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Abstract 

The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of 

ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and 

mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann 

speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. 

This paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles using 

computer-generated data based on Newton’s law of motion. To achieve this, this paper derives the probability density 

function ψ𝑎𝑏(𝑢𝑎; 𝑣𝑎, 𝑣𝑏) of the speed 𝑢𝑎 of the particle with mass 𝑀𝑎 after the collision of two particles with mass 

𝑀𝑎 in speed 𝑣𝑎 and mass 𝑀𝑏 in speed 𝑣𝑏. The function ψ𝑎𝑏(𝑢𝑎; 𝑣𝑎, 𝑣𝑏) is obtained through a unique procedure that 

considers (1) the randomness of the relative direction before a collision by an angle α. (2) the randomness of the 

direction after the collision by another independent angle β. 

The function ψ𝑎𝑏(𝑢𝑎; 𝑣𝑎, 𝑣𝑏) is used in the equation below for the numerical iterations to get new distributions 

P𝑛𝑒𝑤
𝑎 (𝑢𝑎) from old distributions P𝑜𝑙𝑑

𝑎 (𝑣𝑎), and repeat with P𝑜𝑙𝑑
𝑎 (𝑣𝑎) = P𝑛𝑒𝑤

𝑎 (𝑣𝑎), where n𝑎 is the fraction of particles 

with mass M𝑎.  

P𝑛𝑒𝑤
1 (𝑢1) = n1 ∫ ∫ ψ11(𝑢1; 𝑣1, 𝑣1

′)P𝑜𝑙𝑑
1 (𝑣1) P𝑜𝑙𝑑

1 (𝑣1
′)

∞

0

∞

0
𝑑𝑣1𝑑𝑣1

′                     

   + n2 ∫ ∫ ψ12(𝑢1; 𝑣1, 𝑣2)P𝑜𝑙𝑑
1 (𝑣1)P𝑜𝑙𝑑

2 (𝑣2)
∞

0

∞

0
𝑑𝑣1𝑑𝑣2                    

P𝑛𝑒𝑤
2 (𝑢2) = n1 ∫ ∫ ψ21(𝑢2; 𝑣2, 𝑣1)P𝑜𝑙𝑑

2 (𝑣2)P𝑜𝑙𝑑
1 (𝑣1)

∞

0

∞

0
𝑑𝑣2𝑑𝑣1                    

   + n2 ∫ ∫ ψ22(𝑢2; 𝑣2, 𝑣2
′ )P𝑜𝑙𝑑

2 (𝑣2)P𝑜𝑙𝑑
2 (𝑣2

′ )
∞

0

∞

0
𝑑𝑣2𝑑𝑣2

′                     

 

The final distributions converge to the Maxwell-Boltzmann speed distributions. Moreover, the square of the 

root-mean-square speed from the final distribution is inversely proportional to the particle masses as predicted by 

Avogadro’s law. 

Keywords: Maxwell speed distribution, Maxwell-Boltzmann speed distribution, Maxwell-Boltzmann distribution, 

Avogadro’s law, kinetic theory of gases, thermodynamics, statistical Mechanics, collisions of particles 

1. Overview 

James C. Maxwell (1860a,b) first provided the Maxwell speed distribution in 1860 on a statistical heuristic basis. 

Maxwell (1867) and Boltzmann (1872) carried out more investigations into the physical meaning of the distribution. 

Boltzmann (1877) derived the distribution again based on statistical thermodynamics. Nevertheless, none of their 

approaches were based on Newton’s law of motion. 

A way to prove the Maxwell-Boltzmann speed distribution is from a statistical view, beginning from the Boltzman 

distribution of the velocity 𝑣𝑥 in the x-direction as follows. 

𝑃(𝑣𝑥) =
1

𝜎√2𝜋
𝑒
−1

2
(
𝑣𝑥
𝜎
)
2

                                    (1) 

or  
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𝑃(𝑣𝑥) =
ℎ

√𝜋
𝑒−ℎ

2𝑣𝑥
2
                                      (2) 

Where  𝜎 =
1

√2ℎ
, ℎ = √

𝑀

2𝑘𝑇
, 𝑘 is the Boltzmann constant, 𝑇 is the equilibrium temperature, and 𝑀 is the particle 

mass. Extending from the velocity 𝑣𝑥 to three independent velocities (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) in three directions, and transferring it 

to spherical coordinates (𝑣, 𝜃, 𝜑) using 𝑣𝑥 = 𝑣 sin 𝜃 cos𝜑, 𝑣𝑦 = 𝑣 sin 𝜃 sin𝜑, and 𝑣𝑧 = 𝑣 cos 𝜃 gives 

