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Abstract

The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of
ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and
mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann
speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass.

The Maxwell-Boltzmann speed distribution of mixed particles is based on kinetic theory; however, it has never been
derived from a mechanical point of view. This paper proves the Maxwell-Boltzmann speed distribution and the speed
ratio of mixed particles based on probability analysis and Newton’s law of motion. This paper requires the probability
density function (PDF) % (u,; v, v,) Of the speed u, of the particle with mass M, after the collision of two
particles with mass M, in speed v, and mass M, inspeed v,. The PDF (%" (u,;v,, v,) in integral form has been
obtained before. This paper further performs the exact integration from the integral form to obtain the PDF
Y (ug; vy, v,) in an evaluated form, which is used in the following equation to get new distribution P%,,(u,) from
old distributions P&, (v,) and P5,(v,). When P&, (v,) and P}, (v,) are the Maxwell-Boltzmann speed distributions,
the integration P%,,(u,) obtained analytically is exactly the Maxwell-Boltzmann speed distribution.

PL, (uy) = f f U (ttg; Ve V)P ()Pl () dvedvy, @b =101 2
0 0

The mechanical proof of the Maxwell-Boltzmann speed distribution presented in this paper reveals the unsolved
mechanical mystery of the Maxwell-Boltzmann speed distribution since it was proposed by Maxwell in 1860. Also,
since the validation is carried out in an analytical approach, it proves that there is no theoretical limitation of mass ratio
to the Maxwell-Boltzmann speed distribution. This provides a foundation and methodology for analyzing the interaction
between particles with an extreme mass ratio, such as gases and neutrinos.

Keywords: Maxwell speed distribution, Maxwell-Boltzmann speed distribution, Maxwell-Boltzmann distribution,
Avogadro’s law, kinetic theory of gases, kinetic theory, thermodynamics, statistical mechanics, subatomic particles

1. Overview

James C. Maxwell (1860a,b) first provided the Maxwell speed distribution in 1860 on a statistical heuristic basis.
Maxwell (1867) and Boltzmann (1872) carried out more investigations into the physical meaning of the distribution.
Boltzmann (1877) derived the distribution again based on statistical thermodynamics. Nevertheless, none of their
approaches were based on Newton’s law of motion.

The simplest way to prove the Maxwell-Boltzmann speed distribution is from a statistical view, beginning from the
normal distribution of the velocity v, in x-direction as follows.

1 -_1(v_x)2

P(Ux)=a—m€2 a ()
or
P(v) = e &)
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Where o == h= /ZIZ—T k is the Boltzmann constant, T is the equilibrium temperature, and M is the particle

1
vz
mass. Extending from the velocity v, to three independent velocities (v, vy, v,) in three directions, and transferring it
to spherical coordinates (v, 8, ¢) using v, = vsinf cos@, v, = vsinfsing, and v, = vcosf gives

1707 1T PP (v,)P(v,)dvedv, dv,

= fow%vze‘hz"zdv =f0mP(v)dv (3)

Where P(v) is the Maxwell-Boltzmann speed distribution shown in Equation (4) (Brush, 1966, Landau et al., 1969,
McQuarrie, 1976, Garrod, 1995, Maudlin, 2013).

3
P(v) = %vze‘hz"2 (4)

In the Maxwell-Boltzmann speed distribution, the most probable speed, vy, is inversely proportional to the square root
of the mass for fixed temperatures as follows
1 2kT
Yo =5 = ©)

Therefore, when two types of particles with mass M; and M, are mixed at the same temperature, the above equation
gives the following mass-speed relationship

V1,mp — My 6

V2,mp My ( )
An example of the theoretical Maxwell-Boltzmann speed distribution curves and their corresponding most probable
speeds vy, and vy, Of two types of particles with a mass ratio of nine are shown below.
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Figure 1. Maxwell-Boltzmann speed distributions of two types of particles

Boltzmann (1872) tried to provide mechanical proof of the Maxwell-Boltzmann speed distribution in 1872 by
formulating the following equation.

dn = f(x, t)dx - f(x’, t)dx" - Y(&; x,x')dE (7
where f(x,t)dx is the number of particles with speeds between x and x+dx, and similarly for f(x,t)dx’, dn is the
number of particles with speeds between £ and € + d&. In addition, the symbol i(§;x,x") represents the probability
density function (PDF) of the resulting speed after a collision between two particles. The definition is excellent and
meaningful, but the method used to calculate this PDF s has yet to be created. Following Boltzmann’s work in 1872,
we derived the PDF s based on Newton’s law of motion in this paper. The PDF s for equal mass particles had been
provided by Lin et al. (2019).

To consider the collisions of unequal mass particles, we need to have four PDFs: ' (uy; vy, 1), Y2 (uy; vy, vy),
U2 (uy; vy, v1), and W22 (uy; vy, v5). Where (@ (ug; v,,v,,) is the PDF of post-collision speed u, of a particle with
a mass M, after the collision of two particles with mass M, in a pre-collision speed v, and mass M, in a
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pre-collision speed v,. For a = b, the PDF is identical to the collision of two equal mass particles (Lin et al., 2019).
For a # b, the PDF will be given in this paper.

