1 − π)e−λ(z)

]I{y=0}
[
(1 − π) e−λ(z)[λ(z)]y

y!

]I{y>0}

, (2)

where λ(z) = E(Y |W = 1; z).

It can be derived easily from (2) that the first two moments of the ZIP distribution are E(Y; z) = (1 − π)λ(z) and

Var(Y; z) = E(Y; z)+[π/(1−π)]E2(Y; z). It can be seen from the variance formula that the ZIP model has the ability

to account for data variation beyond that which is accommodated by the Poisson model. To extend the parametric

ZIP regression model, Li (2011) assumed that the functional form of the effect of u is smooth but unknown, and

the effects of x remain linear. The Poisson mean λ(z) then can be written as

ln[λ(z)] = xβ + g(u) (3)

through the canonical log link function. Here β = (β1, . . . , βp)T is a vector of unknown p regression coefficients for

the x = (x1, . . . , xp) with x1 = 1. The g is an unspecified smooth function for the effect of u. The model in (3) is a

semiparametric Poisson regression model, which can be considered a generalized partially linear model. Because

the model in (3) contains both parametric and nonparametric components, Li (2011) referred to the model in (2)

with the semiparametric Poisson regression model in (3) as a semiparametric ZIP regression model.

Let (yi, zi), i = 1, . . . , n, be the data. The log-likelihood is then written as follows:

�(β, g, π) =
n∑

i=1

{
I{yi=0} ln

[
π + (1 − π)e−λ(zi)

]
+ I{yi>0} ln

[
(1 − π) e−λ(zi) [λ(zi)]

yi

yi!

]}
. (4)
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Because cubic splines provide the best compromise between smoothness and computational cost and the B-spline

basis produces better-conditioned systems of equations than the truncated power basis and is more likely to have a

numerically stable representation of a spline function, Li (2011) used the basis of cubic B-splines with q preselected

knots to approximate the unspecified smooth function g in which the rth knot corresponds to the r
q+1

th sample

quantile of the distinct values of uis.

Let B1(u), . . . , Bq+4(u) be the cubic B-spline basis for the space of cubic splines with q preselected knots. For

details of computing B-splines and their mathematical properties, see de Boor (2001). The cubic B-splines space

includes a constant function, and the constant is given in the parametric component of the model (3), so to model

the g one of the q + 4 B-spline basis functions needs to be dropped so that the resulting parametrization is of full

rank. Any one of them can be dropped, but for convenience Li (2011) models the g as a linear combination of the

first K = q + 3 fixed-knot cubic B-spline basis functions as follows:

g(u) =

K∑
k=1

bkBk(u), (5)

where bks are the cubic B-spline coefficients to be estimated. Let b = (b1, . . . , bK)T and Bu = (B1(u), . . . , BK(u)).

The g in (5) then can be expressed as g(u) = Bub in vector notation. Therefore, the Poisson mean λ(z) in (3) can

be expressed as ln[λ(z)] = xβ + Bub, which can be written as

ln[λ(z)] = Azθ (6)

in a simpler vector notation, where Az = (x, Bu) and θ = (βT, bT)T. Consequently, the log-likelihood �(β, g, π) in

(4) then becomes

�(θ, π) =

n∑
i=1

{
I{yi=0} ln

[
π + (1 − π)e−λ(zi)

]
+ I{yi>0} ln

[
(1 − π) e−λ(zi)[λ(zi)]

yi

yi!

]}
, (7)

where λ(zi) = exp(Aziθ).

2.2 A Score Test

Possible tests for the null hypothesis H0 : π = 0 are the likelihood ratio test, the Wald test and the score test.

Because one needs to estimate the model parameters under the alternative hypothesis π > 0 while using the

likelihood ratio and Wald tests, we consider the score test for H0 : π = 0 because it has the advantage that we

do not have to fit the semiparametric ZIP regression model but just a semiparametric Poisson regression model,

which is the reduced model of the semiparametric ZIP regression model under H0 : π = 0. Let τ = π
1−π . Testing

H0 : π = 0 is then equivalent to testing H0 : τ = 0. With some algebra, one can write the log-likelihood �(θ, π) in

(7) as

�(θ, τ) =

n∑
i=1

{
− ln(1 + τ) + I{yi=0} ln

[
τ + e−λ(zi)

]
+ I{yi>0}

[−λ(zi) + yi Aziθ − ln(yi!)
]}
. (8)

Based on the log-likelihood �(θ, τ) in (8), the score vector is UT(θ, τ) =
(
UT
θ (θ, τ),Uτ(θ, τ)

)
as follows:

Uθ(θ, τ) =
∂�(θ, τ)

∂θ
=

n∑
i=1

{
I{yi=0}

−e−λ(zi)

τ + e−λ(zi)
λ(zi) + I{yi>0}

[
yi − λ(zi)

]}
AT

zi
(9)

and

Uτ(θ, τ) =
∂�(θ, τ)

∂τ
=

n∑
i=1

{ −1

1 + τ
+ I{yi=0}

1

τ + e−λ(zi)

