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Abstract 

The purpose of this article is to demonstrate a practical application of control charts in an industrial process that has 

data auto-correlated with each other. Although the control charts created by Walter A. Shewhart are very effective in 

monitoring processes, there are very important statistical assumptions for Shewhart's control charts to be applied 

correctly. Choosing the correct Control Chart is essential for managers to be able to make coherent decisions within 

companies. With this study, it was possible to demonstrate that the original data collected in the process, which at first 

appeared to have many special causes of variation, was actually a stable process (no anomalies present). However, this 

finding required the use of autoregressive models, multivariate statistics, autocorrelation and normality tests, 

multicollinearity analysis and the use of the EWMA control chart. It was concluded that it is of fundamental importance 

to choose the appropriate control chart for monitoring industrial processes, to ensure that changes in processes do not 

incorporate non-existent variations and do not cause an increase in the number of defective products. 

Keywords: control chart, autocorrelated data, principal component analysis, multicollinearity 

1. Introduction  

The objective of this work is to suggest a procedure for choosing the appropriate control chart for a specific situation. In 

addition, demonstrate the practical application of this methodology in an industrial process that has the data 

auto-correlated with each other. 

Statistical Process Control (CEP) or also called control charts was created by Walter A. Shewhart in 1924. At first, few 

believed in the effectiveness of this new technique, but over time, Shewhart's control charts became essential for 

monitoring processes (MACHADO, 2006). 

CEP is one of the most fundamental methodologies developed to assist in process control and was used in the rise of 

Japan, as a leading nation in quality and from that the world has awakened to the importance of obtaining products 

through statistically stable and capable processes to meet customer requirements (RAMOS, 2005).  

The variability in a process reflects the differences between the units produced. Part of this variability is inherent to the 

process and comes from small disturbances or random causes (CLARO, 2008). Most of the time, the presence of 

random causes does not demand any reaction and, when the process has only this natural variability, it is said to be 

under statistical control. Processes under statistical control have predictable results, within statistical limits established 

through a preliminary set of data. However, a process can suffer major disturbances, the effect of which changes the 

parameters of the distribution of the random variable X, either by moving its mean away from the target value or by 

increasing its variability, which is generated by a special cause (CLARO, 2008).  

The special causes of variation are when the data are not random and do not come from the Normal distribution of 

probability (Gaussian curve). In addition, Control charts are intended to distinguish special causes from common causes 

of variation (COSTA; EPPRECHT; CARPINETTI, 2005). 

Generally, products that meet customer requirements come from stable processes, with natural and random variations. 

Statistical process control (CEP) is a problem-solving tool useful in achieving process stability and improving the 

ability to meet specifications by reducing variability (MONTGOMERY, 2004). 
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2. Statistical Methods  

2.1 Conventional Control Chart (X and MR)  

The control chart X and MR (individual value and moving range) of Shewhart it is not good for detecting changes in the 

process that are smaller than one sigma. Thus, statistical methods such as the EWMA graph (Exponentially Weighted 

Moving Average) have been widely used for the multivariate case in which the vector of means is subject to small 

changes (MACHADO, 2006). 

The classic Shewhart scheme for control chart of measurements of process input variables (X’s), consists of taking 

samples at regular time intervals. For each sample, the value of an appropriate statistic is determined. Then these values 

are plotted on charts where the control limits were calculated (LCL is the lower control limit and UCL is the upper 

control limit), whose spacing in relation to the central line (CL) is established based on the natural variability of the 

measures of X’s (values) of a product quality characteristic resulting from a process under control (MACHADO, 2006).  

The method for calculating the control limits for the X and MR control chart are basic and can be found in Ramos (2005) 

or in Costa; Epprecht; Carpinetti (2005). 

It is very important to note that conventional control charts require the data to be independent of each other and for 

these control charts are not suitable when there is permanent autocorrelation. This happens even if this autocorrelation is 

weak (MACHADO, 2006).  

If the data has a strong autocorrelation over time, then the control chart will produce many false alarms that can lead to 

incorrect statistical analysis and this can influence incorrect decision making (MONTGOMERY, 2004). However, the 

assumption of uncorrelated observations is not always satisfied in some manufacturing processes. Examples include 

chemical processes in which consecutive measurements of a process variable or a product characteristic tend to have a 

high degree of correlation (MONTGOMERY, 2004). 

Nowadays, data autocorrelation is very frequent in many batch and continuous processes, mainly in the chemical 

industry and in the metallurgical industry. In general, these processes rarely produce independent observations, so they 

cannot be monitored by conventional Shewhart charts (COSTA; EPPRECHT; CARPINETTI, 2005). Therefore, it is 

very important to check before starting the monitoring of a process, if the data from measurements are independent or if 

they are autocorrelated, because an inadequate control chart, which produces excessive false alarms, will end up being 

interpreted incorrectly by the personnel involved in monitoring the process. 

2.2 EWMA Control Chart (Exponentially Weighted Moving Average) 

A major disadvantage of any Shewhart control chart is that it uses only the information about the process contained in 

the last plot point, and ignores any information given by the entire sequence of points. This characteristic makes the 

Shewhart control chart relatively insensitive to small changes in the process in the magnitude of 1.5 σ or less 

(MONTGOMERY, 2004).  

EWMA is also widely used in estimation methods and for forecasting time series and is used in statistical process 

control charts. The EWMA consists of the exponentially weighted average of the observations: the weights decrease 

according to the age of the observations, in geometric progression, whose factor is determined by the damping constant 

λ. In the application of EWMA in statistical process control, the most usual is to apply it to individual observations of 

measurable characteristics.  

The exponentially weighted moving average (EWMA) control chart (shown in Figure 1) is indicated when it is 

necessary to detect small changes. The red lines represent the control limits (UCL and LCL) and the green line 

represents the process average (CL). 

 
Figure 1. EWMA chart example 
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This chart was introduced by Roberts (1959) and this chart is defined as: 

ɀt = λᵪt + (1-λ) ɀt-1                                                          (1) 

Where λ is the damping constant such that 0 <λ ≤1 and the initial value (required with the first sample at t = 1). The 

index t = 1, 2, ... represents the order number of the observation and for the initial value, Z0 = µ0 (which is the target 

value or the mean value in control of the variable X) is used. 

Assuming that the Xi’s are independent and identically distributed, with variance σ2
X, the variance of Zt is given by: 

                                 (2) 

The upper control limit (UCL), the middle line (ML) and the lower control limit (LCL) of the EWMA chart are given 

by: 

                                                (3) 

                                (4) 

Since K is the opening coefficient of the control limits (“K-sigma limits”) and σX is the standard deviation of the 

process when in control. 