After the PDF %" (u,; v,, v,) Was derived, a numerical iteration method (Lin et al., 2019) can be used to get a new
distribution P%,, (u,) from the old distribution P%,(v,), and set P&, (v,) = P, (v,) for the next iteration using the
following equations.

Prew(ua) = Zg=1 np IOOO f0°° Y (Ug; Vg, vb)P:—ld(va)Pé)ld (vp) dvedvy,, a=12,..N )]
Where n, is the fraction of the number of particles with mass M,, N is the total number of particle types, and
2131:1 n, =1
Due to finite precision, the limit of computer memory, and computation time, the numerical iterations method can only
apply to mixtures of gasses with a mass ratio between 0.01 and 100. In the cases of mixtures of molecules and
subatomic particles, the extreme mass ratio is between 10712 and 10'2. This paper provides an analytical integration
method to show that the Maxwell-Boltzmann speed distribution is valid for even these extreme cases. When
P&, (v,) and P5,(v,) are the Maxwell-Boltzmann speed distributions, the analytical integration P%,,(u,) obtained
by the following equation will also be the Maxwell-Boltzmann speed distribution.

Prew(Ua) = fooo fom W (ug; Va, V)Pt (V) Prg (V) dvgdwy, ©)
The integration is tedious, but the final result is exactly the Maxwell-Boltzmann speed distribution. Moreover, the RMS
speed square is inversely proportional to the particle masses as predicted by Avogadro’s law (Avogadro).

2. Velocity Diagram for a Collision of Two Particles

A velocity diagram for a collision of two particles is used to derive the PDF of two types of particles' post-collision
speed. Two concentric circles in the 2D plane can be constructed as a velocity diagram for the collision of two particles
in 3D space. The concentric circles velocity diagram provides a geometric relationship between the pre-collision and
post-collision speeds. The concentric circles velocity diagram was used by Maxwell in his study of the
Maxwell-Boltzmann speed distribution and is explained and proved in this section.

Concentric circles velocity diagrams are based on two reference frames: the fixed reference frame (O) and a
center-of-mass (CM) reference frame (C). Speeds can be transferred between the fixed frame (O) and the CM frame

(©).
2.1 The Fixed Reference Frame

In the fixed reference frame, before a collision, two particles with mass M; and M, are moving at pre-collision
velocities ¥, (or 0A4) and ¥, (or OB). After the collision, the post-collision velocities of the two particles change to
i, (or OP) and U, (or 0Q), as shown in the figure below. It is important to note that the variables in the PDF

.

Y1%(uy; vy, v,) are speeds, which are the magnitudes of the velocities. Note that the vector ¥ without an arrow-hat v
indicates the length of the vector. For example, u, = |i;].

~

a RN b
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~

Fixed frame (O)

~
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Pre-collision Post-collision

N
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Collision plane (side-view) Concentric circles diagram

Figure 2. Velocities of two particles before and after a collision
2.2 The Center-of-mass Reference Frame

The center-of-mass (CM) reference frame uses the center of mass of two particles as its origin point (C). The velocity of
the center-of-mass of two particles is related to the two masses M; and M, and their corresponding velocities #; and
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¥, as
S MiVi+MaV, > >
Ve = W =myv; + myv, (10&)
. . M
where m; and m, are mass ratio and are defined as: m; = —~—; m, = —2%—.
Mi+M, Mi+M,

Before the collision, the pre-collision velocities of particles 1 and 2 in the CM frame are
ﬁlC = 171 - ﬁc (10b)

1})2C = 1-])2 - ﬁc (lOC)
It can be shown that after the collision, the post-collision velocities of particle 1 and particle 2 change to . (or CP)

and @, (or CQ) according to the following first three rules, which satisfy the last two conservations of momentum
and energy.

1. Point P will be on Circle C-A. ~ u;, = vy,

. . . CcP CA
2. Point Q will be on Circle C-B. =~ uy. = v,, and —£= eel _ Jcal _ mg
ue €@l |€B] ma

3. Velocity CP and CQ have opposite directions. = myt;. + myti,e = 0
4. Conservation of momentum.

my (ﬁc + ﬁlc) +m, (ﬁc + ﬁZC) = 1_7)c =m (7_7)c + ﬁlc) +m, (ﬁc + I_7)2c)

5. Conservation of energy (by u;. = vi. and u,. = v,.).
my (ﬁc + ﬁlc) : (ﬁc + ﬂlc) +m, (ﬁc + ﬂZC) ' (ﬁc + ﬂZC) = 1702 + mlu%c + mZu%c

ml(ﬁc + ﬁlc) ' (ﬁc + 1_7)16) +m, (ﬁc + ’l_])ZC) ' (ﬁc + 1_7>2c) = 1702 + mlvlzc + m2v§c

a Usc b
b Center-of-mass frame (C)
V1c
—_—— e - - »\ ,,,,,,,,,,,,
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\
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Figure 3. Post-collision velocities of two particles relative to the center of mass
3. Probability Density Function of the Post-Collision Speed in Integral Form