}
. (10)

Let θ̃ be the maximum likelihood estimate of θ under H0 : τ = 0 and λ̃(zi) = exp(Azi θ̃1). Then, (9) becomes

n∑
i=1

{
−I{yi=0}λ̃(zi) + I{yi>0}

[
yi − λ̃(zi)

]}
AT

zi
=

n∑
i=1

{
I{yi=0}yi − I{yi=0}λ̃(zi) + I{yi>0}

[
yi − λ̃(zi)

]}
AT

zi

=

n∑
i=1

(
I{yi=0} + I{yi>0}

) [
yi − λ̃(zi)

]
AT

zi

=

n∑
i=1

[
yi − λ̃(zi)

]
AT

zi
= 0, (11)
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and (10) is

n∑
i=1

[
I{yi=0}

1

e−λ̃(zi)
− 1

]
=

n∑
i=1

[
I{yi=0}eλ̃(zi) − 1

]
. (12)

Thus,

UT(θ̃, 0) =

⎛⎜⎜⎜⎜⎜⎝0T,

n∑
i=1

[
I{yi=0}
e−λ̃(zi)

− 1

]⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝0T,

n∑
i=1

[
I{yi=0}eλ̃(zi) − 1

]⎞⎟⎟⎟⎟⎟⎠ .
The second-order partial derivatives of �(θ, τ) with respect to θ and τ are

∂2�(θ, τ)

∂θ∂θT
=

n∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩I{yi=0}
−e−λ(zi)

[
(1 − λ(zi))τ + e−λ(zi)

]
[τ + e−λ(zi)]2

λ(zi) − I{yi>0}λ(zi)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ AT
zi

Azi ,

∂2�(θ, τ)

∂θ∂τ
=

n∑
i=1

{
I{yi=0}

e−λ(zi)

[τ + e−λ(zi)]2
λ(zi)

}
AT

zi
,

and

∂2�(θ, τ)

∂τ2
=

n∑
i=1

{
1

(1 + τ)2
− I{yi=0}

1

[τ + e−λ(zi)]2

}
.

Using

E(I{yi=0}) = P(Yi = 0) =
τ + e−λ(zi)

1 + τ

and

E(I{yi>0}) = 1 − E(I{yi=0}) = 1 − τ + e−λ(zi)

1 + τ
=

1 − e−λ(zi)

1 + τ
,

one can show that the expected Fisher information matrix

I(θ, τ) =

[
Iθθ(θ, τ) Iθτ(θ, τ)
IT
θτ(θ, τ) Iττ(θ, τ)

]

has the following entries:

Iθθ(θ, τ) = −E
[
∂2�(θ, τ)

∂θ∂θT

]
=

n∑
i=1

{−e−λ(zi)λ(zi)τ + τ + e−λ(zi)

(1 + τ)[τ + e−λ(zi)]

}
λ(zi)AT

zi
Azi ,

Iθτ(θ, τ) = −E
[
∂2�(θ, τ)

∂θ∂τ

]
= −

n∑
i=1

{
e−λ(zi)

(1 + τ)[τ + e−λ(zi)]

}
λ(zi)AT

zi
,

and

Iττ(θ, τ) = −E
[
∂2�(θ, τ)

∂τ2

]
=

n∑
i=1

{
1 − e−λ(zi)

(1 + τ)2[τ + e−λ(zi)]

}
.

Therefore, the I(θ̃, 0) has the following entries:

Iθθ(θ̃, 0) =

n∑
i=1

λ̃(zi)AT
zi

Azi = ATdiag(λ̃)A,
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Iθτ(θ̃, 0) = −
n∑

i=1

λ̃(zi)AT
zi
= −ATλ̃,

and

Iττ(θ̃, 0) =

n∑
i=1

1 − e−λ(zi)

e−λ(zi)
=

n∑
i=1

[eλ(zi) − 1].

Here A = (AT
z1
, . . . , AT

zn
)T is an n × (p + K) matrix. diag(λ̃) is an n × n diagonal matrix with the (i, i)th entry

λ̃(zi) = exp(Azi θ̃), i = 1, 2, . . . , n. Denote the inverse of I(θ̃, 0) by M(θ̃, 0) = I−1(θ̃, 0) that can be partitioned as

M(θ̃, 0) =

[
Mθθ(θ̃, 0) Mθτ(θ̃, 0)

MT
θτ(θ̃, 0) Mττ(θ̃, 0)

]
.