∫ ∫ ∫ 𝑃(𝑣𝑥)𝑃(𝑣𝑦)𝑃(𝑣𝑧)𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧
∞

−∞

∞

−∞

∞

−∞
                             

= ∫
4ℎ3

√𝜋
𝑣2𝑒−ℎ

2𝑣2𝑑𝑣 =
∞

0
∫ 𝑃(𝑣)𝑑𝑣
∞

0
                            (3) 

Where 𝑃(𝑣) is the Maxwell-Boltzmann speed distribution shown in Equation (4) (Brush, 1966, Landau et al., 1969, 

McQuarrie, 1976, Garrod, 1995, Maudlin, 2013). 

𝑃(𝑣) =
4ℎ3

√𝜋
𝑣2𝑒−ℎ

2𝑣2                                    (4) 

In the Maxwell-Boltzmann speed distribution, the most probable speed, 𝑣𝑚𝑝, is inversely proportional to the square 

root of the mass for fixed temperatures as follows 

 𝑣𝑚𝑝 =
1

ℎ
= √

2𝑘𝑇

𝑀
                                       (5) 

Therefore, when two types of particles with mass 𝑀1 and 𝑀2 are mixed at the same temperature, the above equation 

gives the following mass-speed relationship 

𝑣1,𝑚𝑝

𝑣2,𝑚𝑝
= √

𝑀2

𝑀1
                                        (6) 

An example of the theoretical Maxwell-Boltzmann speed distribution curves and their corresponding most probable 

speeds 𝑣1,𝑚𝑝 and 𝑣2,𝑚𝑝 of two types of particles with a mass ratio of nine are shown below. 

 

Figure 1. Maxwell-Boltzmann speed distributions of two types of particles 

Boltzmann (1872) tried to provide mechanical proof of the Maxwell-Boltzmann speed distribution in 1872 by 

formulating the following equation. 

dn = f(x, t)dx ∙ f(x′, t)dx′ ∙ ψ(ξ; x, x′)dξ                            (7) 

 

where f(x, t)dx is the number of particles with speeds between x and x+dx, and similarly for f(𝑥′, t)d𝑥′, dn is the 

number of particles with speeds between ξ and ξ + dξ. In addition, the symbol ψ(ξ; x, x′) represents the probability 

density function (PDF) of the resulting speed after a collision between two particles. The definition is excellent and 

meaningful, but the method used to calculate this PDF ψ has yet to be created. Following Boltzmann’s work in 1872, 

we derived the PDF ψ based on Newton’s law of motion in this paper. The PDF ψ for equal mass particles had been 

provided by Lin et al. (2019). 
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To consider the collisions of unequal mass particles, we need to have four PDFs: ψ11(𝑢1; 𝑣1, 𝑣1
′), ψ12(𝑢1; 𝑣1, 𝑣2), 

ψ21(𝑢2; 𝑣2, 𝑣1), and ψ22(𝑢2; 𝑣2, 𝑣2
′ ). Where ψ𝑎𝑏(𝑢𝑎; 𝑣𝑎, 𝑣𝑏) is the PDF of post-collision speed 𝑢𝑎 of a particle with 

a mass 𝑀𝑎  after the collision of two particles with mass 𝑀𝑎  in a pre-collision speed 𝑣𝑎  and mass 𝑀𝑏  in a 

pre-collision speed 𝑣𝑏. For 𝑎 = 𝑏, the PDF is identical to the collision of two equal mass particles. For 𝑎 ≠ 𝑏, the 

PDF will be given in an integral form that will later be evaluated numerically for collision angles from 0 to 𝜋. 

After the PDF ψ𝑎𝑏(𝑢𝑎; 𝑣𝑎, 𝑣𝑏) is derived, numerical iterations are used to get new distributions P𝑛𝑒𝑤
𝑎 (𝑢𝑎) from old 

distributions P𝑜𝑙𝑑
𝑎 (𝑣𝑎), and set P𝑜𝑙𝑑

𝑎 (𝑣𝑎) = P𝑛𝑒𝑤
𝑎 (𝑣𝑎) for the next iteration, where n𝑎 is the fraction of particles with 

mass 𝑀𝑎 using the following equations. 