The parameters of an EWMA control chart are, therefore, the damping constant λ and the opening coefficient of the 

control limits K. The process is considered out of control and actions must be taken whenever Zt is outside the range of 

limits of control. While the process is in control, Zt oscillates around the midline of the graph; if there is a change in the 

mean of variable X, Zt will grow (or decrease) until it reaches the new value of the mean and then it will oscillate 

around itself. At each restart of the process after the elimination of the special cause and consequent readjustments, Z0 = 

µ0. 

For small values of the damping constant λ, the EWMA scheme detects maladjustments of small magnitude more 

quickly. Small values of λ make the historical data (observations prior to the last available) have a large weight in the 

calculation of Zt and, conversely, large values of λ make the last observation have a large weight in the calculation of Zt. 

For λ = 1, the EWMA graph will be equal to the Shewhart graph, and the historical data no longer have any influence on 

the calculation of Zt. 

The choice of parameters to be used in the EWMA control chart should be based on the analysis in Table 1. 

Table 1. Average sequence lengths for various EWMA control schemes (MONTGOMERY, 2004) 

Average change 

(multiple of σ) 

K= 3.054 

λ= 0.40 

K= 2.998 

λ= 0.25 

K= 2.962 

λ= 0.20 

K= 2.814 

λ= 0.10 

K= 2.615 

λ= 0.05 

0 500 500 500 500 500 

0.25 224 170 150 106 84.1 

0.50 71.2 48.2 41.8 31.3 28.8 

0.75 28.4 20.1 18.2 15.9 16.4 

1.00 14.3 11.1 10.5 10.3 11.4 

1.50 5.9 5.5 5.5 6.1 7.1 

2.00 3.5 3.6 3.7 4.4 5.2 

2.50 2.5 2.7 2.9 3.4 4.2 

3.00 2.0 2.3 2.4 2.9 3.5 

4.00 1.4 1.7 1.9 2.2 2.7 

Table 1 provides important information on how to choose the parameters to adjust the control limits in order to ensure 

the correct monitoring of the EWMA control chart. The first column “Change in average” refers to how sensitive the 

process will be to detect a change in average (in relation to the process σ). The other columns show examples of the K 

and λ values to be used and what would be the performance and characteristics of the EWMA control chart based on the 

sample size that will be needed to ensure the correct monitoring of the process. For example, if the adjustments are K = 

3.054 and λ = 0.40 and if you want to verify a change in mean variation of 0.50 σ, then a sample of size 71.2 will be 
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required, that is, you will need to obtain 72 measurements to place on the EWMA control. Using Table 1, it will be 

possible to determine exactly what the sensitivity level of the control chart will be in order to detect changes in the 

variation of the mean and determine what should be the minimum sample size necessary for the EWMA control chart to 

be effective in this detection. 

2.3 The Sample Autocorrelation Function and Autoregressive Models (ARIMA) 

According to Schneider and Pruett (1994) the sample autocorrelation function is defined by: 

                           (5) 

In most manufacturing processes, autocorrelation is positive, that is, a value below the large average at time (t-1) tends 

to be followed also by a value below at time t, and vice versa, which ends up causing observations to be ordered 

chronologically in a line graph (CLARO, 2008). In processes with negative autocorrelation, consecutive observations 

alternate above and below the global average, also creating a typical pattern in the graph, which reveals the absence of 

randomness (CLARO, 2008). 

Models called ARIMA were created by Box and Jenkins in 1970 and these models are considered stochastic and 

describe a large number of industrial processes (CASTILLO, 2002). ARIMA is the acronym used by the combination of 

autoregressive (AR), integrated (I) and moving average (MR), however this model is routinely also called by the 

acronym (AR). According to Castillo (2002), the observations of an ARIMA model are calculated by: 

                           (6) 

Autoregressive models are represented by: 

                         (7) 

Using θk=0, Ɐ k. The value of Xt is a linear combination of the most recent past “p” values, plus the mean (µ) and the 

residual (or random error), being et ~ IIDN(0,ϭ2
e), which incorporates what is new in the series at time t and cannot be 

explained by past values. The values of Xt-1, Xt-2, ... are independent of et . The autoregressive coefficient of the lag “k” 

is represented by Øk. For this model the values are regressed on themselves, using the same procedure for linear 

regression (CASTILLO, 2002). 

The first-order autoregressive model AR(1), it is often adopted to represent manufacturing processes and this model is 

often applied in CEP (statistical process control). Observations of this process can be written using θk=0, Ɐ k  and θk=0 

for k >1. In this model the properties will be calculated by: 
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                           (8) 

The model parameter is Ø (the subscript is usually suppressed on first order models) and ζ is a constant called drifting 

parameter (CASTILLO, 2002). For the process to be stationary the condition is │Ø│<1. When │Ø│≥1 the process is 

called non-stationary. In this case, the mean and the variance are not constant over time and there is no tendency for the 

process to return to the target value without any external interference and this makes it impossible to use the 

conventional control charts created by Walter Shewart. 

Berthouex, Hunter and Pallesen (1978) is the first scientific publication on the monitoring of processes using residues 

from models of the ARIMA family as control statistics, for cases in which there is autocorrelation of the original values. 

The autocorrelated processes are non-random in nature, so it was proposed to adjust their observations (measurements) 

for a model of the ARIMA family and to monitor the values using the resulting residues (CLARO, 2008). As these 

residues have the properties of independence and normality, they can be used in a graph for individual observations, 

with control limits calculated in the conventional way, in which it is possible to detect the special causes. 

Montgomery (2004) proposed the use of the EWMA graph as an approximation to the ARIMA models to adjust the 

observations of the process. This monitoring method, called EWMA, contains a moving central line and is based on the 

fact that the conditional average of a stationary time series is constantly changing and the sequence of EWMA values 

allows to estimate these changes. The information on the state of statistical control and the dynamics of the process, 

represented respectively by the EWMA and the original observations, are gathered in the same graph. 

Claro (2008) mentioned that when considering the monitoring of the mean of an autocorrelated process, it is necessary 

to create some way to represent the variable of interest, to be monitored in the control graph. Among the various 

possibilities for this, it is appropriate to use the residues after adjusting some autoregressive model. Monitoring the 

process through the model residues implies the following drawbacks: (a) requires intermediate calculations from the 

user before the value is plotted on the chart; (b) when the autocorrelation is positive, or when the displacements of the 

mean are small, the efficiency of the statistical device is low; (c) the interpretation of waste letters may not be so simple 

for a good part of the users; (d) adjusting and maintaining an appropriate model for each variable can be extremely 

laborious. 

2.4 Multiple Linear Regression, Residual Analysis and Multicollinearity 

The multiple regression technique is very efficient to develop statistical models that quantify the influence of the input 

variables of the process to predict the output variables (BENYOUNIS AND OLABI, 2008).   