By using the formula of inverse of (partitioned) matrices and the fact of λ̃ = diag(λ̃)Aep+K , where ep+K is a

(p + K) × 1 vector that has a 1 as the first element and has the other elements equal to zero, we can have

Mττ(θ̃, 0) =
[
Iττ(θ̃1, 0) − IT

θτ(θ̃, 0)I−1
θθ (θ̃, 0)Iθτ(θ̃, 0)

]−1

=

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

[
eλ̃(zi) − 1

]
− λ̃T A

[
ATdiag(λ̃)A

]−1
ATλ̃

⎫⎪⎪⎬⎪⎪⎭
−1

=

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

[
eλ̃(zi) − 1

]
− eT

p+K ATdiag(λ̃)A
[
ATdiag(λ̃)A

]−1
ATdiag(λ̃)Aep+K

⎫⎪⎪⎬⎪⎪⎭
−1

=

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

[
eλ̃(zi) − 1

]
− eT

p+K ATdiag(λ̃)Aep+K

⎫⎪⎪⎬⎪⎪⎭
−1

=

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

[
eλ̃(zi) − 1

]
− 1Tλ̃

⎫⎪⎪⎬⎪⎪⎭
−1

=

⎧⎪⎪⎨⎪⎪⎩
n∑

i=1

[
eλ̃(zi) − 1

]
− nȳ

⎫⎪⎪⎬⎪⎪⎭
−1

,

where from (11) we have used
∑n

i=1[yi − λ̃(zi)] = 0 that is equivalent to 1Tλ̃ =
∑n

i=1 yi = nȳ for ȳ =
∑n

i=1 yi/n.

Therefore, the score statistic to test H0 : τ = 0 is

S (θ̃, 0) = UT(θ̃, 0)I−1(θ̃, 0)U(θ̃, 0)

=

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

(
I{yi=0}eλ̃(zi) − 1

)⎤⎥⎥⎥⎥⎥⎦ Mττ(θ̃, 0)

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

(
I{yi=0}e−λ̃(zi) − 1

)⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

(
I{yi=0}eλ̃(zi) − 1

)⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

n∑
i=1

[
eλ̃(zi) − 1

]
− nȳ

⎫⎪⎪⎬⎪⎪⎭
−1 ⎡⎢⎢⎢⎢⎢⎣

n∑
i=1

(
I{yi=0}eλ̃(zi) − 1

)⎤⎥⎥⎥⎥⎥⎦

=

[
n∑

i=1

(
I{yi=0}eλ̃(zi) − 1

)]2

n∑
i=1

[
eλ̃(zi) − 1

]
− nȳ

,

which has an asymptotic chi-squared distribution with 1 degree of freedom under H0 : τ = 0.

3. Example

To illustrate the practical use of the score test, we use the data set from a study of the attendance behavior of 316

high school juniors at two schools, which is available at the website

http://www.ats.ucla.edu/stat/mplus/dae/poissonreg.dat. The response variable is the number of days of absence.

The predictors include gender of the student and standardized test scores in mathematics and language arts. Let
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z = (x, u) for x = (x1, x2, x3) = (1, I{male}, standardized language arts score) and u = standardized mathematics

score (SMS). Here the I{male} is a binary indicator of student gender, which is 1 if male; 0 otherwise. Among the

316 SMSs, there were 77 distinct SMSs.

To assess whether the SMS has a linear effect on the natural logarithm of the expected number of days of absence,

Li (2011) fitted the proposed semiparametric ZIP regression model and the parametric ZIP regression model to the

attendance behavior data. The likelihood ratio test results revealed that the proposed semiparametric ZIP regres-

sion model had a better fit than the parametric ZIP regression model, i.e., the SMS had a statistically significantly

nonlinear effect on the natural logarithm of the expected number of days of absence. To apply the score test for

zero-inflation in the semiparametric ZIP regression model (Li, 2011), i.e., test H0 : π = 0, because the semipara-

metric ZIP regression model (Li, 2011) under H0 : π = 0 becomes the semiparametric Poisson regression model,

we fit this semiparametric Poisson regression model, using 15 knots, to this data set in which the functional form

of the effect of SMS, g(u), is smooth but unknown that is modeled as g(u) =
∑K

k=1 bkBk(u), where K = 18. More

specifically, we fit the following semiparametric Poisson regression model to the data:

ln[λ(z)] = β1 + β2x2 + β3x3 +

K∑
k=1

bkBk(u).

The p-value of the score test using 15 knots is less than 0.0001, so it rejects H0 : π = 0, which gives evidence that

there are too many zeros observed in the study data.

4. Concluding Remarks

A score test is conducted to evaluate whether there is an extra proportion of zeros in the semiparametric ZIP

regression model (Li, 2011). The advantage of the score test for zero-inflation over the likelihood ratio and Wald

tests is to only fit the semiparametric Poisson regression model. We focus only on the case in which the conducted

score test is for zero-inflation in the semiparametric ZIP regression model (Li, 2011) that is used to describe a

relationship between the natural logarithm of the Poisson mean and a continuous covariate by a linear combination

of fixed-knot cubic B-splines, but the conducted score test also can be used for zero-inflation in a semiparametric

ZIP regression model that is used to depict relationships between the natural logarithm of the Poisson mean and

several continuous covariates of interest. We assume the functional form for the effects of these covariates to be

smooth but unknown. Their effects can be incorporated in an additive fashion, and each effect is modeled as a

linear combination of fixed-knot cubic B-splines.
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