P𝑛𝑒𝑤
1 (𝑢1) = n1 ∫ ∫ ψ11(𝑢1; 𝑣1, 𝑣1

′)P𝑜𝑙𝑑
1 (𝑣1) P𝑜𝑙𝑑

1 (𝑣1
′)

∞

0

∞

0
𝑑𝑣1𝑑𝑣1

′   

+ n2 ∫ ∫ ψ12(𝑢1; 𝑣1, 𝑣2)P𝑜𝑙𝑑
1 (𝑣1)P𝑜𝑙𝑑

2 (𝑣2)
∞

0

∞

0
𝑑𝑣1𝑑𝑣2                    (8a) 

P𝑛𝑒𝑤
2 (𝑢2) = n1 ∫ ∫ ψ21(𝑢2; 𝑣2, 𝑣1)P𝑜𝑙𝑑

2 (𝑣2)P𝑜𝑙𝑑
1 (𝑣1)

∞

0

∞

0
𝑑𝑣2𝑑𝑣1  

   + n2 ∫ ∫ ψ22(𝑢2; 𝑣2, 𝑣2
′ )P𝑜𝑙𝑑

2 (𝑣2)P𝑜𝑙𝑑
2 (𝑣2

′ )
∞

0

∞

0
𝑑𝑣2𝑑𝑣2

′                    (8b) 

 

Note that n1 + n2 =  . After about thirteen iterations, the final distributions converge to the Maxwell-Boltzmann 

speed distributions. Moreover, the square of the RMS speed is inversely proportional to the particle masses, i.e. 

𝑀1𝑣1,𝑟𝑚𝑠
2 = 𝑀2𝑣2,𝑟𝑚𝑠

2 . For the same pressure, from the kinetic theory of ideal gases (Herapath, 1821, Waterston, 

1843:1892, Lane, 2003), 𝑝1 =
1

3
𝜌1𝑣1,𝑟𝑚𝑠

2 =
1

3
𝜌2𝑣2,𝑟𝑚𝑠

2 = 𝑝2 . Where the densities 𝜌1 = 𝑀1/𝑉1  and 𝜌2 = 𝑀2/𝑉2 . 

Therefore, it can be concluded that the volumes occupied for each particle, 𝑉1 or 𝑉2, are the same, 𝑉1 = 𝑉2, as 

Avogadro’s law predicted (Avogadro, 1811). In this sense, it also gives a mechanical proof of Avogadro’s law. 

2. Velocity Diagram for Collision of Two Particles 

A velocity diagram for a collision of two particles is used to derive the probability density function. Two concentric 

circles in the 2D plane can be constructed as a velocity diagram for a collision of two particles in 3D space. The 

concentric circles velocity diagram provides a geometric relationship between the pre-collision and post-collision 

speeds of a collision. The concentric circles velocity diagram was used by Maxwell in his study of the 

Maxwell-Boltzmann speed distribution and is explained and proved in this section. 

Concentric circles velocity diagrams are based on two reference frames: a fixed reference frame (O) and a 

center-of-mass (CM) reference frame (C). Speeds can be transferred between the fixed frame (O) and the CM frame 

(C). 

2.1 The Fixed Reference Frame 

In the fixed reference frame, before a collision, two particles with mass 𝑀1 and 𝑀2 are moving at pre-collision 

velocities 𝑣⃗1 (𝑜𝑟  𝑂𝐴⃗⃗ ⃗⃗ ⃗⃗ ) and 𝑣⃗2 (𝑜𝑟  𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ ). After the collision, the post-collision velocities of the two particles change to 

𝑢⃗⃗1  (𝑜𝑟  𝑂𝑃⃗⃗⃗⃗ ⃗⃗ ) and 𝑢⃗⃗2  (𝑜𝑟  𝑂𝑄⃗⃗⃗⃗⃗⃗⃗ ), as shown in Figure 2. It is important to note that the variables in the PDF 

ψ12(𝑢1; 𝑣1, 𝑣2) are speeds, which are the magnitudes of the velocities. Note that the vector 𝑣⃗ without an arrow-hat 𝑣 

indicates the length of the vector. 

For a perfectly elastic collision, based on Newton’s law of motion, both total momentum and total energy remain 

unchanged before and after a collision as following 

Momentum = 𝑀1𝑣⃗1 +𝑀2𝑣⃗2 = 𝑀1𝑢⃗⃗1 +𝑀2𝑢⃗⃗2                         (9a) 

Total Energy = (𝑀1𝑣1
2 +𝑀2𝑣2

2)/2 = (𝑀1𝑢1
2 +𝑀2𝑢2

2)/2                 (9b) 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 4; 2021 

24 

 

 

Figure 2. Velocities of two particles before (𝑣⃗1, 𝑣⃗2) and after (𝑢⃗⃗1, 𝑢⃗⃗2) a collision 