Montgomery and Runger (2009), explain that multiple regression is used for situations involving more than one 

regressor, as:  

  nn xxxY ...22110
                            (9) 

In this expression Y represents the dependent variable, the independent variables are represented by and is the random 

error term. The unknown parameters are β0, β1, β2 and βn. In this model, the β0 parameter is the intersection of the plane, 

β1, β2 and βn are the partial regression coefficients. 

The models that include interaction effects, according to Montgomery and Runger (2003), can be analyzed by the 

multiple regression method. An interaction between two variables can be represented by a cross term, because if we 

admit that x3 = x1x2 and β3 = β12, then the model, including terms of interaction, uses:      

  ...3322110 xxxY                              (10) 
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The coefficient of multiple determination (R2) is a measure of the amount of reduction in the variability of Y, obtained 

by the use of the Regressors X1, X2... Xk. The range of variation of this coefficient is zero to one (0 ≤ R2 ≤ 1). If the 

value of R2 is close to one, it means that the various variables X measures, are responsible almost entirely for the 

variability of Y. Otherwise, R2 will display a value close to zero (MONTGOMERY; RUNGER, 2003). 

The residuals of a regression model are ei = yi – ŷ0, i = 1, 2, ..., n, where yi is a real observation and ŷi is the 

corresponding adjusted value from the regression model.  

The estimation of the model parameters requires the assumption that the errors (residuals) are random variables, not 

correlated, with zero mean and constant variance. For the application of residues in statistical process control (CEP), 

errors must be normally distributed (MONTGOMERY; RUNGER, 2003). 

The premises of normality and stability of the residues must be verified, which can be done by examining the residual 

graph (MONTGOMERY; RUNGER, 2003).  

Selection criteria can be classified into qualitative and quantitative. The qualitative criteria consider the link between the 

model and the studied process, its interpretability and comprehensibility. The quantitative criteria take into account the 

quality of the adjustment, the complexity and the generability of the model and must also be interpretable, make sense 

and be understandable (MYUNG; PITT; KIM, 2003). 

In multiple regression problems, we expect to find dependencies between the response variable Y and the regressors Xj. 

In most regression problems, however, we also find dependencies between regressors Xj. In situations where these 

dependencies are strong, we say that there is multicollinearity. Multicollinearity can have serious effects on the 

estimates of the regression coefficients and on the general applicability of the estimated model (MONTGOMERY; 

RUNGER, 2003). 

According to Montgomery and Runger (2003), the variance inflation factor (FIV) for βj is used to measure 

multicollinearity in the model as: 

FIV (βj ) =  1/(1 – R2 )        j = 1, 2, . . ., k                      (11) 

An alternative to eliminate multicollinearity is the application of Principal Component Analysis (MONTGOMERY, 

2013). 

2.5 Principal Component Analysis (Multivariate Statistics) 

Principal Components Analysis (PCA) is a mathematical procedure that uses an orthogonal transformation (vector 

orthogonalization) to convert a set of observations of possibly correlated variables into a set of variable values linearly 

not correlated with major component calls. The number of principal components is always less than or equal to the 

number of original variables depending on the application area, the PCA is also known as a discrete Karhunen-Loève 

(KLT) transform, Hotelling transform or orthogonal decomposition itself ( POD). 

The PCA was invented in 1901 by Karl Pearson. It is now most commonly used as an exploratory data analysis tool and to 

make predictive models. PCA can be done by decomposition into autovalues (own values) of a covariance matrix, usually 

after centralizing (and normalizing or using Z-scores) the data matrix for each attribute. The PCA results are generally 

discussed in terms of component scores (scores), also called factor scores (the transformed variable values correspond to 

a particular data point) and the weight by which each normalized variable The original must be multiplied to obtain the 

component score.  

Its main objective is to explain the structure of variance and covariance of a random vector, composed of random 

p-variables, by constructing linear combinations of the original variables. These linear combinations are called main 

components and are not correlated with each other (MINGOTI, 2007).  

Obtaining the main components involves the decomposition of the covariances matrix of the random vector of interest. 

If any transformation of this random vector is made, the components must be determined using the covariances matrix 

relative to the transformed vector. A very usual transformation is the standardization of the variables of the vector by the 

respective means and standard deviations, generating new variables centered in zero and with variances equal to one. In 

this case, the main components are determined from the covariances matrix of the original standardized variables, 

which is equivalent to extracting the main components using the correlation matrix of the original variables (MINGOTI, 

2007). 

Montgomery (2004) states that the main objective of the main components is to find the new set of orthogonal 

directions that define the maximum variability in the original data, which, hopefully, will lead to a description of the 

process requiring considerably Less variable than the original P's. The information contained in the complete set of P 

main components is exactly equivalent to the information contained in the complete set of all the original process 
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variables. 

In general, we will want to retain sufficient components to explain a reasonable proportion of the total variability of the 

process, but there are no clear guidelines on how much variability needs to be explained in order to produce an effective 

procedure of Process monitoring (MONTGOMERY, 2004). 

Johnson and Wichern (2007) demonstrate that only the components corresponding to the autovalues (latent roots) of 

magnitudes greater than one should be considered. Another way to define the number of components is through the 

percentage of variance explained. In this case, the researcher should judge if the components sufficiently explain the 

relationship between the original P variables. Generally, a good degree of explanation is higher than 75% and the 

property of the main components is the independence between them. In this way, they can replace the original variables 

and eliminate the multicollinearity problem (JOHNSON; WICHERN, 2007). 

According to Mingoti (2007), being the auto vector ei denoted by ei = (ei 1 ei 2... eip) '. Consider the random vector Y = O 

' X, with O PXP being the orthogonal matrix of the PXP dimension, consisting of the normalized vectors of Matrix ∑ pxp, 

such as: 

                       (12) 
The vector's Y component of p linear combinations of random variables X’s, vector has vector of averages equal to the ' 

µ and the matrix of covariances pxp, that is a diagonal matrix, whose elements are equal to there = i, i = 1.2,, p this is : 

                                  (13) 

So, as demonstrated by Mingoti (2007), the random variables that constitute the vector Y are not correlated with each 

other. 

