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Abstract

In this article we introduce a simple powerful methodology where we replace the independent variables λ1, ..., λn in
various symmetric functions as well as in Vieta’s formulas by the indication functions of the events Ai, i = 1, ..., n, i.e.,
λi = 1(Ai), i = 1, ..., n. Both the random variable K that counts the number of events that actually occurred and the
proposed obvious identity Πn

i=1(z−1(Ai)) ≡ (z−1)Kzn−K that solely depends on K play a central role in this article. Just by
choosing different values for z (real, complex, and random) and taking expectations of the various functions we provide
other simple proofs of known results as well as obtain new results. The estimation algorithms for computing the expected
elementary symmetric functions via least squares based on IFFT in the complex domain (z ∈ C) and least squares or linear
programming in the real domain (z ∈ R) are noteworthy. Similarly, we we use Newton’s identities and some well known
inequalities to obtain new results and inequalities. Then, we give an algorithm that exactly computes the distribution of K
(i.e., qk := P(K = k), k = 0, 1, ..., n) for finite sample spaces. Finally, we give the conclusion and area for further research.

1. Introduction

This article is self contained and the results appear in the order that they were conceived. Let

fn(z) := zn + a1zn−1 + · · · + an (1)

be a real monic polynomial and λ1, λ2, ..., λn its roots. We have

fn(z) =
∏n

j=1(z − λ j)
= zn − e1(λ1, . . . , λn)zn−1 + e2(λ1, . . . , λn)zn−2 + · · · + (−1)nen(λ1, . . . , λn),

(2)

where ei := (−1)iai, i = 1, ..., n are the elementary symmetric functions. Since fn(z) is monic we define e0 := 1 ∀n. These
relations between the roots and the coefficients of a polynomial are called Vieta’s formulas.

The elementary symmetric functions for n = 1, 2, 3 are (Wiki contributions, 2019 Oct. 19)

For n = 1:
e1(λ1) = λ1. (3)

For n = 2:

e1(λ1, λ2) = λ1 + λ2 (4)
e2(λ1, λ2) = λ1λ2.

For n = 3:

e1(λ1, λ2λ3) = λ1 + λ2 + λ3 (5)
e2(λ1, λ2, λ3) = λ1λ2 + λ1λ3 + λ2λ3

e3(λ1, λ2, λ3) = λ1λ2λ3.

These multi-variable polynomials are called symmetric since their value is preserved under permutations. For example,
e2(λ3, λ2, λ1) ≡ e2(λ1, λ2, λ3). Next, we will present brief formulas for ek, k = 1, .., n. These formulas are based on the
following definition (Marcus & Minc, 1964, p. 10).
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Definition 1.1. If 1 ≤ k ≤ n, then Qk,n will denote the totality of strictly increasing sequences of k integers chosen from
1, ..., n.

Hence, using this notation we can write

ek(λ1, ..., λn) =
∑
α∈Qk,n

k∏
i=1

λαi , (6)

where α := (α1, ..., αk) and 1 ≤ α1 < · · · < αk ≤ n. Notice that the cardinality of Qk,n is

|Qk,n| =

(
n
k

)
. (7)

Other symmetric polynomials, to name but a few, are:

(i) Power sums:

pk(λ1, ..., λn) :=
n∑

i=1

λk
i , k = 1, 2, ... (8)

where p1 ≡ e1 and the other pk, k > 1 are related to ei, i ≤ k via Newton’s identities, see (Wikipedia contributions,
2021, Feb. 4).

(ii) The sum of all monomials of total degree k which are called complete homogeneous symmetric functions and are
denoted by hk, k = 1, ..., n. Next, we will present brief formulas for the hk’s. These formulas are based on the
following definition (Marcus & Minc, 1964, p. 10).

Definition 1.2. If 1 ≤ k ≤ n, then Gk,n will denote the totality of non-decreasing sequences of k integers chosen from
1, ..., n.

Hence, using this notation we can write

hk(λ1, ..., λn) =
∑
α∈Gk,n

k∏
i=1

λαi
i , (9)

where α := (α1, ..., αk) and 1 ≤ α1 ≤ · · · ≤ αk ≤ n. Notice that the cardinality of Gk,n is

|Gk,n| =

(
n + k − 1

k − 1

)
=

(
n + k − 1

n

)
. (10)

In what follows we let

λi = 1(Ai), i = 1, ..., n. (11)

Therefore,

K := e1 = 1(A1) + · · · + 1(An) (12)

is a random variable indicating how many of the events Ai, i = 1, ..., n actually occurred. Hence, substituting λi = 1(Ai), i =

1, ..., n in (2) we obtain

fn(z) = (z − 1(A1)) · · · (z − 1(An)). (13)

Obviously,

fn(z) = (z − 1)Kzn−K . (14)
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Equations (11) - (14) are the key equations to derive all the results that follow. When K = 0, combining (13) and (14 ) and
noting that 1(Ai) = 0, i = 1, ..., n we obtain zn ≡ zn(z − 1)0 for all z. In particular, substituting z = 1 we are led to define

00 := 1. (15)

Using (13) and Vieta’s formulas we obtain

fn(z) := zn + (−1)1e1zn−1 + (−1)2e2zn−2 + ... + (−1)nen, (16)

where

ek = ek(1(A1), ..., 1(An)) (17)

=
∑
α∈Qk,n

k∏
i=1

1(Aαi )

=
∑
α∈Qk,n

1
(
∩k

i=1 Aαi

)
.