2.2 The Concentric Circles in Center-of-Mass Reference Frame 

The center-of-mass (CM) reference frame uses the center of mass of two particles as its origin point (C). The velocity of 

the center-of-mass of two particles is related to the two masses 𝑀1 and 𝑀2 and their corresponding velocities 𝑣⃗1 and 

𝑣⃗2 as 

𝑣⃗𝑐 ≡
𝑀1𝑣⃗⃗1+𝑀2𝑣⃗⃗2

𝑀1+𝑀2
≡ 𝑚1𝑣⃗1 +𝑚2𝑣⃗2                                 (10) 

where 𝑚1 and 𝑚2 are mass ratio and are defined as: 𝑚1 ≡
𝑀1

𝑀1+𝑀2
; 𝑚2 ≡

𝑀2

𝑀1+𝑀2
. 

Before the collision, the pre-collision velocities of particles 1 and 2 in the CM frame are 

𝑣⃗1𝑐 ≡ 𝑣⃗1 − 𝑣⃗𝑐                                         (11a) 

𝑣⃗2𝑐 ≡ 𝑣⃗2 − 𝑣⃗𝑐                                         (11b) 

Based on the conservation of momentum, the total momentum in the CM frame is zero. Since the CM frame is an 

inertial reference frame moving with the constant velocity 𝑣⃗𝑐 and the particle velocities are relative to the CM frame, 

𝑚1𝑣⃗1𝑐 +𝑚2𝑣⃗2𝑐 = 0                                      (12) 

The above equation guarantees two things: (1) Point C will be located in a straight line between point A and point B, 

and (2) the distance ratio from the center-of-mass point C to point A and point B is  

𝑣1𝑐

𝑣2𝑐
=

𝑚2

𝑚1
                                            (13) 

 

 

Figure 3. Pre-collision velocities of two particles relative to center-of-mass 
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In the CM frame, two concentric circles can be constructed: 

Circle C-A: a circle center at point C with a radius of | 𝐴⃗⃗⃗⃗⃗⃗ | 

Circle C-B: a circle center at point C with a radius of | 𝐵⃗⃗⃗⃗⃗⃗ | 

Using these two concentric circles in the CM frame, constraints of the post-collision velocities can be formulated and 

visualized as shown in Figure 4.  

 

Figure 4. Post-collision velocities (𝑢⃗⃗1𝑐 , 𝑢⃗⃗2𝑐) of two particles relative to center-of-mass 

After the collision, the post-collision velocities of particle 1 and particle 2 change to 𝑢⃗⃗1𝑐 (𝑜𝑟   𝑃⃗⃗⃗⃗⃗⃗ ) and 𝑢⃗⃗2𝑐 (𝑜𝑟   𝑄⃗⃗⃗⃗ ⃗⃗ ) 

according to the following three rules: 

1. Point P will be on Circle C-A. ∴   𝑢1𝑐 = 𝑣1𝑐 

2. Point Q will be on Circle C-B. ∴   𝑢2𝑐 = 𝑣2𝑐   𝑎𝑛𝑑   
𝑢1𝑐

𝑢2𝑐
=

| 𝑃⃗⃗⃗⃗⃗⃗ |

| 𝑄⃗⃗⃗⃗ ⃗⃗ |
=

| 𝐴⃗⃗⃗⃗⃗⃗ |

| 𝐵⃗⃗⃗⃗ ⃗⃗ |
=

𝑚2

𝑚1
 

3. Velocity  𝑃⃗⃗⃗⃗⃗⃗  and  𝑄⃗⃗⃗⃗⃗⃗  have opposite directions. ∴  𝑚1𝑢⃗⃗1𝑐 +𝑚2𝑢⃗⃗2𝑐 = 0 

The post-collision velocities based on the above three rules satisfy the (1) conservation of momentum and (2) 

conservation of energy, as shown in Equations (14) and (15) and Figure 5. 

Conservation of Momentum:  

m1(𝑣⃗𝑐 + 𝑢⃗⃗1𝑐) + m2(𝑣⃗𝑐 + 𝑢⃗⃗2𝑐) = 𝑣⃗𝑐                            (14) 

Conservation of Energy:  

m1(𝑣⃗𝑐 + 𝑢⃗⃗1𝑐) ∙ (𝑣⃗𝑐 + 𝑢⃗⃗1𝑐) + m2(𝑣⃗𝑐 + 𝑢⃗⃗2𝑐) ∙ (𝑣⃗𝑐 + 𝑢⃗⃗2𝑐) 