3. Results and Discussion 

Table 2 shows the process input variables (Xs) and the output variable (Y), monitored in the studied process. Statistical 

procedures will be applied to analyze the data presented in Table 2. These input variables (Xs) are related to a specific 

steel heat treatment process and the output variable (Y) refers to a mechanical property of steel, which is resulting from 

the adjustments of these factors (Xs). This article will be based on this example of data to demonstrate all the statistical 

analyzes that will come later, with the aim of portraying the common situations resulting from monitoring processes 

carried out in industries. 
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Table 2. Input variables (Xs) and output variable (Y) 

X1 X2 X3 X4 X5 X6 Y 

7,09 50,51 31,08 0,85 0,97 0,62 528,08 

6,31 49,95 27,20 0,85 0,95 0,60 526,47 

6,77 49,95 22,76 0,82 0,91 0,58 524,37 

8,30 49,40 23,87 0,85 1,07 0,61 530,24 

8,23 46,07 23,31 0,93 1,03 0,61 529,37 

7,19 46,62 29,97 0,83 0,93 0,61 528,47 

7,14 49,40 33,86 0,91 1,01 0,61 527,36 

10,72 54,95 33,30 0,81 0,94 0,61 527,53 

10,41 54,95 28,86 1,05 1,12 0,60 527,58 

9,43 54,39 31,64 0,92 1,01 0,60 527,14 

10,10 54,39 27,20 0,92 1,07 0,60 527,92 

8,99 53,84 28,86 1,20 1,30 0,60 527,58 

8,17 45,51 33,86 0,83 0,95 0,61 526,64 

8,00 44,96 34,97 0,64 0,83 0,61 528,19 

6,12 46,07 31,08 0,87 0,96 0,61 528,08 

5,45 47,73 29,42 0,70 0,85 0,62 527,97 

6,33 48,29 27,20 0,72 0,87 0,62 528,86 

8,18 44,96 23,31 0,86 0,98 0,62 529,41 

8,05 46,62 29,42 0,87 0,94 0,62 529,08 

8,16 49,40 25,53 0,80 0,93 0,61 528,69 

8,47 50,51 26,09 0,97 1,10 0,61 528,53 

9,60 52,73 26,09 0,87 1,03 0,61 528,69 

9,78 52,73 23,31 1,14 1,19 0,61 528,86 

10,11 51,62 22,76 0,81 0,89 0,61 529,41 

7,98 49,95 25,53 0,79 0,96 0,61 529,58 

6,73 48,29 27,75 0,98 1,05 0,62 528,30 

7,06 49,95 26,09 0,84 0,99 0,62 528,53 

9,67 49,40 28,31 0,74 0,84 0,62 529,30 

9,78 48,29 24,98 0,84 0,93 0,61 529,86 

8,97 46,07 31,64 0,78 0,90 0,61 529,80 

9,37 47,73 32,19 1,17 1,27 0,61 529,91 

7,70 47,18 25,53 1,17 1,20 0,61 529,69 

8,08 46,62 22,76 0,74 0,84 0,62 530,03 

8,52 46,07 22,20 0,84 1,00 0,62 530,86 

8,83 44,96 24,98 0,98 1,05 0,62 530,19 

7,95 47,18 26,09 0,88 0,95 0,62 529,58 

8,56 47,73 23,87 0,81 0,96 0,62 530,25 

8,03 47,18 29,97 0,90 0,99 0,62 529,36 

8,18 46,62 28,86 0,82 0,92 0,62 529,03 

9,04 47,73 27,20 0,95 1,05 0,62 529,58 

 

A Flowchart was created to describe in detail all the phases of statistical analysis that will be necessary for the correct 

application of the Control Chart. In this article, the control chart will have the function of providing statistical 

monitoring of Variable Y (response variable). The detailed phases are described in Figure 2. 
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Description of the steps.

First statistical

procedure (Creation of

Control Charts).

4

Third statistical

procedure (multiple 

regression ).

2
Yes No

Second statistical

procedure 

(autoregressive model).

STATISTICAL ANALYSIS STEPS

1

3

5

6

7
Yes No

8

9

10

Fourth statistical

procedure (Principal 

component analysis).

11

12

13

14

15
Yes No

17

16

18

19

20

Connect 1

1 – Run the Normality test of 

the response variable (Y).

2 – Is the response variable 

(Y) Normal?

3 – No. Stops analysis

procedure.

4 Create the X-Rm and EWMA 

control Charts.

5 – Analyze the Control

Charts.

6 – Run the Autocorrelation 

Test for (Y).

7 – Does the data (Y) have 

autocorrelation?

8 – No. Follow with the 

interpretation of the Control 

Cards.

9 – Proceed to the second 

statistical procedure.

10 – Create the 1st order 

autoregressive model.

11 – Take the test of 

significance of the variable (X) 

and create the mathematical 

model.

12 – Make the test of Normality 

and autocorrelation of residues 

generated by the model.

13 – Apply the EWMA Control 

Chart to the residues 

generated by the model.

14 – Statistically analyze all the 

information generated during 

the second statistical 

procedure.

15 – Were the analyzes and 

applications of statistical 

techniques sufficient to model 

the process and create the 

correct monitoring?

16 – Yes. End of analysis.

17 –No. Proceed to the third 

statistical procedure.

18 – Apply multiple regression 

for the variables (Xs) and for 

the response variable (Y). 

Take the significance test and 

create the mathematical 

model.

19- Do the Normality Test, the 

autocorrelation test and create 

the residues control chart 

(EWMA).

20- Analyze all data generated 

by the third statistical 

procedure.
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Figure 2. Flowchart of the phases of the statistical analysis used for the application of the control chart for the process 

3.1 Normality Test of the Variable (Y) and Application of the Control Chart 

First, the data Normality test was performed (on variable Y) and it was concluded that the data can be considered 

Normal, since the P-value is greater than 0.05, using 95% confidence (Figure 3). 

 

Figure 3. Data Normality Test (Variable Y) 

Then, after verifying the Normality of the data (Y), which is a requirement for the application of the control charts, the 

control chart for individual values and moving range was applied (Figure 4). In this case, there is no subgroup within 

the sampling of this process, as the measurements are individual and a pre-established frequency was used to collect this 

data. 
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Figure 4. Control Chart for Individual Values and Moving Range (Variable Y) 

Analyzing the control chart (Figure 4), it is possible to observe that the process is unstable, as there are many special 

causes of variation (anomalies), being possible to observe some points outside the control limits both in the individual 

value graph (X) and on the moving range (MR) graph. In addition, there are sequences of several points below the 

midline and also above the midline, which is characterized as the absence of randomness, according to the criteria 

adopted to analyze the Shewhart control charts. This is the conventional analysis normally performed by technicians 

within the industries. However, it is known that changing the configurations of industrial processes in large companies 

can cause the so-called “Super control”, which means the frequent alteration of the process adjustments seeking to 

improve their performance, which can cause even greater instability throughout the process, as changing the settings in 

processes requires a very detailed analysis, as this change requires the creation of new standard operating procedures 

and also validation by engineering. For this reason, the authors of this article decided to apply other statistical methods 

to verify whether this process is really unstable, as the preliminary analysis had revealed. 