For now we assume that z ∈ C is a constant, later on we will let z be a random variable, say Z. Assuming that z , 0, using
(13) - (17), and taking expectations, we obtain

znE
(
1 − z−1

)K
=zn + (−1)1EKzn−1 + . . . + (−1)k

∑
α∈Qk,n

E1
(
∩k

i=1Aαi

)
zn−k + . . . + (−1)nE1

(
∩n

i=1Ai

)
. (18)

Notice that

E1(A) = 1P(A) + 0(1 − P(A)) = P(A), ∀A ⊂ Ω, (19)

where Ω denotes the sampling space. Hence, we have

znE
(
1 − z−1

)K
=

n∑
k=0

(−1)kekzn−k, z , 0, (20)

where

ek =
∑
α∈Qk,n

P(∩k
i=1Aαi ), k = 1, ..., n. (21)

The organization of this paper is as follows. In Section 2 we will deal with various values of z. In Subsection 2.1
we let z = 0 and obtain that P(K = n) = P(∩n

i=1Ai). In Subsection 2.2 we let z = 1 and obtain a simple proof of
the inclusion exclusion formula. In Subsection 2.3 we let z = −1 and obtain an explicit expression for E(2K), i.e., the
expected number of subfamilies of {A1, ..., An} all whose component events occur. In Subsection 2.4 we let z−1 = 1 − s,
z−1 = 1−es, and z−1 = 1−eit take expectations and thus obtain K’s probability generating function, GK := E(sK), moment
generating function, MK(s) := E(esK), and characteristic function, φK(t) := E(eitK). Using the probability generating
function we present a simpler proof of Waring’s formulas that relates the qk’s to the ek’s. In Subsection 2.5 we let
zk = exp( 2πi

N k), k = 0, 1, ...,N − 1,N ≥ n, i =
√
−1, and present an efficient least squares algorithm based on an N-point

IFFT (Inverse Fast Fourier Transform) to estimate the ek’s. We will prove that if N > n the proposed algorithm becomes
a least squares solution. In Subsection 2.6 we choose distinct zk ∈ R \ 0, k = 1, ...,N,N ≥ n and give algorithms based
on least squares (LS) and linear programming (LP) to estimate the elementary symmetric functions. In Subsection 2.7 we
let z = Z be a random variable and give two examples. In the first example we let Z = 1(A1) and obtain two interesting
identities. In the second example we let Z ∼ N(0, σ2), assume that Z is independent of the Ai’s, and thus arrive at
quite complex formulas for the expected values. In Section 3 we present formal proofs of known formulas that relate
ek := Eek, k = 0, 1, ..., n to qk := P(K = k), k = 0, 1, ..., n and give some consequences. In Section 4 We present Newton’s
identities and give some consequences. In Section 5 we present several inequalities and a conjecture.

In Section 6 we present a polynomial time algorithm to compute K’s probability density function, i.e., the qk’s. Using
these qk’s and the results of Section 3 we compute the ek’s for a finite sample space. Finally, in Section 7 we give the
conclusion and mention topics for further research.
In what follows we will use capital letters to denote random variable and boldface letters to denote vectors and matrices.
Notice that here the indices of all vectors and matrices start at one.
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2. Special Cases for Various Values of z Consequences and Algorithms

2.1 The Case z = 0.

Using (14) and (2) the case z = 0 gives the rather trivial identities

E((−1)K0n−K) = (−1)nE1(K = n) ≡ (−1)nE1
(
∩n

i=1Ai

)
. (22)

Hence, using (19) we obtain

E1(K = n) = E1
(
∩n

i=1Ai

)
= P

(
∩n

i=1Ai

)
. (23)

Using Demorgan’s law we also obtain

E1(K = 0) ≡ E1
(
∩n

i=1Ac
i

)
= E1

(
(∪n

i=1Ai)c
)

= P
(
(∪n

i=1Ai)c
)

= 1 − P
(
∪n

i=1Ai

)
, (24)

where Ac
i denotes the complement of Ai.

2.2 The Case z = 1.

When z = 1 we provide a simple proof of the following known probability rule, called the inclusion exclusion formula.

Theorem 2.1.

P(∪n
i=1Ai) =

n∑
i=1

P(Ai) −
n∑

i< j

P(Ai ∩ A j) +

n∑
i< j<k

P(Ai ∩ A j ∩ Ak) + · · · + (−1)n+1P(A1 ∩ · · · ∩ An). (25)

By using (21) this equation can be written in shorter notation as follows.

P(∪n
i=1Ai) =

n∑
k=1

(−1)k+1
∑
α∈Qk,n

P(∩k
i=1Aαi )

 (26)

=

n∑
k=1

(−1)k+1ek.

Proof: Substituting in (18) z = 1 and using (19) we obtain

E0K =1 + (−1)1
n∑

i=1

P(Ai) + . . . + (−1)k
∑
α∈Qk,n

P
(
∩k

i=1Aαi

)
+ . . . + (−1)nP

(
∩n

i=1Ai

)
. (27)

Since, 00 = 1, we obtain that E0K = E1(K = 0). Finally, by using (24) and some algebra we obtain the desired result. �

Notice that a similar derivation appears in (Grimmet & Stirzaker, 2001, p. 56), where the authors by nontrivial manipula-
tions of indicator functions obtained

1(∪n
i=1Ai) = 1 −

n∏
i=1

(1 − 1(Ai)). (28)

Then, by using Vieta’s formulas and taking expectations they arrived at (25).