= 𝑣𝑐
2 +m1𝑢1𝑐

2 +m2𝑢2𝑐
2 = 𝑣𝑐

2 +m1𝑣1𝑐
2 +m2𝑣2𝑐

2                    (15) 

 

 

Figure 5. Post-collision velocities (𝑢⃗⃗1𝑐 , 𝑢⃗⃗2𝑐) from conservations of momentum and energy 
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3. Derivation of the Probability Density Function 𝛙   

After any collision between two particles, the resulting speeds depend on two factors: (1) the random directions of the 

two pre-collision velocities 𝑣⃗1 and 𝑣⃗2 and (2) the random direction of the post-collision velocity 𝑢⃗⃗1 , which is 

related to the contact point of the two particles. These two random factors are used in the following equation for the 

derivation of the PDF ψ12. 

Ψ12(𝑢1; 𝑣1, 𝑣2) = ∫ P𝑢1|𝛼(𝑢1)P𝛼(𝛼)𝑑𝛼
𝜋

0

= ∫ P𝛽|𝛼(𝛽) |
𝑑𝛽

𝑑𝑢1
| P𝛼(𝛼)𝑑𝛼

𝜋

0

                            ( 6) 

Where 𝛼 is the angle between 𝑣⃗1 and 𝑣⃗2, and 𝛽 is the angle between 𝑣⃗  and 𝑢⃗⃗1 . 

The right-hand side of the above equation will be derived in the following sections. The final formula of the probability 

density function is shown in Equation (24). 

3.1 The Randomness of the Directions in 3D Before a Collision 

For two given pre-collision speeds 𝑣1  and 𝑣2 , the post-collision speeds depend on the directions of the two 

pre-collision velocities 𝑣⃗1 and 𝑣⃗2. The two pre-collision velocities both have random directions. The directions of 

these two pre-collision velocities determine the radius of circle C-A and circle C-B. The randomness of the two 

velocities can be reduced to one random angle 𝛼 which considers only the relative direction between 𝑣⃗1 and 𝑣⃗2 and 

is defined as the angle between the two pre-collision velocities 𝑣⃗1 and 𝑣⃗2 (in the fixed frame) as shown. 

 

 

Figure 6. Band area of 𝑑𝛼 for the probability of the angle 𝛼 

 

For fixed magnitudes of 𝑣1 and 𝑣2, if 𝑣⃗2 = 𝑂𝐵̅̅ ̅̅  is also fixed in the direction, but the direction of 𝑣⃗1 = 𝑂𝐴̅̅ ̅̅  is 

changed, then point A will be located on a spherical surface O-A, as shown in Figure 6. And the probability of point A 

on the surface is uniformly distributed since 𝑣⃗1 has equal opportunity in any direction. Therefore the velocity vector of 

mass 1 before the collision has a random direction in 3D space. The sphere surface O-A is centered at point O and its 

radius is 𝑣1. The band area between 𝛼 and 𝛼 + d𝛼 on the sphere surface O-A is 2𝜋(𝑣1 sin 𝛼)(𝑣1dα), the total area of 

the sphere surface is 4𝜋𝑣1
2, and the ratio is 

1

2
sin 𝛼 𝑑𝛼. Therefore the probability density of point A located on the 

sphere surface O-A at angle 𝛼 is  

P𝛼(𝛼) =
1

2
sin 𝛼                                        (17) 
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3.2 The Randomness of the Directions in 3D after a Collision  

Besides the pre-collision directions defined by α (representing the relative moving direction before the collision), the 

location of the contact point also determines the post-collision velocity. The random location of the contact point is 

related to the location of Mass 1 center before the collision. 

 

 

Figure 7. (a) Band area of 𝑑𝜙 for the post-collision velocity 𝑢⃗⃗1 , 

(b) Ring area of 𝑑𝜃 for the location of mass 1 center 

 

It can be observed that Point P is always located on the sphere surface C-P and that the probability is uniform on the 

𝑣⃗2 Mag.: Given

𝑣⃗2 Dir.: Fixed in 3D
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𝑣⃗1 Dir.: 𝛼 Random in 3D
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the random 3D angle 𝛼 0 𝜋
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the surface of the 3D sphere O-A
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surface. The reasons are based on the following factors: 

(1) The band-area in Figure 7(a) is 8𝜋𝑣1 
2 sin 𝜃 cos 𝜃 𝑑𝜃. 

(2) The ring-area in Figure 7(b) is 2𝜋𝐷2 sin 𝜃 cos 𝜃 𝑑𝜃. 

(3) The ratio of the two areas is 4𝑣1 
2 /𝐷2, it is not dependent on 𝜃. 