After any collision between two particles, the resulting speeds depend on two random factors: (1) the random directions
of the pre-collision velocities ¥, relative to ¥, represented by a random angle « (see Figure 4), and (2) the random
direction of the post-collision velocity i, represented by a random angle B (see Figure 4). These two random factors
are discussed below to prepare for the derivation of the PDF 2 (uy; vq, v,)-

W12y v1,v5) = ) Puyja@)Pe(@da = [ Bpio(B) [ 22| Po(@)dar (11)

The right-hand side of the above equation will be derived in the following sections. And, the final PDF W2 will be
obtained at the end of this section.
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Figure 4. Three sphere surfaces O-A, D-C, C-P with centers at O, D, C, and radius v;, mlvl,%rz
1
3.1 The Randomness of the Directions in 3D Before the Collision

For two given pre-collision speeds v; and v,, the post-collision speeds depend on the directions of the two
pre-collision velocities ¥, and #,. The two pre-collision velocities both have random directions. The directions of
these two pre-collision velocities determine the radius of circle C-A and circle C-B. The randomness of the two
velocities can be reduced to one random angle « which considers only the relative direction between ¥, and ¥, and
is defined as the angle between the two pre-collision velocities #; and #, (in the fixed frame) as shown in Figure 4.

For fixed magnitudes of v, and v,, if ¥, = OB is also fixed in the direction, but the direction of ¥, = 0A is
changed, then point A will be located on a spherical surface, as shown in Figure 4. And the probability of point A on the
surface is uniformly distributed since #; has equal opportunity in any direction. Therefore the probability density of
point A located on the sphere surface O-A at angle « is

Py(a) = isin a (12)

3.2 The Randomness of the Directions in 3D after the Collision

Similar to the pre-collision directions defined by « (representing the relative moving direction before the collision), the
location of the point P will be defined by S, as the angle between ¥, = OC and . = CP, as shown in Figure 4, such
that the same angle g will result in the same magnitude u, of the different velocity ;.

The band area between g and 8 + dB on the sphere surface C-P is 2m(u, ¢ sin 8)(u,dB), the total area of the sphere
surface is 4mu?., and the ratio is %sinﬁ dp. Therefore the probability density of point P located on the sphere surface
C-Patangle B is

Psia(B) = 5sin (13)

3.3 Considering all the Possible Directions in 3D Before and after Collisions
For a fixed «,the r; and r, asshown in Figure 4, can be computed as

1 (a; vy,1,) = 0C =/ (myv; cos a +m,v,)? + (my v, sina)?

= ml\/vl2 + (Z—ivz)z + 2, (Z—i vz) cosa (14a)

1,(a; v1,v,) = BC = /(myv; cos @ —m,v,)? + (myv; sin a)?

= my\/v2 + vZ — 2v,v, cosa (14b)

So the relation between u, and g for fixed r;, and r, isgiven by

139



http://ijsp.ccsenet.org International Journal of Statistics and Probability \ol. 10, No. 3; 2021

S m, 2 m, 2
u,(B;1ry,1,) = OP = (—r2 cos 8 +r1) + (—r2 smﬁ)
my my

= 2+ () +2n (2n)cosp (15)

Hence

—r (2. i my .
du, Tl(mlrz) sin -T1 (71“2) sin g

@ \/r12+(2—ir2)2+2r1($—ir2)cosﬁ

(16)

Uy

3.4 Probability Density Function 2 in Integral Form

The PDF y'2(uy;vy,v,) of the post-collision speed u; for two given pre-collision speeds v; and v, can be
obtained by summating all densities for all possible directions, i.e., a between 0 and 7, yields

i Uy .
Pa(a)da=f —————sinada

W2 (ug;v,,v,) = fnpma(ﬁ) |£ m
0 duy 0 4n (m—zrz)
1

T uq sinada
= fo -
4m1mz\jv%+(:—iv2) +2v1(2—iv2)cosa /v%+v§—2v1v2 cosa
o ug fn sinada (17)
" amum; 0 Jc+2Bcosa-AcosZa
Where
A = 4v292 = r*sin?(20) (18a)
2
B=v (:—ivz) (W +v3) — v, [vlz + (:—ivz) ]
= 2v,0,(v? — D2) (\7%) = r*sin(20) cos(26) tan ¢ (18b)
2
C= [vlz + (:—i vz) ] w? +v3) (18c)
VBZ+AC =v (ﬂv )(v2+v2)+v v v2+(ﬂv )2
1 my 2 1 2 1v2 1 my 2
— 5 (192 4 752 1 4
= 2v,0,(v{ + D3) (W) = r*sin(20) /cos ¢ (18d)
0, = [P2v,, r=\v2+D% 6=tan"! (ﬁ—z) (18e:g)
2 my 2 1 2 v :
= -1 (Mm2"m1 =M —_M i
¢ =tan (W)’ = Mi+Mp' Mz = My +Mz (18h5)

4. Probability Density Function of the Post-Collision Speed in Evaluated Form

The PDF *2, shown in Equation (17), is in integral form and can be used to compute numerically the probability of
post-collision speed of particles 1 after a collision. Because the PDF in integral form can be computed numerically, it
can be used in Equation (8) to mechanical proof the Maxwell-Boltzmann speed distribution using numerical iteration.
The limitation of computer-aided proof of the Maxwell-Boltzmann speed distribution is that two particles’ mass ratio
cannot be near infinite.
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In order for the PDF 12 to be used for analytical proof of the Maxwell-Boltzmann speed distribution, the PDF
Y12must be evaluated and formulated for all the possible pre-collision speeds of the two particles as detailed in the
following sections.