2.3 The Case z = −1.

When z = −1 we provide a simple proof of the following nontrivial probability rule.

Theorem 2.2. Let qk := P(K = k), then

E(2K) =

n∑
k=0

qk2k = 1 +

n∑
k=1

ek, (29)

where the ek’s are given by (21). Notice that E(2K) is the expected number of subfamilies of {A1, ..., An} all of whose
component events occur.

Proof: The first equation follows from the definition of E(2K). The second equation follows by substituting z = −1 in (20)
and carrying out some algebra. �

In Section 3 we will give another simple proof of this formula.
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2.4 The Cases z−1 = 1 − s, z−1 = 1 − es, and z−1 = 1 − eit.

In this subsection we will show how to obtain expressions for K’s probability generating function, GK := E(sK), moment
generating function, MK(s) := E(esK), and characteristic function, φK(t) := E(eitK) by appropriately choosing z , 0.
Using (20) and substituting z = y−1 we obtain

(1 − y)K = 1 −
n∑

k=1

(−1)kekyk. (30)

Hence, substituting y = 1 − s and taking expectations we obtain the probability generating function of K [1, p. 150], i.e.,

GK(s) := E(sK) =

n∑
k=0

(−1)kek(1 − s)k. (31)

We also have

GK(s) :=
n∑

k=0

qk sk. (32)

In the next theorem by equating the coefficients of the last two equations we will obtain a simpler straightforward proof
to the following Waring’s formulas (Grimmet & Stirzaker, 2001, p.151).

Theorem 2.3. Let qk := P(K = k), then

q` =

n∑
k=`

(−1)k+`

(
k
`

)
e`, ` = 0, ..., n, (33)

where the ek’s are given by (21).

Proof:

GK(s) =

n∑
k=0

qk sk (34)

=

n∑
k=0

(−1)kek(1 − s)k

=

n∑
k=0

(−1)kek

 k∑
`=0

(−1)`
(
k
`

)
s`


=

n∑
`=0

s`
 n∑

k=`

(−1)k+`

(
k
`

)
=

n∑
k=0

sk

 n∑
`=k

(−1)k+`

(
`

k

) .
Equating coefficients of sk we obtain the desired result. This completes the proof. �

Next, substituting in (30), y = 1 − es and taking expectations we obtain the moment generating function of K (Grimmet
& Stirzaker, 2001, p. 151):

MK(s) := E(esK) =

n∑
k=0

(−1)kek(1 − es)k. (35)

Finally, substituting in (30), y = 1 − eit and taking expectations we obtain the characteristic function of K (Grimmet &
Stirzaker, 2001, p. 182 ) :

φK(t) := E(eitK) =

n∑
k=0

(−1)kek(1 − eit)k. (36)
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2.5 The Case zk = exp( 2πi
N k), k = 0, 1, ...N − 1,N ≥ n, i =

√
−1 and Efficient Algorithm for Estimating the ek’s.

Here, we present an efficient algorithm based on an N-point IFFT to estimate the ek’s. We will prove that if N > n the
proposed algoritm gives a least squares solution. Substituting in (20) zk = exp( 2πi

N k), k = 0, 1, ...,N − 1 we obtain a set of
N equations in the n unknown alternating expected elementary symmetric functions, i.e.,

X := (x0, ..., xn−1)T := ((−1)1e1, (−1)2e2, ..., (−1)nen)T . (37)

Since e0 = 1, zN
k = 1, z−1

k = zN−k for k = 0, ...,N − 1, we obtain

zn
kE

(
(1 − zN−k)K

)
− zn

k =

n∑
`=1

(−1)`e` exp
(

2πi
N

(n − `)k
)

(38)

= zn
k

n∑
`=1

(−1)`e` exp
(
−

2πi
N
`k

)

= zn−1
k

n−1∑
`=0

(−1)`+1e`+1 exp
(
−

2πi
N
`k

)
.

Hence, dividing both sides by zn−1
k we obtain

zk

(
E(1 − zN−k)K − 1

)
=

n−1∑
`=0

(−1)`+1e`+1 exp
(
−

2πi
N
`k

)
(39)

=

n−1∑
`=0

x` exp
(
−

2πi
N
`k

)
.

Let
Y := (y0, y1, ..., yN−1)T ,

where

yk := zk(E(1 − zN−k)K − 1), k = 0, ...,N − 1. (40)

Also let

F := [Fk,`] =

[
exp

(
−

2πi
N
`k

)
, k, ` = 0, ...,N − 1

]
. (41)

We have

F−1 =
1
N

F∗, (42)

where * denotes the hermitian operator.

Equation (39) can be written in matrix form as follows.