It is known that the Shewhart control charts, although very efficient for detecting special causes and for monitoring 

variations in the process, have some deficiencies. Two of these deficiencies will be cited below: 

a) Shewhart's control charts are efficient for detecting variations (in changes in the mean) from 1.5 σ to more. However, 

studies prove that these control charts are not efficient for detecting changes in means in processes if the changes are 

less than 1.5 σ (MONTGOMERY, 2004); 

b) Shewart's control charts cannot be applied in self-correlated processes, because when there is autocorrelation in the 

data that will be submitted for monitoring, the value of the previous measurement can influence the result of the next 

measured value (in the later time) or in the next values . So, when there is evidence of the occurrence of data 

autocorrelation (over time), current scientific studies prove the inefficiency of Shewhart's control charts for monitoring 

the process. Scientists since 1960 have studied and proved the inefficiency of Shewart's control charts for some 

situations and these scientists have created new control charts that can be more effective in these situations 

(MONTGOMERY, 2004). Shewart could not have predicted these flaws, as his control charts were created in 1920 and 

scientists discovered these flaws only about 40 years later. 

Returning to the flow of studies demonstrated in this article. In the Figure, data (Y) were used for the application of the 

EWMA control chart. This procedure was performed only to confirm that the instability of the process really exists and 

that this instability can be perceived at any level of variation sigma (σ) in relation to the displacement of the mean, since 

the EWMA control chart has a much higher sensitivity to detect variations in processes (MONTGOMERY, 2004).  For 

this study the configurations of the parameters of the EWMA chart were K= 3.0 e λ= 0.20. In these conditions, using the 

minimum sample size of 40 values, it will be possible to perceive a change in the process average between 0.50 σ to 

0.75 σ, which indicates a very sensitive graph to detect the change in the process average. 

The EWMA control chart (Figure 5) also demonstrated the existence of special causes of variation (points outside the 

control limits), which confirmed the instability of the process. 
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Figure 5. Application of the EWMA control card to the output variable (Y) 

To test the second possibility (b, mentioned above), the data autocorrelation calculation (Y) was performed and the 

result showed that the original data have first-order autocorrelation, that is, the previous measurement, for a reason still 

unknown, influences and changes the result of the next measurement, rendering statistical analyzes incorrect using 

Shewhart's conventional control charts. It is possible to verify in the autocorrelation graph (Figure 6) that the first 

column indicates a 1st order autocorrelation and this implies that it will be necessary to apply forecasting models (AR1) 

to statistically model this process. 

 

Figure 6. Autocorrelation of the output variable (Y) 

4. Creation of the First-Order Autoregressive Forecasting Model (AR1) 

Using the data contained in Table 3, an AR1 Model was created, according to the procedure described by Montgomery 

(2004). 
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Table 3. Output variable (Y) organized for the creation of the AR1 model 

(Y) (Y - 1) = X 

526,47 528,08 

524,37 526,47 

530,24 524,37 

529,37 530,24 

528,47 529,37 

527,36 528,47 

527,53 527,36 

527,58 527,53 

527,14 527,58 

527,92 527,14 

527,58 527,92 

526,64 527,58 

528,19 526,64 

528,08 528,19 

527,97 528,08 

528,86 527,97 

529,41 528,86 

529,08 529,41 

528,69 529,08 

528,53 528,69 

528,69 528,53 

528,86 528,69 

529,41 528,86 

529,58 529,41 

528,30 529,58 

528,53 528,30 

529,30 528,53 

529,86 529,30 

529,80 529,86 

529,91 529,80 

529,69 529,91 

530,03 529,69 

530,86 530,03 

530,19 530,86 

529,58 530,19 

530,25 529,58 

529,36 530,25 

529,03 529,36 

529,58 529,03 

The AR1 model was created based only on the variable (Y) in relation to a previous value of that same variable (Y), that 

is, the model describes what would be the influence that a previously measured value (in Y) would have on the next 

measurement (in Y). The autoregressive model was generated and, consequently, the residues of this AR1 model were 

generated and the statistical test is shown in Table 4. 

Table 4. Statistical test for the creation of the AR1 model 

Term Coef SE Coef T-Value P-Value VIF 

Constant 241.80 73.30 3.300 0.002  

X 0.543 0.139 3.910 0.000 1.00 

      

S R-sq R-sq(adj)    

1.08356 29.28% 27.37%    

Using the residues generated by the AR1 model, the autocorrelation test was performed and as shown in Figure 7, it is 
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possible to verify that this procedure using the AR1 model neutralized the autocorrelation of the residues, as the values 

are within the specification limits established for the verification of the existence of autocorrelation. 

 

 

Figure 7. Autocorrelation of residues generated by the AR1 model 

However, the AR1 model, despite eliminating autocorrelation, demonstrated that the residues are not Normal (Figure 8), 

with P-value <0.05 (for 95% confidence), which makes it impossible to apply the Control Chart, as normality is a 

prerequisite for that application. 

 

Figure 8. Normality test of residues generated by the AR1 model 

4.1 Multiple Regression Modeling 

After realizing that the AR1 model used for the output variable (Y) did not allow the correct creation of the control chart, 

multiple regression was used (procedure recommended by Montgomery (2004)) to create a regressive model that will 

consider the relationship between variables (Xs) and variable (Y). From this modeling it was possible to obtain the 

residues and from these residues, it was possible to test normality as shown in Figure 9. 

Then it was possible to create the model: 

Y = 463.65 + 0.4261  X1 - 0.1347 X2 - 0.0957 X3 - 3.99 X4 + 5.35 X5 + 112.7 X6            (14) 
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Figure 9. Residual normality test (by multiple regression model) 

The residues were considered normal with P-Value > 0.05 (for 95% confidence), meeting the normality criterion that is 

necessary for the creation of the control chart. In addition, the waste generated by this model is not autocorrelated, 

which meets yet another important criterion for the application of the correct control chart (Figure 10). 

 
Figure 10. Autocorrelation test of residues (by multiple regression model) 

After verifying the normality of the residues and the absence of autocorrelation, the EWMA control chart was used to 

monitor the process (Figure 11). In the EWMA chart, it was possible to observe that the process is stable, as there are no 

special causes of variation. 
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Figure 11. EWMA control chart (for waste) 

When analyzing the statistical test generated by the model by multiple regression (Table 5), it was possible to verify the 

existence of multicollinearity between two factors considered influential (in this case, 90% confidence in the statistical 

test) and this consequently made this model unstable. , as this model may generate unreliable residues, which will make 

it impossible to use these residues to create the appropriate control chart. 