(4) When the Center of Mass 1 hits inside the ring of the disk, Point P will be located inside the band on the sphere 

surface. 

(5) It has an equal opportunity to hit any point inside the disk. 

Similar to the pre-collision directions defined by α (representing the relative moving direction before the collision), the 

location of Point P will be defined by 𝛽, as the angle between 𝑣⃗  and 𝑢⃗⃗1 , as shown in Figure 8, such that the same 

angle 𝛽 will result in the same magnitude of the different velocity 𝑢⃗⃗1. 

 

Figure 8. Band area of d𝛽 for the probability of the angle 𝛽 

 

The band area between 𝛽 and 𝛽 + d𝛽 on the sphere surface C-P is 2𝜋(𝑣1 sin 𝛽)(𝑣1 dβ), the total area of the sphere 

surface is 4𝜋𝑣1 
2 , and the ratio is 

1

2
sin 𝛽 𝑑𝛽. Therefore the probability density of Point P located on the sphere surface 

C-P at angle 𝛽 is  

P𝛽|𝛼(𝛽) =
1

2
sin𝛽                                        (18) 

 

 

 

3.3 Considering all the Possible Directions in 3D Before and After Collisions 

The 𝑟1 and 𝑟2 as shown in Figure 9 can be computed from 𝛼 as 
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𝑟1(𝛼; 𝑣1, 𝑣2) = 𝑂 ̅̅ ̅̅ = √(𝑚1𝑣1 cos 𝛼 +𝑚2𝑣2)
2 + (𝑚1𝑣1 sin 𝛼)

2                    

= 𝑚1√𝑣1
2 + (

𝑚2

𝑚1
𝑣2)

2

+ 2𝑣1 (
𝑚2

𝑚1
𝑣2) cos𝛼                 (19) 

 

  𝑟2(𝛼; 𝑣1, 𝑣2) = 𝐵 ̅̅ ̅̅ = √(𝑚1𝑣1 cos 𝛼 −𝑚1𝑣2)
2 + (𝑚1𝑣1 sin 𝛼)

2                    

= 𝑚1√𝑣1
2 + 𝑣2

2 − 2𝑣1𝑣2 cos 𝛼                           (20) 

 

 

Figure 9. Relations for 𝑟1, 𝑟2 and 𝑢1 

 

So the relation between 𝑢1 and 𝛽 for fixed 𝑟1 and 𝑟2 is given by 

                     𝑢1(𝛽; 𝑟1, 𝑟2) = 𝑂𝑃̅̅ ̅̅ = √(
𝑚2

𝑚1
𝑟2 cos𝛽 + 𝑟1)

2

+ (
𝑚2

𝑚1
𝑟2 sin 𝛽)

2

            

= √𝑟1
2 + (

𝑚2

𝑚1
𝑟2)

2

+ 2𝑟1 (
𝑚2

𝑚1
𝑟2) cos𝛽                           (21) 

Hence 

𝑑𝑢1

𝑑𝛽
=

−𝑟1(
𝑚2
𝑚1

𝑟2) sin𝛽

√𝑟1
2+(

𝑚2
𝑚1

𝑟2)
2
+2𝑟1(

𝑚2
𝑚1

𝑟2) cos𝛽

=
−𝑟1(

𝑚2
𝑚
𝑟2) sin𝛽

𝑢1
                       (22) 

Use the relation above to change P𝛽|𝛼(𝛽) =
1

2
sin𝛽 into  

P𝑢1|𝛼(𝑢1) = P𝛽|𝛼(𝛽) |
𝑑𝛽

𝑑𝑢1
| =

𝑢1

2𝑟1(
𝑚2
𝑚1

𝑟2)
                             (23) 

The PDF ψ12  of post-collision speed 𝑢1  for two given pre-collision speeds 𝑣1  and 𝑣2  can be obtained by 

summating all the densities for all the possible directions, i.e., 𝛼 between 0 and 𝜋, yields 

                               Ψ12(𝑢1; 𝑣1, 𝑣2) = ∫ P𝑢1|𝛼(𝑢1)P𝛼(𝛼)𝑑𝛼
𝜋

0
  

                          = ∫ P𝛽|𝛼(𝛽) |
𝑑𝛽

𝑑𝑢1
| P𝛼(𝛼)𝑑𝛼

𝜋

0
= ∫

𝑢1

4𝑟1(
𝑚2
𝑚1

𝑟2)
sin 𝛼 𝑑𝛼

𝜋

0
  

                       = ∫
𝑢1 sin𝛼𝑑𝛼

4𝑚1𝑚2√𝑣1
2+(

𝑚2
𝑚1

𝑣2)
2
+2𝑣1(

𝑚2
𝑚1

𝑣2) cos𝛼√𝑣1
2+𝑣2

2−2𝑣1𝑣2 cos𝛼

𝜋

0
  

=
𝑢1

4𝑚1𝑚2
∫

sin𝛼𝑑𝛼

√ +2𝐵 cos𝛼−𝐴cos2 𝛼
  

𝜋

0
                                 (24)   
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Where 