Y = F1X (43)
= F1X + F20N−n

= (F1,F2)
(

X
0N−n

)
= F

(
X

0N−n

)
= DFT

(
X

0N−n

)
,

where 0` is a column vector of ` zeros,

F1 is the submatrix consisting of the first n columns of F, and F2 is the submatrix consisting of the last N − n columns of
F.
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Usually, Y is not known. Hence, in what follows we will replace Y by an estimator, say Ŷ. The least squares solution for
given Ŷ, say X̂, is given by

X̂ = (F∗1F1)−1F∗1Ŷ (44)

=
1
N

InF∗1Ŷ

=
1
N

F∗1Ŷ

= [In, 0n,N−n]F−1Ŷ

= [In, 0n,N−n]IDFT(Ŷ),

where IDFT denotes the inverse DFT. Hence, the least squares estimator X̂ of X can be computed by IDFT(Ŷ) and
retaining its first n elements.

Remark 2.4. Notice that since X ∈ Rn we have

y∗k =

n−1∑
`=0

x` exp
(

2πik
N

`

)
(45)

=

n−1∑
`=0

x` exp
(
−

2πi(N − k)
N

`

)
= yN−k, k = 1, ...,

⌊
N − 1

2

⌋
,

where here * denotes conjugation. Hence,

ŷN−k = ŷ∗k, k = 1, ...,
⌊

N − 1
2

⌋
. (46)

Since N − b(N − 1)/2c = dN/2e + 1 we only need to compute ŷk, k = 0, ..., dN/2e and then use (46) to obtain Ŷ.

Hence, we propose the following algorithm to compute the least squares estimator X̂ of X.

Algorithm 2.5.

q̂ = (q̂0, q̂1, ..., q̂n) = 0
Let {ω1, ω2, ..., ωM} be M random samples from Ω

for m = 1, ...,M
k =

∑n
`=1 1(ωm ∈ A`)

q̂k = q̂k + 1
end
q̂ = q̂/M
Ŷ = (ŷ0, ..., ŷN−1)T = 0
for k = 0, ..., dN/2e
for ` = 1, ..., n

ŷk = ŷk + zkq̂`
(
(1 − zN−k)` − 1

)
end
end
for k = 1, ..., b(N − 1)/2c + 1

ŷN−k = ŷ∗k
end
X̂ = (In, 0n×N−n)IFFT(Ŷ).

Hence, using the definition of X in (37) we obtain the following estimator for ek, i.e.,

êk = |X̂(k)|, k = 1, ..., n. (47)
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Next, using (26) and (29) we obtain the following two estimators

P̂(∪n
i=1Ai) = −

n∑
i=1

X̂(i) (48)

and

Ê(2K) = 1 +

n∑
i=1

|X̂(i)|. (49)

The complexity of the proposed algorithm is O(Mn) to compute the (n + 1)-dimensional vector q̂, O(Nn) to compute the
vector Ŷ, and O(N log(N)) to compute IFFT(Ŷ). Summing up, we obtain that the complexity of the proposed algorithm
is O(n max{N,M}). Notice that the proposed algorithm is applicable to finite as well as infinite sample spaces Ω and that
for finite Ω the number of events n can be as high as O(2|Ω|).

2.6 The Case of Distinct zk ∈ R \ 0, k = 1, ...,N,N ≥ n and Algorithms

Here, we present algorithms to estimate the ek’s for N ≥ n which are based on minimizing a norm of the error. The least
squares (LS) solution minimizes the 2-norm of the error. Using linear programming we can either minimize the 1-norm
or the ∞-norm of the error. Substituting in (20) distinct zk ∈ R \ 0, k = 1, ...,N will lead us to the following set of linear
equations of the expected alternating elementary symmetric functions, i.e.,

Y = SX, (50)

where here X := (x1, ..., xN)T := ((−1)1e1, (−1)2e2 , ..., (−1)nen)T and Y := (y1, ..., yN)T . We have

yk = E(1 − z−1
k )K − 1 (51)

and
S(k, `) := z−`k , k = 1, ..,N, ` = 1, ..., n. (52)

Since we have explicit expressions for Y we can replace Y by an estimator, say Ŷ, and by using (50) estimate X either by
least squares or by using LP. By using least squares for N ≥ n we obtain

X̂ = (ST S)−1ST Ŷ, (53)

which for N = n reduces to X̂ = S−1Ŷ. Notice that for N ≥ n, S must be of full rank because otherwise the polynomial
of degree n − 1 whose coefficients are X would have more than n − 1 zeros which is impossible. Notice that êk = |X̂(k)|.
Next using LP we can compute X̂ either by solving

min
X
‖Ŷ − SX||1, (54)

or by solving

min
X
‖Ŷ − SX||∞, (55)

where ‖(v1, ..., vn)‖1 :=
∑n

i=1 |vi| and ‖(v1, ..., vn)‖∞ := max(|v1|, ..., |vn)|).

2.7 The Case When z Is a Random Variable, say Z.

There is no reason why we could not choose z to be a random variable, say Z. We will give two examples for this case. In
the first example we choose without loss of generality Z = 1(A1) and obtain two identities.

In the second example we choose Z ∼ N(0, σ2) independent of the Ai’s and obtain quite a complex result.