Analyzing the results of the statistical tests (Table 5) it is possible to verify that the factors X4 and X5 considered 

influential in this process (using 90% confidence), have a very high FIV (inflation factor) value (> 12), this indicates the 

existence of high multicollinearity and models that have high multicollinearity cause errors in predictions and 

consequently the residues become unreliable to be monitored by a control chart. According to Montgomery (2004) 

when the factor is inflated above 5, the model is strongly influenced by multicollinearity. In this case, it will first be 

necessary to apply the Principal Component Analysis (multivariate statistics) to remove the multicollinearity, then 

perform another multiple regression with the components, to verify that the multicollinearity has been eliminated and 

only after that process, to be able to create a free model of that influence. In addition, it will be necessary to carry out 

the Normality test and the autocorrelation of the residues to verify that the data meet these criteria, and only then use the 

control chart. 

Table 5. Statistical test for creating the multiple regression model 

Term Coef SE Coef T-Value P-Value FIV 

Constant 463.650 8.100 57.240 0.000  

X1 0.4261 0.0704 6.050 0.000 1.38 

X2 -0.1347 0.0351 -3.840 0.001 1.86 

X3 -0.0957 0.0214 -4.460 0.000 1.02 

X4 -3.990 2.090 -1.910 0.065 12.19 

X5 5.35 2.420 2.210 0.034 12.46 

X6 112.7 11.9 9.51 0.000 1.38 

      

S R-sq R-sq(adj)    

0.4684 88.29% 86.16%    

5. Transformation to Principal Component Analysis  

It is possible to standardize all the investigated variables by transforming them into a single unit of measurement (Z). 

Thus, all factors independently of their unit, will have a single unit of measurement to be transformed into main 

components by multiplying these variables standardized by the constants (PCs) calculated by the Software Minitab. 

First were placed in a table the values of the adjustments of the investigated factors and the response variable (Y) and at 

the end of the Appendix A (in the last lines) were calculated the average and standard deviation of each column of 

factors, according to the procedure for transformation into main components described by Mingoti (2007).  

37332925211713951

0,4

0,3

0,2

0,1

0,0

-0,1

-0,2

-0,3

-0,4

Sample

E
W

M
A __

X=-0,0000

UCL=0,3938

LCL=-0,3938

EWMA Chart of RESI1



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 4; 2021 

112 

Then all factor adjustment values were transformed into standardized variables (Appendix A). This transformation was 

performed by subtracting the factor adjustment value minus the mean value of this factor, then the resulting value was 

divided by the standard deviation of the respective factor (it is important to inform that only the factors will undergo this 

transformation, the response variable will not be transformed (Appendix B). For example, (1st line of Appendix B): 

X1 = (7.09 – 8.28) / 1.25 = - 0.955 

X2 = (50.51 – 48.90) / 2.91= 0.547 

X3 = (31.08 – 27.56) / 3.52= 0.995                        (15) 

All values transformed into a standardized variable regarding the factors are presented in Appendix B. 

Then the eigenvalues and eigenvectors were created, which will be used to create the main components later (in 

Appendix B). 

First the factors were standardized and then constants that will be used to transform the standardized values into main 

components were calculated. 

The constants (PCs) correspond to the auto vectors, used for the transformation of the data into principal components, 

and are presented in Table 6. 

Table 6. Auto vectors (PCs, Calculated using Minitab Software) 

Variable PC1 PC2 PC3 PC4 PC5 PC6 

X1 0,381 0,147 -0,381 0,697 0,449 0,019 

X2 0,440 0,440 -0,164 0,051 -0,744 -0,055 

X3 -0,042 0,320 0,853 0,410 0,017 0,000 

X4 0,545 -0,368 0,227 -0,131 0,083 -0,701 

X5 0,551 -0,362 0,219 -0,117 -0,012 0,71 

X6 -0,242 -0,623 -0,037 0,559 -0,488 -0,035 

The conversion of the data to principal components must be done by the sum of the multiplication of each adjustment 

value of each factor (X1, X2, X3, X4, X5, X6), by the constants (PCs) referring to each factor (MINGOTI, 2007).  

To apply multiple regression first it was necessary to multiply each of the calculated PCs constants (in Table 6) by the 

respective factors, that is, by the standardized values of the factors investigated in all experimental conditions.  

Then, finally, the component values were calculated to later be created the mathematical model using the main 

components. Table 6 shows the values of the constants that were calculated. For example, in the first row in Appendix C, 

each PC1 for each of the factors was multiplied (X1, X2, X3, X4, X5, X6) for each standard value of each factor in the first 

row (Table 6).  

Example: 

PC1 = (0.381*-0.955)+(0.440*0.547)+(-0.042*0.995)+(0.545*-0.209)+(0.551*-0.206)+(-0.242*0.594)= -0.536    (16) 

Appendix C shows the PC values and contains the response variable (Y) and from these values it was possible to use the 

multiple regression method and create the mathematical model by principal components. 

Table 7 shows the statistics related to the principal components, for the purpose of choosing the components to be used 

in the mathematical model. The explanation of the criteria for choosing the variables will be detailed later. 

Table 7. Main components for each experimental condition 

Variable PC1 PC2 PC3 PC4      PC5   PC6 

Eigenvalue  2,4643 

1,321

0 0,9948 

0,813

1 

   

0,3654 0,0414 

Proportion 0,411 0,220 0,166 0,136 

    

0,0610 0,0070 

Cumulative   0,411 0,631 0,797 0,932 

    

0,9930 1,0000 

The Contents "Autovalues" contained in Table 7 is used to choose the main components, for the modeling (JOHNSON; 

WICHERN, 2007). 

The Contents “ Cumulative” defines which percentage of influence has each main component in the response (showing 
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in cumulative form). In this case, PC1 explains 41.1% of this phenomenon, the components PC1 + PC2 explains 63.1%, 

PC1 + PC2 + PC3 explain 79.7%, PC1 + PC2 + PC3 + PC4 explain 93.2%, PC1 + PC2 + PC3 + PC4 + PC5 explain 99.3%, 

while PC1 + PC2 + PC3 + PC4 + PC5 + PC6 explain 100%. The "accumulated" index shown in Table 7 refers to the 

accumulated sum of the percentages of "explanation" of the phenomenon.  

When there is intention to reduce the quantity of components, it is admitted to use the components that accumulate from 

70% to 80% of the explanation of the phenomenon. The literature states that with a accumulated within this range it is 

possible to represent the process well and reduce the amount of variables. However, for this study all components (PCs) 

will be used, since the application of principal component analysis was only with the objective of create a mathematical 

model that could make high hit predictions in this process. 

A significance test was performed to verify that the principal components and the response variable have a significant 

relationship and the results revealed that all components are significant (Table 8). Then the mathematical model was 

created using the main components. 