4.1 Integrate the Probability Density Function

The PDF of the post-collision speed in the previous section is in integral form with an interval from 0 to 7. Since some
a values in the interval near the lower bound a = 0 and the upper bound « = 7 cannot have a valid real number but
some imaginary number, it is required to use the proper interval (a;,, ay;) Of the integration and integrate the PDF
1% of Equation (17) as

W2 (uy; vy, v,) =

U, f"‘ub sina da
4mym, Jo,, VC + 2B cosa — Acos?a

uy [ B — Acos a]““b
sin™?

 4mymyVA VBZ+AC 1,

=— ___[sin"!(sin ¢ cos(26) — cos ¢ sin(26) cos a)] o> (19a)
4mim,72sin(26) A1y
__ wi(vup—vw)
" 4mym,r2sin(26) (19b)
where
Yivup =sin~1(sin ¢ cos(26) — cos ¢ sin(26) cos ay, ) (20a)
— 2 2 — -1 (%2 — -1 ( M2—Mmy .

r=4v{+V5, 6 =tan (vl)' @ = tan (‘/—Tm) (20b:d)

4.2 Determine the Bounds of Interval

We will determine the lower bound («;,) and upper bound («,,;) of LAOB («) for given pre-collision speed (v,),
pre-collision speed (v,) and a target post-collision speed (u,) in the above PDF *2(uy; vy, v,). The LAOB (a) is the
angle between the pre-collision speed (v,) and pre-collision speed (v,), as shown in Figure 4.

The possible range of 2A0B (a) is from 0 to m. However, some ranges of a (2AOB), near 0 or/fand =, are
impossible to reach the target post-collision speed (u,) because u; (OP) is bound by OT’ and OT as following

OT' <OP < OT (21)
Where
oT = 1y (a; vy, V3) —Z—jrz(a; V1, V5) (22h)
OT = ry(a; vy, v,) + %rz(a; V1, 7;) (22c)
1

Where, r; and r, asshown in Figure 4, can be computed from « by Equation (14).
The inequation of Equation (21) can be formulated in terms of v, v,, u;, a and separated into two inequations as

2
ml\/vf + (Z—jvz) + 2v, (:—ivz) cosa —myJvZ +v3 —2vv,cosa | Sy (23a)

2
u < ml\jvlz + (Z—ivz) + 2v; (Z—ivz) cosa + my /v + vZ — 2v,v, cosa (23b)

Let the a in lower bound and upper bound of u, be a,, and «a respectively and express the boundary values of
the above equation using a plus-minus sign in conjunction with «;,,,;, for a more compact formulation as

U = (24)

2
m m
ml\/vl2 + (m—ivz) + 2v, (m—i 172) cos aypyp + mz\/vl2 + vZ — 20,1, COS Ay p

The cosay, and cosay,, in the above equation can be solved by taking square twice (Note 1), as shown in Equation
(25). For convenience, let us assign a new variable c;p,,;, to the solutions of cos ay,,,;, as
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(ma—mq)(vZ-u?)+ /Amimyu, /vf +92—u?

Cos Aypup = Jamimg 0.5, = Cipub (25a)
Or in polar coordinate as follows, where 8, = cos™(u, /7).
__singcos(20) +sin(20,+¢p) _
COSApup = = Cipup (25b)

cos ¢ sin(26)

Because the value of any cosine function cannot be smaller than —1 or larger than +1, we must limit the values of
cos ay,,p between -1 and +1 as

cosay, = min(cy,+1)  and  cos @y, = max(cy,, —1) (26)
In the table below, v, foreach case is calculated by Equation (20a) as follows.
For Case 1 and Case 3, |cjpup| > 10 cosayup =21 (ay, =0, ay, =)

Yibup = sin~1(sin ¢ cos(26) F cos ¢ sin(26)) = F sin~*(sin(26 F ¢))

= Fmin((20 F 9), (m — 20 £ @) € [-m/2,7/2] (27)

For Case 2 and Case 4, |cipup| < 1 cos@pup = Cour (@ipup = €05~ Crpyip)
Yibup = sin~1(sin ¢ cos(26) — sin ¢ cos(260) F sin(26, F ¢))
= Fsin~1(sin(26, F ¢))

=F min((290 F ), (r—26,t (p)) €[-m/2,m/2] (28)
Equation (27) and Equation (28) can be combined to
Vibup = Fmin((20 F ), ( — 26 + 9), (26, F @), (r — 26, £ @) (29)

Table 1. The functions y,, and y,, for all cases

IF Use a V4
Casel | ¢ > 1 ap =cos(ap) =1 | ap =0 |y =—min[(20 — ), (r — 20 + p)]* 4 Possible
Case2 |cp <1 ay, = cos™(cy) i = —min[(26, — @), (m — 26, + 9)]* |} L bounds
Case3 | cyup < —1 | cyp = cos(ayy) =—1 | Aup =T | Yup = min[(20 + @), (T — 20 — @)] ** ] 4 Possible
Cased |cyp >—1 ayp = cos (cyp) Yup = Min[(260, + @), (T — 26, — )]** U bounds