Example 2.6. Let Z = 1(A1). Then using (13) and (14) we obtain

(1(A1) − 1)K1(A1)n−K ≡ 0, (56)
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which is otherwise tricky to prove. We also have

0 ≡ Zn +

n−1∑
k=1

(−1)k
∑
α∈Qk,n

1(∩k
i=1Aαi )Z

n−k + (−1)n1(∩n
i=1Ai) (57)

= 1(A1)

1 +

n−1∑
k=1

(−1)k
∑
α∈Qk,n

1(∩k
i=1Aαi )

 + (−1)n1(A1)1(∩n
i=1Ai)

= 1(A1)

1 +

n−1∑
k=1

(−1)k
∑
α∈Qk,n

1(∩k
i=1Aαi ) + (−1)n1(∩n

i=1Ai)

 .
This identity can be written differently as a telescopic series. For n = 3 we have:

0 ≡ 1(A1) − [1(A1) + 1(A1 ∩ A2) + 1(A1 ∩ A3)] + [1(A1 ∩ A2) + 1(A1 ∩ A3) + 1(∩3
i=1Ai] − 1(∩3

i=1Ai)). (58)

Example 2.7. Let Z ∼ N(0, σ2) be a zero mean random variable normally distributed with variance σ2 independent of
the events Ai, i = 1, ..., n. It is well known that

EZm =

{ (2m)!
2mm!σ

m, m even
0, otherwise.

(59)

Hence, using (13) and (14) we obtain

E
[
(Z − 1)KZn−K

]
=

{
EZn +

∑
k∈{2,4...,,n−2}(−1)kekEZn−k + (−1)nen, n even

0 +
∑

k∈{1,3,...,n−2}(−1)kekEZn−k + (−1)nen, n odd. (60)

3. Formal Proof of Known Formulas for ek := Eek, k = 0, ..., n and Some Consequences

Here, we will provide a formal proof that follows from (20) to a result that appears in (Grimmet & Stirzaker, 2001, p.158,
eqn. 13) for which the authors gave a verbal argument of its validity, i.e,.

Theorem 3.1. Let qk := P(K = k), k = 0, 1, ..., n. Then

ek = E
(
K
k

)
, k = 0, 1, ..., n. (61)

Proof: Using (30) we obtain

E(1 − y)K =

n∑
k=0

qk(1 − y)k (62)

=

n∑
k=0

(−1)kekyk.

Hence,

n∑
k=0

qk(1 − y)k =

n∑
k=0

qk

 k∑
`=0

(−1)`
(
k
`

)
y`

 (63)

=

n∑
`=0

(−1)`
 n∑

k=`

qk

(
k
`

) y`

=

n∑
`=0

(−1)`e`y`.
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Equating coefficients of y` on both sides of the last two equations we obtain

e` =

n∑
k=`

qk

(
k
`

)
(64)

=

n∑
k=0

qk

(
k
`

)
, since

(
k
`

)
:= 0, ` > k

= E
(
K
`

)
, ` = 0, 1, ..., n.

This completes the proof. �

The above expressions for ek and qk can be written in matrix form as follows.


e0
e1
...

en

 =



(
0
0

) (
1
0

) (
2
0

) (
3
0

)
· · ·

(
n
0

)
0

(
1
1

) (
2
1

) (
3
1

)
· · ·

(
n
1

)
0 0

(
2
2

) (
3
2

)
· · ·

(
n
2

)
0 0 0

(
3
3

)
· · ·

(
n
3

)
...

...
...

...
...

...

0 0 0 0 · · ·
(

n
n

)




q0
q1
...

qn

 . (65)

Let en+1 := (e0, e1, ..., en)T , qn+1 := (q0, q1, ..., qn)T , where T denotes transposition, and Pn+1 denote the above (n+1)x(n+1)
upper triangular Pascal matrix, then

en+1 = Pn+1qn+1, (66)

where

Pn+1(i, j) =

(
i − 1
j − 1

)
1(i ≤ j). (67)

Notice that each column of Pn+1 can be easily computed by additions of elements of the previous column by using Pacal’s
triangle formulas. Multiplying both sides of this equation by e := (1, 1, ..., 1) ∈ Rn+1 we obtain another proof of (29), i.e.,

n∑
k=0

ek = ePn+1qn+1 =

n∑
k=0

qk2k = E(2K). (68)

Using qn+1 = P−1
n+1en+1 and Waring’s formulas (33) we obtain

P−1
n+1(i, j) = (−1)i+ j

(
i − 1
j − 1

)
1(i ≤ j). (69)

Hence, Pn+1(i, j) is also the ( j, i) minor of Pn+1.

For example, when n = 4 we obtain

P−1
5 =



(
0
0

)
−
(

1
0

) (
2
0

)
−
(

3
0

) (
4
0

)
0

(
1
1

)
−
(

2
1

) (
3
1

)
−
(

4
1

)
0 0

(
2
2

)
−
(

3
2

) (
4
2

)
0 0 0

(
3
3

)
−
(

4
3

)
0 0 0 0

(
4
4

)



=


1 −1 1 −1 1
0 1 −2 3 −4
0 0 1 −3 6
0 0 0 1 −4
0 0 0 0 1

 . (70)
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4. Newtons Identities and Some Consequences

This Section consists of two subsections. In the first subsection we will explore the elementary symmetric functions in
terms of the power sums. In the second subsection we will explore the complete homogeneous symmetric functions hk’s
in terms of the power sums.

4.1 Newton’s Identities Relating the ek’s to the Moments E(Kk) for k = 1, ..., n and Some Consequences

Here, we will explore Newton’s identities that relate the power sums to the elementary symmetric functions (Wikipedia
contributions, 2021, Feb. 4).