𝐴 = 4𝑣1
2𝑣̂2

2 = 𝑟4 sin2(2𝜃)                                       (25a) 

𝐵 = 𝑣1 (
𝑚2

𝑚1
𝑣2) (𝑣1

2 + 𝑣2
2) − 𝑣1𝑣2 [𝑣1

2 + (
𝑚2

𝑚1
𝑣2)

2

] 

= 2𝑣1𝑣̂2(𝑣1
2 − 𝑣̂2

2) (
𝑚2−𝑚1

√4𝑚1𝑚2
) = 𝑟4 sin(2𝜃) cos(2𝜃) tan𝜑            (25b) 

           = [𝑣1
2 + (

𝑚2

𝑚1
𝑣2)

2

] (𝑣1
2 + 𝑣2

2)                                   (25c) 

 𝑣̂2 = √
𝑚2

𝑚1
𝑣2,     𝑟 = √𝑣1

2 + 𝑣̂2
2,     𝜃 = tan−1 (

𝑣̂2

𝑣1
)                         (25d:f) 

            𝜑 = tan−1 (
𝑚2−𝑚1

√4𝑚1𝑚2
),    𝑚1 =

𝑀1

𝑀1+𝑀2
,  𝑚2 =

𝑀2

𝑀1+𝑀2
                        (25g:i) 

4. Computational Proof by Numerical Iterations 

Both the Maxwell-Boltzmann speed distribution and the speed ratio of two types of particles can be validated using 

computer-generated data based on the PDF derived in the previous section. The detailed methodology and results are 

shown below. 

4.1 Setup of the Numerical Iterations 

Assume that particle type 1 has n1𝑁 particles with mass 𝑀1 and particle type 2 has 𝑛2𝑁 particles with mass 𝑀2. 

For this example: it is given that (n1, n2)𝑁 = (0.7,0. )𝑁, (𝑀1, 𝑀2) = (0. ,0. )𝑀. Note that the total number of 

particles and the particles' exact mass are irrelevant to the results. Also, the size of the monotonic particle is irrelevant to 

the results. The colliding speeds are discretized into 81 equally spaced speeds beginning from 𝑣𝑎
1 = 0.5 in increments 

of 1.0 and ending at 𝑣𝑎
81 = 80.5. The probabilities are assumed to be zero for speeds over 80.5.  

4.2 Formulas Used for the Iterations 

The equilibrium speed distribution can be obtained by numerical iterations. For discrete speeds, 𝑣𝑎
𝑖 , 𝑖 =  ,2, , … ,8 , 

the Particle 1 probability P𝑛𝑒𝑤
1  of the post-collision speed 𝑢1

𝑖  and the Particle 2 probability P𝑛𝑒𝑤
2  of the post-collision 

speed 𝑢2
𝑖  after the collisions are: 

P𝑛𝑒𝑤
1 (𝑢1

𝑖 ) = n1∑ ∑ ψ11(𝑢1
𝑖 ; 𝑣1

𝑗
, 𝑣1

𝑘)P𝑜𝑙𝑑
1 (𝑣1

𝑗
)P𝑜𝑙𝑑

1 (𝑣1
𝑘)81

𝑘=1
81
𝑗=1   

+ n2∑ ∑ ψ12(𝑢1
𝑖 ; 𝑣1

𝑗
, 𝑣2

𝑘)P𝑜𝑙𝑑
1 (𝑣1

𝑗
)P𝑜𝑙𝑑

2 (𝑣2
𝑘)81

𝑘=1
81
𝑗=1                     (26a) 

P𝑛𝑒𝑤
2 (𝑢2

𝑖 ) = n1∑ ∑ ψ21(𝑢2
𝑖 ; 𝑣2

𝑗
, 𝑣1

𝑘) P𝑜𝑙𝑑
2 (𝑣2

𝑗
)P𝑜𝑙𝑑

1 (𝑣1
𝑘)81

𝑘=1
81
𝑗=1   

+ n2∑ ∑ ψ22(𝑢2
𝑖 ; 𝑣2

𝑗
, 𝑣2

𝑘)P𝑜𝑙𝑑
2 (𝑣2

𝑗
)P𝑜𝑙𝑑

2 (𝑣2
𝑘)81

𝑘=1
81
𝑗=1                     (26b) 