* yip =—min[(20 — @), (m — 26 + ¢), (260 — ), (r — 26, + ¢)]

*yup = min[(20 + @), (r — 26 — ¢), (26, + ¢), (m — 26, — )]

Now we have determined the bounds a,;,,, of the integral and the values y;; ;. Let’s summarize the PDF again as
following

120y, . — W1Gup=vip)
b4 (ul'vllUZ) - 8mymovy vy (30)
where
Vibup = Fmin((20 F @), (r — 20 + 9), (26, F @), (r — 26, + ¢)) (31a)
5 — |m2 — tan-1(%2 — tapn-1(M2zm .
U, = \/;vz, 6 = tan (vl)’ @ = tan (W) (31b:d)

r=\vi+0% 6,=cos? (%) (31e:)
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Figure 5. Relations between (r, 8, 8,) and (uy, vy, 7,)

4.3 Regions of (y,, — vip) by the Lower and Upper Bounds

The PDF W12 in the equation above cannot be formulated with one formula but 16 formulas. Because y,, has four
possible formulas of (260 — @), (m — 26 + ¢),(20, — ¢),(rt — 26, + @), and y,, have four possible formulas of
(20 + @),(t — 20 — ¢),(20, + @),(r — 26, — @), the total combination of (y,, — y;,) is sixteen (4 x 4), as shown
in the table below.

Table 2. Sixteen formulas of (y,, — v,) for computing Y22 (uy; vy, v,)

Lower bound Case 1: Clﬁ >1 Case_Z: c”,_f 1
- ap =0 - ay = cos™H(cyp)
Yub —Yib\ "V
Upper bound 20— ¢ m—20+¢ 200 — @ T—2600+ ¢
Yub
A B (D-J Boundary) C (A-K Boundary) D (my; > m,;)
Case 3: 20+ ¢ 46 T+ 2¢ 20 + 26, T+ 2¢
cup < —1 +26 — 26,
i E (G-M Boundary) F G (my; <m;y) H (F-P Boundary)
Qup =T m—20—¢ m—2¢ 2w — 46 m—2¢ 2w — 260 — 26,
—26 + 26,
| (A-K Boundary) J(my > my) K L (D-J Boundary)
Case 4: 200+ @ 20 + 26, T+ 2¢ 46, T+ 2¢
Cup > —1 —26 + 26,
. M (my <my) N (F-P Boundary) O (G-M Boundary) P
ayp = cos™(cyp) m—20p— ¢ T —2¢ 2w — 260 — 26, =29 2m — 46,
+26 — 20,

The formulas of (y,;, —y;,) in the table above can be visualized as eight regions (ADFGJKMP) with coordinates of
v; and ¥, as shown in Figure 6. Each region represents a formula of (y,, — ;). Both y,, and y;, have four
possible formulas, as shown in Equation (29), which in terms depends on the pre-collision speeds of two particles
before a collision. The formula of (y,;, — v;,) is the addition of y,,;, (Case 3 and Case 4) and —y;,, (Case 1 and Case
2) as shown in the table above.

In Figure 6, eight formulas (BCEHILNO) are not shown as regions. It can easily be proved that these eight formulas
(BCEHILNO) are the boundary between two regions. For example, Formula E or O (r — 2¢) is the boundary (part of
BL,) between Formula G and Formula M and can be obtained by equating the Formula G and Formula M as

T—20—20+20,=m—20+20—-20, > 6 =0, > BL,

Substituting the above equation of the boundary line (BL,) into Formulas G and M shows that Formula G and Formula
M merge to Formula E or O as

FormulaG: w—2¢p —260+260, - mw—2¢ — FormulaEorO

FormulaM: w—2¢p + 26 —-20, - w—2¢p — FormulaEorO
Other examples for the boundary lines BL, and BL, between Formula M-A and Formula M-0 can be obtained by
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Formula M = Formula A and Formula M =0 as
T—20+20—-20,=40 - 6=mn/2—¢@—0, - Blg
mT—20+20-200=0 - 8=—(n/2—¢—06,) - BL,

All the boundary lines in Figure 6 can be found from the formulas of two adjacent regions as described above and are

listed in the table below.

Table 3. Equations of the boundary lines

Boundary line (BL) Adjacent regions Equation of boundary line
BLo K-0 o =0; 7 =
BL, F-0 0=m/2
BL, F-P; G-M; K-A 0=0pv =u
BLj A-0 6=0
Blug P-M; F-G, P-D;F-J 0=m/2+¢—0,
Blso G-0, J-0 0=n/2F @ +6,
BLe,10 G-K; M-A,J-K; D-A |8 =1/2F ¢ — 6,
Bl 14 M-Q, D-0 0=—(/2F¢—06p)

For the case of m; < m,, the angle ¢ is greater than zero (¢ = tan™! (\/%) > 0), and there are six regions