Substituting λk = 1(Ak), k = 1, .., n in the power sums pk, k ≥ 1 we obtain

pk =

n∑
i=1

(1(Ai))k =

n∑
i=1

1(Ai) = e1 ≡ K, k ≥ 1. (71)

Hence using (Wikipedia contributions, 2021, Feb. 4) we obtain

e1 = K, (72)

e2 =
1
2

K2 −
1
2

K,

e3 =
1
6

K3 −
1
2

K2 +
1
3

K,

e4 =
1
24

K4 −
1
4

K3 + (
1
8

+
1
3

)K2 −
1
4

K,

...

en = (−1)n
∑

m1+2m2+...+nmn=n

n∏
i=1

(−K)mi

mi!imi
∀mi ≥ 0.

Notice that since in the equation for e4 the coefficient of K2 is the sum of two values, the equation for en can be further
simplified.

Taking expectations we obtain

e1 = E(K), (73)

e2 =
1
2
E(K2) −

1
2
E(K),

e3 =
1
6
E(K3) −

1
2
E(K2) +

1
3
E(K),

e4 =
1

24
E(K4) −

1
4
E(K3) +

11
24

E(K2) −
1
4
E(K),

...

en = (−1)n
∑

m1+2m2+...+nmn=n

n∏
i=1

E[(−K)mi ]
mi!imi

, all mi ≥ 0.

Hence, since

ek = ek

(
E(K),E(K2), ...,E(Kk)

)
, k = 1, ..., n, (74)

we obtain that the ek’s are linearly related to the E(Kk)’s via a lower triangular matrix.

In what follows we will show how to obtain the above equations for ek, k = 1, ..., n via matrix multiplication of a submatrix
of Pn+1 by the inverse of a matrix Gn whose columns are consecutive geometric series. In particular, we could thus validate
the equations for e1, ..., e4.

Let Ln denote the yet unknown lower triangular matrix that relates ẽn := (e1, ..., en)T to mn := (E(K1), ...E(Kn))T , i.e.,
ẽn = Lnmn. Using E(K`) =

∑n
k=0 k`qk =

∑n
k=1 k`qk we obtain

mn = Gnq̃n, (75)
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where q̃n = (q1, ., , qn) and

Gn :=


11 21 · · · n1

12 22 · · · n2

...
...

...
...

1n 2n · · · nn

 . (76)

We thus obtain
mn = Gnq̃n. (77)

Hence,
ẽn = Lnmn = LnGnq̃n, (78)

where we also have ẽn := en+1(2, ..., n + 1) and q̃n := qn+1(2, ..., n + 1). Now, by using (66) we obtain

ẽn = P̃nq̃n, (79)

where we obtain P̃n from Pn+1 by deleting its first row and its first column. Note that since Pn+1 is an upper triangular
matrix so is its inverse, therefore, we can obtain P̃−1

n from P−1
n+1 by deleting its first row and its first column. Combining

(78) and (79) we obtain LnGn = P̃n. Hence,
Ln = P̃nG−1

n . (80)

Remark 4.1. It is a rare event that multiplication of matrices as in (80) gives a lower triangular matrix. Hence, we obtain
the following n(n − 1)/2 non trivial identities relating binomial coefficients to elements of G−1

n , i.e.,

[P̃nG−1
n ]k,` = 0, 1 ≤ k < ` ≤ n. (81)

4.2 Newton’s Identities Relating the hk’s to to the ek’s via the Transpose of Pascal’s Matrix and Some Consequences

Substituting in (9) λ` = 1(A`), ` = 1, .., n the complete homogeneous symmetric functions become

hk(λ1, ..., λn) =
∑
α∈Gk,n

k∏
i=1

1(Aαi ), (82)

=

k∑
`=1

(
k − 1
` − 1

) ∑
α∈Q`,n

k∏
i=1

1(Aαi )

=

k∑
`=1

(
k − 1
` − 1

) ∑
α∈Q`,n

1
(
∩`i=1Aαi

)
.

The term
(

k−1
`−1

)
is the number of monomials of degree k that after the substitution λi = 1(Ai), i = 1, ..., n become of degree

` ≤ k. Of the k indices we are left with k − ` indices that can be distributed among the ` indices in |G`,k−` | =
(

k−1
`−1

)
ways.

Remark 4.2. Notice that if we remove
(

k−1
`−1

)
from (82) we obtain another symmetric function.

Taking expectations we obtain

hk =

k∑
`=1

(
k − 1
` − 1

) ∑
α∈Q`,n

E1
(
∩`i=1Aαi

)
(83)

=

k∑
`=1

(
k − 1
` − 1

) ∑
α∈Q`,n

P
(
∩`i=1Aαi

)
=

k∑
`=1

(
k − 1
` − 1

)
e`.

Let hn := (h1, ..., hn)T and ẽn := (e1, ..., en)T , then the last equation can be written in matrix form as

hn = Bnẽn, (84)
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where

Bn(i, j) =

(
i − 1
j − 1

)
, i, j = 1, ..., n (85)

=

(
i − 1
j − 1

)
1(i ≥ j). (86)

Notice that Bn is a lower triangular matrix with a diagonal of ones and its k’s row is composed of the binomial coefficients
the expansion of (1 + 1)k−1.