 

4.3 Initial Distribution and Methodology of Iterations  

If we assume that the initial Root-Mean-Square speed is  0.5 and that the initial pre-collision speeds of all particles 

are  0.5, that is P𝑜𝑙𝑑
1 (𝑣1

11) = P𝑜𝑙𝑑
2 (𝑣2

11) =   and all others P𝑜𝑙𝑑
1 (𝑣1

𝑖) = P𝑜𝑙𝑑
2 (𝑣2

𝑖) = 0, for  𝑖 ≠   . Use the equations 

above to get P𝑛𝑒𝑤
1 (𝑢1

𝑖 ) and P𝑛𝑒𝑤
2 (𝑢2

𝑖 ), and set P𝑜𝑙𝑑
1 (𝑣1

𝑖) = P𝑛𝑒𝑤
1 (𝑣1

𝑖) and P𝑜𝑙𝑑
2 (𝑣2

𝑖) = P𝑛𝑒𝑤
2 (𝑣2

𝑖) for the next iteration. 

4.4 Results of Iterations  

After thirteen iterations, both distribution curves converge to the Maxwell-Boltzmann speed distribution, as shown in 

Figure 10. Moreover, the square of RMS speeds is inversely proportional to the particle masses. For this example: it is 

given that (n1, n2)𝑁 = (0.7,0. )𝑁, (𝑀1, 𝑀2) = (0. ,0. )𝑀 , and the iteration results are  (𝑣1,𝑟𝑚𝑠, 𝑣2,𝑟𝑚𝑠) =
(  .044, 27.   ) , (𝑣1,𝑟𝑚𝑠

2 , 𝑣2,𝑟𝑚𝑠
2 ) = (8 .7 ,7 6.0 ) , and (𝑀1𝑣1,𝑟𝑚𝑠

2 , 𝑀2𝑣2,𝑟𝑚𝑠
2 ) = (7 .6 , 7 .6 )𝑀 . These show 

that 𝑀1𝑣1,𝑟𝑚𝑠
2 = 𝑀2𝑣2,𝑟𝑚𝑠

2 . The results prove the Maxwell-Boltzmann speed distribution and also confirm Avogadro’s 

law based on the mechanical behavior of the collisions of the particles. A proof of the Maxwell-Boltzmann speed 

distribution with analytical integration can be found in another paper by the authors (Lin et al., 2021). 
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Figure 10. Thirteen iterations converge to the Maxwell-Boltzmann speed distribution 

5. Conclusion and Outlook 

It is essential to get the probability density function (PDF) ψ𝑎𝑏(𝑢𝑎; 𝑣𝑎, 𝑣𝑏) since from it, the Maxwell-Boltzmann 

speed distribution and the speed ratio can be obtained. From the derivation of the PDF ψ𝑎𝑏(𝑢𝑎; 𝑣𝑎, 𝑣𝑏), we reveal the 

basic mechanism behind the macroscopic phenomenon. The mechanics of the collision of particles is a bridge between 

microscopic behavior and macroscopic phenomenon. Another example is the macroscopic pressure and the microscopic 

velocity of the particles. We can see clearly that the universe does play dice with the random angles 𝛼 𝑎𝑛𝑑 𝛽 based on 

mechanics at the microscopic level for individual particles. By the way, on the other hand, group behaviors such as 

pressure waves or mass flows are deterministic at the macroscopic level. 

The results, 𝑀1𝑣1,𝑟𝑚𝑠
2 = 𝑀2𝑣2,𝑟𝑚𝑠

2 , obtained from Figure 10, not only prove the Maxwell-Boltzmann speed distribution, 

but also Avogadro’s law based on the mechanical behavior of the collisions of the particles. 

This article gives mechanical proof of the Maxwell-Boltzmann speed distribution and the speed ratio for monatomic 

gases only. The same procedures can be applied to polyatomic gases. The PDF ψ𝑎𝑏(𝑢𝑎; 𝑣𝑎, 𝑣𝑏) must be extended to 

including the rotation (or spin) of molecules unless the rotation is small and its effect can be neglected. Moreover, the 

procedures may also be applied to charged particles. It is possible that the chemical characteristic of molecules could be 

revealed from the speed and spin distributions induced by the mutual action of two different kinds of molecules. Then, 

the unique procedure provided may have a significant impact on this kind of research. 
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