(AFGKMP) of (y,p — vip), @s shown in Figure 6(a). For the case of m,; = m,, the angle ¢ is less than zero (¢ < 0),
and region G becomes Region J, and region M becomes Region D, as shown in Figure 6(b).

a b
D, ABL, BL, BL, U, ABL; BL, BlLg
/ P
£ my; —m g m,—m
tang = — L>0 tang = 2 L<o
® mym; - 4m1m2
.......... G " o Bl 5
P
BL5 BLg™ &
BL, BLy
/ NELs / BLyo
BL
/ 0 null /Bl null
/ null & Bls |/ nuil A —v_|5Ls
Uy V1 Uq U1

Regions and boundary lines for my < m, Regions and boundary lines for m; = m,

Figure 6. Eight regions of (y,, — v1») and boundary lines
As it can be observed in Figure 6, the shapes of regions of (y,;, — yip) IS related to the angle ¢, which is defined as

ma—mq
JAmimy
regions of (y,, — vip,) for some typical mass ratios. The four mass ratios are (a) m; = 0.5,m, = 0.5, (b) m; =
0.3,m, =0.7, (¢) m; =0.1,m, =09, (d m, =0.01, m, =0.99. Where (a) is a special case representing

tan™? ( ) as shown in Equation (18h). Four combinations of m,; and m, are used as examples to visualize the

mz—my

equal-mass particles. The angle ¢ = tan™! (Jﬁ) determines the slope of the boundary lines BL, to BL,; as

shown in Figure 6 and Figure 7.
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a m; = 0.5,m, =0.5 b my = 0.3, m, =0.7
200 200
F P F
D, 100 D, 100
G
K
A
null null v
0 0 A null
0 100 200 0 100 200
121 V1
c my = 0.1,m, =09 d myq = 0.01, m, = 0.99
200 200
G| M
D, 100 Dy 100
null
null @ = 78.5°
0 0
0 100 200

V1
Figure 7. Regions A to P for the formulas of (y,;, — vi)
for computing Y*?(uy; vy, v,) With u; =50
5. Analytical Proof by Double Integrals

The Maxwell-Boltzmann speed distribution is proved by examining speed distributions before and after a random
collision of two particles in a steady-state system. We assumed the speed distributions of both particle 1 and particle 2
before a collision are the Maxwell-Boltzmann speed distributions. Suppose the integrated speed distributions of both
particle 1 and particle 2 after the collision are also the Maxwell-Boltzmann speed distribution. In that case, it proves that
the Maxwell-Boltzmann speed distribution is the right speed distribution of the steady-state system.

Before a random collision, we let the speed distributions P}, (v,), P4,(v,) of particle 1 and particle 2 respectively be
the Maxwell-Boltzmann speed distribution as

2 ,—h3v?

Pra(vy) = TU ie (32a)
3
Pia(v,) = ZZ vie vk (32b)

Where h, = My h, = M2 and k is the Boltzmann constant, T is the temperature.
2kT 2kT

The speed distributions P1,,, (u,) of particle 1 after the collision can be calculated from the following equation with the
PDF y'?(uy;v4,v,) computed by Equation (30) as

Prow (W) = fooo fooo U2 (ug; vy, Vz) Pria(v1)Pq(v2) dvy dv, (33a)
= 7 I W g v, v,) P vt P ek v, dv, (33b)

Where y*2(uy; vy, v,) is the PDF of post-collision speed u; of particle 1 after a random collision of particle 1 with
pre-collision speed v; and particle 2 with pre-collision speed v, as

¢12(u1; vy, V,) = (Yub—Ywp)u1 (34a)

8mymyv,¥,
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with (Yu» —Yw) =0, forr<u; or yu <vp (34b)

5.1 Simplify the Distribution Parameters

To further evaluate the speed distribution Pl,, (u;) as in Equation (33), the speed distribution can be first simplified
by eliminating h, by the definition of the Boltzmann constant k as shown below

M
hy Nzt _ [y _ [ma (35)
T Jin = Jm

2kT

Since v, = \/?ﬁz (as defined in Equation (18e)) and simplified symbol h; as h will yield
2

© (oo 4h3 2.2 4h3 2.2
Prow () = fo fo U2 (g v4, 1) Tnlvlze havi Tnzvzze "2 dv, dv,

[ [ v

16h6f f (Vub 'Vlb)uﬂfl”z —hz(v1+v2) dU dﬁ (36)
8mim; 1 2

A2 _R2
22 h2(vZ+92) dv, dp,

5.2 Convert Coordinate to Polar Coordinate

The speed distribution, as shown in the equation above, has a double integral for v, and ¥,. By converting Cartesian
coordinates to polar coordinates: v, = rcos@,?, = rsiné, dv,d?, = rd0dr. We can evaluate the first integral for
0 then evaluate the second integral for r as following.