For example, when n=5 using (70) we obtain

B5 :=



(
1−1

0

)
0 0 0 0(

2−1
0

) (
2−1

1

)
0 0 0(

3−1
0

) (
3−1

1

) (
3−1

2

)
0 0(

4−1
0

) (
4−1

1

) (
4−1

2

) (
4−1

3

)
0(

5−1
0

) (
5−1

1

) (
5−1

2

) (
5−1

3

) (
5−1

4

)



=


1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

 = PT
5 . (87)

and

B−1
5 =


1 0 0 0 0
−1 1 0 0 0

1 −2 1 0 0
−1 3 −3 1 0

1 −4 6 −4 1

 . (88)

More generally, using (67) we obtain
Bn = PT

n . (89)

Hence,
B−1

n = (PT
n )−1 = (P−1

n )T . (90)

So, the elements of the inverse of Bn are given by

B−1
n (i, j) = (−1)i+ j

(
i − 1
j − 1

)
, i, j = 1, ..., n. (91)

5. Inequalities Associated with K and Various Symmetric Functions

In what follows we will present four examples of pertinent inequalities. In the last example we will state Kounias’s and
Bonferroni’s inequalities (Grimmet & Stirzaker, 2001, p. 25). We will propose a conjecture associated Bonferroni’s
inequality that also holds for all n > 5. If this conjecture is true it will give a series of alternating higher order Bonferroni
type inequalities that in turn may give a series of alternating higher order Kounias type inequalities.

Example 5.1. Power means (Marcus & Minc, 1964, p.105):

Mr :=


(∏n

i=1 λi

)1/n
, r = 0(∑n

i=1 λ
r
i

n

)1/r
, r , 0.

(92)

For fixed (λ1, ..., λn) and r < s we have (Marcus & Minc, 1964, p.105):

Mr ≤ Ms. (93)

Let λi = 1(Ai), i = 1, ..., n. Hence, for s > r = 0 we obtain

en
1/n ≤

(K
n

)1/s

. (94)
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After some algebra and taking expectations we obtain

en ≤
EKn/s

nn/s , s > 0. (95)

Notice that the case s > r > 0 gives a trivial result.

Example 5.2. Let (Marcus & Minc, 1964, p.106)

pk := ek

(
n
k

)−1

(96)

denote the kth weighted elementary symmetric function of the 1(Ai)’s. Then (Marcus & Minc, 1964, p.106):

p1 > p1/2
2 > p1/3

3 > · · · > p1/n
n . (97)

Since,
p1 > p1/k

k , k > 1 (98)

we obtain (K
n

)k

> ek

(
n
k

)−1

, (99)

which after some algebra and taking expectations we obtain

ek < n−k
(
n
k

)
EKk. (100)

Example 5.3. For (a1, ..., an) and (b1, ..., bn) vectors in the nonnegative orthant of Rn and 0 < θ < 1, Minkowsky’s
inequality states (Marcus and Minc, 1964, p.109): n∑

i=1

(ai + bi)1/θ

θ ≤  n∑
i=1

a1/θ
i

θ +

 n∑
i=1

b1/θ
i

θ . (101)

Substituting ai = 1(Ai) and bi := 1(Ac
i ), i = 1, ..., n and noting that 1(Ai) + 1(Ac

i ) = 1, i = 1, ..., n, we obtain

nθ ≤

 n∑
i=1

1(Ai)

θ +

 n∑
i=1

1(Ac
i )

θ (102)

=Kθ + (n − K)θ,K ∈ {0, 1, ..., n}, θ ∈ (0, 1].

Taking expectations we obtain
E(Kθ) + E((n − K)θ) ≥ nθ, θ ∈ (0, 1]. (103)

Example 5.4. For the sake of completeness we mention Kounias’s and Bonferroni’s inequalities [1, p. 25]. Their proofs
by induction appears in (Grimmet & Stirzaker, 2003, p. 150). Then, based on the nonnegativity of probability, the union
bound, and Bonferroni’s inequality we will propose a conjecture.

(i) Kounias’s inequality

P(∪n
i=1Ai) ≤ min

k

 n∑
i=1

P(Ai) −
∑
i:i,k

P(Ai ∩ Ak)

 . (104)

(ii) Bonferroni’s inequality

P(∪n
i=1Ai) ≥

n∑
i=1

P(Ai) −
∑
α∈Q2,n

P(Aα1 ∩ Aα2 ). (105)

= e1 − e2.
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We will now show how to obtain the proposed conjecture.

(1) Since P(∪n
i=1Ai) ≥ 0, using (26) we obtain

e1 ≥ e2 − e3 + ... + (−1)n−2en. (106)

(2) Using the union bound and (26) we obtain

e2 ≥ e3 − e4 + ... + (−1)n−3en. (107)

(3) Using Bonferroni’s inequality and (26) we obtain

e3 ≥ e4 − e5 + ... + (−1)n−4en. (108)

Hence, we conjecture that this pattern continues until

en−1 ≥ en (109)

Notice that the last inequality holds since it obviously holds for each addend of en−1. Since we proved the prposed
conjecture for n ≤ 5 it needs to be resolved only for n > 5. For example, if the proposed conjecture holds we obtain for
n > 5

P(∪n
i=1Ai) ≤ e1 − e2 + e3. (110)

Area for further research would be to use the proposed methodology to find new proofs to the above two inequalities and
to resolve the proposed conjecture.