Table 8. Significance test for PCs  

Term Coef SE Coef T-Value P-Value VIF 

Constant 528.710 0.0740 7139.04 0.000  

PC1 -0.1187 0.0478 -2.4800 0.018 1.00 

PC2 -0.7761 0.0662 -11.7200 0.000 1.00 

PC3 -0.4383 0.0752 -5.8300 0.000 1.00 

PC4 0.6786 0.0832 8.1600 0.000 1.00 

PC5 0.0850 0.1240 0.6800 0.499 1.00 

PC6 0.7690 0.3690 2.0900 0.045 1.00 

      

S R-sq R-sq(adj)    

0.4684 88.29% 86.16%    

Then it was possible to create the model: 

Y = 528.710 - 0.1187  PC1 - 0.7761 PC2 - 0.4383 PC3 + 0.6786 PC4 + 0.085 PC5 + 0.769 PC6        (17) 

Analyzing the results of Table 8, it is possible to observe that the application of the principal component analysis 

methodology was able to remove the multicollinearity of the statistical model, lowering the FIV value from 12.0 to 1.0 

and with a value of FIV 1.0, the multicollinearity will no longer influence the statistical model (as described by 

Montgomery (2004)). Furthermore, the normality analysis of the residuals found that the residuals follow the normal 

probability distribution, which is fundamental for the use of a mathematical model to make predictions. Figure 12 

shows the residual normality graph (with P-value > 0.05 for 95% confidence). 

 
Figure 12. Normality test of residues of the mathematical model (Model by Principal Component Analysis) 
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As shown in Figure 13, the residues generated by the model created from the main components, in addition to 

eliminating multicollinearity and being normally distributed, the model also eliminated the autocorrelation of data over 

time, thus allowing the correct application of the control chart for statistical monitoring. 

 
Figure 13. Autocorrelation test of residues (Model by Principal Component Analysis) 

Then, the EWMA control card was used (Figure 14). For this study, the parameter settings of the EWMA chart were K 

= 3.0 and λ = 0.20. In these conditions, with the minimum sample size of 40 values, it will be enough to perceive a 

change in the process average between 0.50 σ to 0.75 σ, which indicates a very sensitive graph for the change. In this 

case, the process was considered stable, without the presence of special causes of variation (Figure 14). 

 
Figure 14. EWMA waste control chart (Model by Principal Component Analysis) 

The result of this work was to demonstrate, through statistical procedures, that the incorrect choice of the control chart 

for process monitoring can lead to dangerous assumptions that, consequently, may influence managers' decision-making. 

It is concluded that in industrial processes, wrong decisions can bring disastrous consequences, as changes in processes 

can incorporate non-existent variations, unnecessary adjustments and, with that, cause an increase in the number of 

defective products. 

6. Conclusion  

With this study it was possible to demonstrate that the data of the original process (Y) that seemed to have many special 

causes, when using the control chart of individual value (X) and mobile amplitude (MR), is actually a stable process 
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(without the presence of special causes). However, it was necessary to carry out a careful statistical analysis process to 

reach this conclusion. Only after the use of multivariate statistics (Principal Component Analysis) combined with the 

use of other statistical methods, was it possible to eliminate the autocorrelation, multicollinearity and obtain the 

normality of the model residues, thus allowing the correct application of the process monitoring in the output variable 

(Y). Then, the appropriate control card was chosen, which in this case was the EWMA (Exponentially Weighted 

Moving Average). 

This article was based on a real situation in a steel heat treatment process to demonstrate that the simple application of 

conventional control charts in production processes, may in some cases bring misinterpretations about the true situation 

of the process. It was concluded in this study, that these supposedly incorrect decisions, based on the monitoring data 

using control charts, may cause successive changes in the process settings in order to stabilize the process. However, 

these changes in the process, in this case, will not bring stability to the process (since the process is already under 

statistical control). In fact, this may have the opposite effect, making the process unstable and causing several problems, 

such as, waste of materials, wasted labor time, costs with analysis in laboratories and carrying out experiments. In 

addition, changes in processes may incorporate variations that did not previously exist and this would lead to an 

increase in the number of defective products, which could lead to increased costs for rework, scrap and this could also 

increase the number of customer complaints. 
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Appendix A. Original table with variables (Xs) and variable (Y) 

X1 X2 X3 X4 X5 X6 Y 

7,09 50,51 31,08 0,85 0,97 0,62 528,08 

6,31 49,95 27,20 0,85 0,95 0,60 526,47 

6,77 49,95 22,76 0,82 0,91 0,58 524,37 

8,30 49,40 23,87 0,85 1,07 0,61 530,24 

8,23 46,07 23,31 0,93 1,03 0,61 529,37 

7,19 46,62 29,97 0,83 0,93 0,61 528,47 

7,14 49,40 33,86 0,91 1,01 0,61 527,36 

10,72 54,95 33,30 0,81 0,94 0,61 527,53 

10,41 54,95 28,86 1,05 1,12 0,60 527,58 

9,43 54,39 31,64 0,92 1,01 0,60 527,14 

10,10 54,39 27,20 0,92 1,07 0,60 527,92 

8,99 53,84 28,86 1,20 1,30 0,60 527,58 

8,17 45,51 33,86 0,83 0,95 0,61 526,64 

8,00 44,96 34,97 0,64 0,83 0,61 528,19 

6,12 46,07 31,08 0,87 0,96 0,61 528,08 

5,45 47,73 29,42 0,70 0,85 0,62 527,97 

6,33 48,29 27,20 0,72 0,87 0,62 528,86 

8,18 44,96 23,31 0,86 0,98 0,62 529,41 

8,05 46,62 29,42 0,87 0,94 0,62 529,08 

8,16 49,40 25,53 0,80 0,93 0,61 528,69 

8,47 50,51 26,09 0,97 1,10 0,61 528,53 

9,60 52,73 26,09 0,87 1,03 0,61 528,69 

9,78 52,73 23,31 1,14 1,19 0,61 528,86 

10,11 51,62 22,76 0,81 0,89 0,61 529,41 

7,98 49,95 25,53 0,79 0,96 0,61 529,58 

6,73 48,29 27,75 0,98 1,05 0,62 528,30 

7,06 49,95 26,09 0,84 0,99 0,62 528,53 

9,67 49,40 28,31 0,74 0,84 0,62 529,30 

9,78 48,29 24,98 0,84 0,93 0,61 529,86 

8,97 46,07 31,64 0,78 0,90 0,61 529,80 

9,37 47,73 32,19 1,17 1,27 0,61 529,91 

7,70 47,18 25,53 1,17 1,20 0,61 529,69 

8,08 46,62 22,76 0,74 0,84 0,62 530,03 

8,52 46,07 22,20 0,84 1,00 0,62 530,86 

8,83 44,96 24,98 0,98 1,05 0,62 530,19 

7,95 47,18 26,09 0,88 0,95 0,62 529,58 

8,56 47,73 23,87 0,81 0,96 0,62 530,25 

8,03 47,18 29,97 0,90 0,99 0,62 529,36 

8,18 46,62 28,86 0,82 0,92 0,62 529,03 

9,04 47,73 27,20 0,95 1,05 0,62 529,58 

8,2887 48,9094 27,5696 0,8809 0,9939 0,6116 Average 

1,2515 2,9157 3,5267 0,1452 0,1093 0,0074 Standard deviation 
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Appendix B. Transformation of factors into standardized variables 