2
Prew(uy) = — nful fn/ (Vb — Vip)tty 7 C0S 0 7sin 6 e "7 rd6 dr
= f fn/z(Yub Vi) sin(26) d6] e~ 713 dr (37)
m1m2T[

In the flowing section, we will evaluate the integral for 6.
5.3 Evaluate the Integral for 6

In this section, we will evaluate the inner integral fon/z(yub — Yw) sin(260) d6 in Equation (37). Where (Vup — Y1)

could be any of the eight formulas depends on the pre-collision speeds v; and ¥,. Because (y,, — ;) has a
different formula for different v, and 7¥,, the above integral needs to be separated into different integrals for different

regions. For example, the integral path across regions MGF, [ need to be evaluated by three integrals of

MGF’
corresponding formulas (y,, — vip) from Table 2 and bounded by the relevant boundary lines from Table 3 as follows.
BL, BLy BLq
fdé = fudo + fcdb + frdo
MGF BL BL, BL,
6o T/2+@p—06g /2
—(m/2-¢—0o) 6o m/2+¢—6p

Where

fr = up — Yip)r sin(26)
Substituting (v, — vip)g for each region from Table 2 into the above three integrals and evaluating each integral will
yield

f fdo= f Yup — Y) sin(26) dO = 8m,m, sin(26,)
MGF MGF
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It can be shown that the integral for 6 integrating through different paths for different r results in the same function of
0, as

fMPFfdQ = fMGFfdQ = fMGfde = fAMGde = J‘AKGfdG

= [T up — v1p) sin(26) d6 = 8mym, sin(26,) (38)
The detailed integrations are shown in Note 2.
~ ABLl BLZ BL4 BL, BL, BL4
(%) f = fudd + frdb + frdé
MPF BL, BLy BL,
BL BL, BLy, BLq
7 f =| fydd+| fodo+| frdo
MGF JBL, BL, BLy

BL, BLsg
f =| fudo+| f.do
MG

BL, BL,

BLg BL, BLs
f = fadf + fudoé + fcdé
AMG /BL; BLg BL;

BL, BLg BLg
4akG  JBLs BL, BLg

Where fr = (Yup — Yip)r Sin(26)

and (Yup — Y )r for the six regions R

v:BL3 as (AFGKMP) are listed in Table 2.

Figure 8. Integration paths
5.4 Evaluate the Integral for r

Substituting Equation (38) into Equation (37) yields

6
Sh f:: sin(26,) e~"*7r3 dr

Pr}ew(ul) =

8hfu, oo 2u w\2 _p2,2
= 1f ket 3 1— (_1) e her 7"3 dr
™ u r r

L rZ —uZ e M’ rdr 39
uy 1

Vs

5.5 Cange Variable from r to v
Changing the variable from r to v by v?=7r?2-u?, 2vdv=2rdr , and using fom P,(v)dv =

4h3 _p2,,2 .
ﬁfowvz e "V dv = 1, yields
16h%u?

3

Prew(uy) = fgoo ve M+ )pdy

4h3 5 _p2y,2 [4h3 0 5 _p2,2 ]
= use 1|l— || v°e dv
vr 1 T fO

= % u_% e -h?uf (40)

This concludes the derivation of the Maxwell-Boltzmann speed distribution PL,,, (u;) of the post-collision speed of
particle 1 as

4h3 _p2..2
Pl () = yenind (41)

The PDF P2, (u,) of the post-collisiton speed of particle 2 will also be exactly the Maxwell-Boltzmann speed
distribution as
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4h3 _n2,,2
Pr%ew(uz) = T;u%e hzus (42)
The above PDF P2, (u,) can be concluded by simply treat particle 2 as particle 1 and following the same procedure

for getting P, (u;).
6. Conclusion and Outlook

This paper analytically proved the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles based
on particles' collision mechanics. The proof is based on a probability density function of post-collision velocities
developed in Sections 3 and 4. The probability density function of the post-collision speed reveals the microscopic
mechanics behind the macroscopic phenomenon. It can be used as a mathematical tool in the fields of statistical
thermodynamics and kinetic theory.

The derivation of the Maxwell-Boltzmann speed distribution results in another significant outcome: the
Maxwell-Boltzmann speed distribution is valid for interactions with extreme mass ratios between molecules and
subatomic particles, where the mass ratio is between 10712 and 10'2.

This article gives mechanical proof of the Maxwell-Boltzmann speed distribution and the speed ratio for monatomic
particles only. The same procedures can be applied to polyatomic particles. The PDF of the post-collision speed must be
extended to including the rotation of the molecules unless the rotation is small and its effect can be neglected. Moreover,
the procedures may also be applied to charged particles. The chemical characteristic of molecules may be revealed from
the speed and spin distributions induced by the mutual interaction of two different molecules. Our method provided in
this paper may have a significant impact on this kind of research.
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Notes
Note 1.
To solve for cosay,,,;, from the following equation.