6. Exact Polynomial Time Algorithm for Computing the Expected Elementary Symmetric Functions for Finite
Sample Spaces

The complexity of computing all the ek’s is O(2n) since we need to compute all the 2n − 1 probabilities of the intersection
of all the subsets of {A1, ..., An}, excluding the empty set. Notice that n can reach values of O(2|Ω|) and then the complexity
becomes O(22|Ω| )). The proposed algorithm is based on (65), (66) where the vector of ek’s, en+1, is obtained by multiplying
Pascal’s upper triangular matrix, Pn+1 by the vector of the qk’s, qn+1. We can compute and store a matrix PN for N large
enough and then retrieve from memory the leading submatrix Pn+1 of PN . Hence, given qn+1, the complexity of computing
en+1 is O(n2). In what follows we will present an algorithm to compute qn+1 whose complexity is O(n|Ω|). Therefore, the
complexity of the proposed algorithm is O(n(max{n, |Ω|}).

Let A =∈ {0, 1}nx|Ω| denote the matrix whose elements are

ai, j :=
{

1, if ω j ∈ Ai

0, otherwise. (111)

Hence,

Ai = {ω j ∈ Ω : ai, j = 1, j = 1, . . . , |Ω|}. (112)

Let

K = sum(A) :=

 n∑
i=1

ai,1, ...,

n∑
i=1

ai,|Ω|

 . (113)

Let πi := P(ωi), i = 1, . . . , |Ω|, where
∑|Ω|

i=1 πi = 1. Notice that if all the ωi’s are equally likely then πi = 1/|Ω|. Hence, we
obtain

P(K = k) =

|Ω|∑
i=1

πi1(K(i) = k). (114)
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We have
qn+1 = 0
K = sum(A)
for i = 1, ..., |Ω|
q(K(i) + 1) = q(K(i) + 1) + πi

end.

(115)

Hence, the total complexity of computing en+1 is the sum of the complexities of computing K, qn+1, and then en+1, i.e.,

O(|Ω|n) + O(|Ω|) + O(n2) = O(n max{n, |Ω|}). (116)

Using en+1 we can compute P(∪n
i=1Ai) and E(2K) with added complexity O(n) which does not alter the above complexity

result.

7. Conclusion

The main results of this article are based on (i) taking expectations of the various symmetric functions (elementary, power,
and complete symmetric functions) after replacing their independent variables by the the indicator functions 1(Ai), i =

1, ..., n of the events Ai, i = 1, ..., n; and, (ii) by using the rather simple observation that fn(z) =
∏n

i=1(z − 1(An)) ≡
(z − 1)Kzn−K , where z ∈ C is a parameter and K is the number of Ai’s that occured; and, then expanding the LHS by
using Vieta’s formulas and taking expectations. We gave the following examples. (i) When z = 0 we obtained the
obvious identity P(K = n) ≡ P(∩n

1=1Ai) implying the identity P(K = 0) ≡ 1 − P(∪n
1=1Ai). (ii) When z = 1 we obtained

the inclusion exclusion formula for P(∪n
1=1Ai) as the sum of alternating expected elementary symmetric functions. (iii)

When z = −1 we obtained a formula for E(2K) as one plus the sum of all the expected elementary symmetric functions.
Verbally, E(2K) is the expected number of subfamilies of {A1, ..., An} all whose component events occur. (iv) When
z−1 = 1 − s, z−1 = 1 − exp(s), and z−1 = 1 − exp(it) we obtained the probability generating, the moment generating, and
the characteristic functions of K, respectively. Using the probability generating function thus obtained we gave a simpler
proof of Waring’s formulas that relates the qk := P(K = k)’s to the expected elementary symmetric functions, the ek’s. (v)
When zk = exp( 2πi

N k), k = 0, 1, ...,N − 1,N ≥ n, i =
√
−1, we presented a least squares efficient algorithm based on an

N-point IFFT (Inverse Fast Fourier Transform) to estimate the ek’s. (vi) When zk ∈ R \ 0, k = 1, ...,N,N ≥ n are distinct
we gave algorithms based on least squares (LS) and linear programming (LP) to estimate the ek’s. (vii) When Z = 1(Ai)
and Z ∼ N(0, 1) is standard normal we arrived at several new identities.
Using the above equation fn(z) = (z − 1)Kzn−K , we presented formal proofs of known formulas for the ek’s as a function
of the qk’s and gave some consequences. Then, we replaced in Newton’s identities the independent variables λ1, ..., λn by
λk = 1(Ak), k = 1, .., n, took expectations and gave some consequences. We also replaced in some well known inequalities
the independent variables λ1, ..., λn by λk = 1(Ak), took expectations and gave some consequences. Moreover, based on
the non-negativity of probability, the union bound, and Bonferroni’s inequality we showed that ek ≥ ek−1 − ek−2 + · · · +

(−1)n−k+1en for k = 1, 2, 3, n − 1 and conjectured that it is also true for all 3 < k < n − 1 and n > 5. Next, we presented a
polynomial time algorithm to compute the exact qk’s and ek’s for finite sample spaces.

Further research will focus on proving other existing results or obtaining other new results. In particular, finding new
proofs of Bonferroni’s and Kounias’s inequalities by using the above methodology and resolving the conjecture associated
with the union bound and Bonferroni’s inequality, for more details see Example 5.4. Error analysis of the proposed
estimation algorithms is also needed.
Finally, I would like to mention that the above methodology turned out to be one of my great teachers, hopefully of the
readers too.
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