X1 X2 X3 X4 X5 X6 

-0,955 0,547 0,995 -0,209 -0,206 0,594 

-1,581 0,356 -0,106 -0,209 -0,409 -1,561 

-1,213 0,356 -1,365 -0,519 -0,765 -4,247 

0,006 0,166 -1,050 -0,209 0,706 0,072 

-0,046 -0,975 -1,207 0,366 0,351 0,072 

-0,878 -0,785 0,680 -0,431 -0,562 -0,225 

-0,917 0,166 1,782 0,233 0,148 -0,449 

1,940 2,070 1,624 -0,564 -0,511 -0,747 

1,692 2,070 0,365 1,342 1,163 -1,343 

0,911 1,879 1,152 0,322 0,148 -1,194 

1,448 1,879 -0,106 0,322 0,656 -0,971 

0,561 1,689 0,365 2,538 2,787 -0,971 

-0,095 -1,165 1,782 -0,431 -0,359 -0,747 

-0,228 -1,356 2,096 -1,893 -1,475 -0,598 

-1,736 -0,975 0,995 -0,120 -0,308 -0,002 

-2,268 -0,404 0,523 -1,450 -1,272 0,743 

-1,563 -0,214 -0,106 -1,317 -1,120 0,892 

-0,086 -1,356 -1,207 -0,165 -0,105 0,892 

-0,192 -0,785 0,523 -0,076 -0,511 0,519 

-0,099 0,166 -0,578 -0,608 -0,612 0,445 

0,144 0,547 -0,420 0,677 0,960 0,221 

1,048 1,308 -0,420 -0,076 0,351 -0,300 

1,190 1,308 -1,207 2,051 1,772 -0,449 

1,452 0,927 -1,365 -0,564 -0,917 -0,449 

-0,245 0,356 -0,578 -0,741 -0,308 -0,151 

-1,243 -0,214 0,051 0,765 0,554 0,743 

-0,982 0,356 -0,420 -0,298 -0,003 0,743 

1,102 0,166 0,208 -1,140 -1,424 0,668 

1,195 -0,214 -0,735 -0,342 -0,562 0,072 

0,547 -0,975 1,152 -0,785 -0,866 0,221 

0,862 -0,404 1,310 2,273 2,483 0,221 

-0,472 -0,594 -0,578 2,273 1,874 0,296 

-0,166 -0,785 -1,365 -1,096 -1,424 0,817 

0,184 -0,975 -1,522 -0,298 0,097 0,892 

0,432 -1,356 -0,735 0,765 0,554 1,041 

-0,272 -0,594 -0,420 -0,032 -0,359 0,817 

0,219 -0,404 -1,050 -0,564 -0,308 0,966 

-0,206 -0,594 0,680 0,145 -0,054 1,190 

-0,086 -0,785 0,365 -0,519 -0,663 0,743 

0,596 -0,404 -0,106 0,588 0,503 0,519 
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Appendix C. Main components for each experimental condition 

PC1 PC2 PC3 PC4 PC5 PC6 Y 

-0,536 0,200 1,008 0,153 -1,124 -0,069 528,080 

-0,403 1,088 0,373 -1,924 -0,227 -0,139 526,470 

0,074 2,656 -0,889 -3,603 1,205 -0,072 524,370 

0,377 -0,485 -0,821 -0,432 -0,199 0,637 530,240 

-0,020 -1,129 -0,694 -0,626 0,675 0,042 529,370 

-1,198 0,245 0,831 -0,377 0,282 -0,062 528,470 

-0,033 0,648 1,944 -0,199 -0,268 -0,069 527,360 

1,173 2,574 0,094 1,840 -0,317 -0,018 527,530 

3,237 1,198 -0,062 0,371 -0,021 -0,149 527,580 

1,672 1,901 0,477 0,476 -0,361 -0,164 527,140 

2,155 1,254 -0,697 0,399 -0,257 0,197 527,920 

4,096 -0,395 1,044 -0,574 -0,347 0,151 527,580 

-0,876 0,797 1,598 0,285 1,188 0,135 526,640 

-2,472 1,644 1,367 0,717 1,094 0,371 528,190 

-1,367 -0,208 1,575 -0,800 -0,042 -0,113 528,080 

-2,735 0,187 0,741 -0,632 -1,176 0,066 527,970 

-2,236 -0,023 -0,037 -0,341 -1,075 0,079 528,860 

-0,942 -1,452 -0,868 -0,091 0,501 0,082 529,410 

-0,890 -0,316 0,499 0,400 0,252 -0,288 529,080 

-0,717 0,042 -0,771 0,102 -0,438 -0,035 528,690 

1,158 -0,607 -0,147 -0,121 -0,412 0,172 528,530 

1,217 0,683 -0,902 0,426 -0,373 0,261 528,690 

3,283 -0,752 -0,828 -0,325 -0,091 -0,213 528,860 

0,314 1,004 -2,182 0,430 0,122 -0,263 529,410 

-0,449 0,4144 -0,688 -0,341 -0,369 0,281 529,580 

-0,027 -1,206 0,820 -0,606 -0,704 -0,180 528,300 

-0,543 -0,473 -0,139 -0,383 -1,101 0,141 528,530 

-1,084 0,820 -0,865 1,552 -0,029 -0,223 529,300 

-0,121 0,130 -1,251 0,671 0,626 -0,127 529,860 

-1,228 0,485 0,558 1,132 0,828 -0,008 529,800 

2,649 -1,505 1,906 0,653 0,761 0,200 529,910 

1,782 -2,215 0,699 -0,948 0,242 -0,249 529,690 

-1,931 -0,397 -1,563 0,051 0,013 -0,231 530,030 

-0,619 -1,370 -1,288 -0,019 0,321 0,304 530,860 

0,069 -1,899 -0,313 0,347 0,739 -0,096 530,190 

-0,761 -0,804 -0,273 0,110 -0,084 -0,233 529,580 

-0,761 -0,764 -1,144 0,352 -0,133 0,169 530,250 

-0,607 -0,849 0,733 0,757 -0,206 -0,153 529,360 

-1,222 -0,272 0,182 0,611 0,153 -0,091 529,030 

0,526 -0,846 -0,026 0,506 0,356 -0,039 529,580 
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