U.l:

2
m m
ml\/vl2 + (m—jvz) + 2v, (m—j vz) COS Ay p T mz\/vl2 + vZ — 2v,v, COS Ay p

Let ¢;pup = €OS aypp, and square to get

2 2.,2 2.,2 2.,2 2.,2 2
uy = (mlv1 + msvy; + Zmlmzvlvzclbyub) + (m2v1 + msvy — 2m2v1v2clb_ub)

2,,2 2,,2 2,2 2,,2 2
iz\/(mlvl + m5v; + 2m1m2v1v2clb,ub)(m2v1 +msv; — 2m2v1v2clb‘ub)
Rearrange and square again to get

2
2.,2 2.,2 2.,2 2.,2 2 2
[(mlv1 + msvy + 2m1m2v1v2clb,ub) + (m2v1 + msvy — 2m2v1vzclb,ub) - ul]

2.,2 2.,2 2.,2 2.,2 2 —
—4-(m1v1 + msvy + 2m1m2v1v2clb‘ub)(m2v1 + msvy — 2m2v1vzclb,ub) =0
or

2 2
2.,2 2.,2 2.,2 2.,2 2 4
(mlv1 +msvy; + Zmlmzvlvzclb_ub) + (mzv1 + msvy — 2m2v1v2clb‘ub) + uj

—2u?(miv? + m3v3 + 2mymuv,V,Cipp + MEVE + M3vZ — 2m3v,V5Cp0p)
—2(m2v? + m3v3 + 2mym,v,v,Cp 0 ) (M3VE + mEvi — 2mivivycpp ) = 0
or
Aty + 2By + €' = 0 (N1)
Where
A" = 2mum,v,v,)% + 2m2vv,)? + 2(2mym,v,v,) 2miv, v,)
= 4(mym, + m2)?v2v2 = 4m2Zviv: = Am m,vid?
C' = ut — 2u2(M?v? + m2v? + m2v? + m3v2)
+(m2v2 + m3v2)? + (m2v? + m2v2)? — 2(m?v? + m2v2)(miv? + miv2
= uf — 2u?((m? + mHv? + 2mZvi) + (m? — m3)*vt
=uf — 2u?((M? + mHv? + 2mym,93) + (my — my) vt
B' = 2mym,v,v,(m#v? + m2v?) — 2miv,v,(m2v? + m2v?)
+2m2v,v,(M3vE + m2v) — 2mym,v,v,(M3v? + m3v2)
+2uf (m3 — mymy)v, v,

_ 2.2 2.2 2 2.2 2.2
= 2m;m,v;v,(mivy — m3vi) + 2msv,v,(mivi — mjvy)
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+2uf (m3 — mymy)v, v,
= 2myv,v,(mf —m3)vi + 2uf (mf — mymy)v, v,
= 2m,v1v,(my — mp) (vf — uf)
= J4mym,v,D,(m; — my)(vf —ui)
B'? — A'C' = 4m m,vid?
((m1 - mz)z(vf - u%)z - uf + Zuf((mf + m%)vlz + 2m1m2ﬁ22) - (m; — mz)zvf)
= 4m1m2v12622uf(4m1m2(v12 + 922) - uf(l - (m; — mz)z))

= (4mymyv; Duy)?(vf + 05 —ui)

Therefore, the ¢y, in Equation (N1) are given by

—4mym,v,9,(m; — my)(vf —uf) + Amym,v; DUy vi+ 05 —uf

Cibub =

4m,m,vid?
_ (mz—ml)(v%—ui)i,Mmlnizul /v%ﬂ”izz—u% (N2)
JAdmimo v1Uy
i — 2 | 552 — -1 (P2 — -1 (%1 — —1 [ M2—my
By using r = +/vi + 73, 8 = tan (Ul), 6, = cos (r ) @ = tan ( 4m1m2),
the equation above becomes
sin @(cos? 8 — cos?8,) + cos@ cos B, sinf, sin@(cos(20) — cos(26,)) + cos ¢ sin(26,)
Cc = =
tbub cos ¢ cos B sin 6 cos ¢ sin(26)
__singcos(20) +sin(26,+¢) (N3)

cos ¢ sin(28)

Because the value of any cosine function cannot be smaller than -1 or larger than +1, we must limit the values of
cos gy, between -1 and +1 as

. . sin ¢ cos(20) +sin(260,—¢)
cosay, = min(cy,,+1) = mm( pv—s ,+1) (N4)
sin ¢ cos(26) —sin(20,+¢) _

cos ¢ sin(26) ’ 1) (N5)

oSy, = max(cyy, —1) = max(

Note 2.

a) Integration paths across the regions (AKGF) and (AKG’):

A Btz

BLg3

£ dO = f(f" (46)sin(26) df = [—26 cos(26)]5° + [sin(26)]5°

= —26, cos(26,) + sin(26,)

L . 2 -0
K: flfLL; fid6 = [T (400)sin(26) dO = [~26, cos(20)]7

= —26ycos(mw — 2¢ — 260,) + 20,cos(26,)
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2 +6
f::,)s fedo = [# (;p+9 °(m — 29 — 26 + 26,) sin(26) d6
2~ ¥~ Y%

NIH

[-(r—2p—-260+ 290)cos(29)] [s n(zg)]z ¢+Zo

= 26, cos(Tr — 20 — 26,) + > sin(T + 2 — 26,) + 5 sin(r — 2 — 26,)

G [yt fodO = f?(;"_:"(n — 20 — 20 + 26,) sin(26) d6
E_ —Yo

+(P 6o

ooy~ 3 SMCOE

= (2 — 26,) cos(mw + 2¢ — 26,) + 260 cos(m —2¢ — 200)

[ (m—2¢—20+ 290)cos(29)] i 90

—%sin(n +2¢p —26,) + %sin(n —2¢ —26,)

F: f“l frdo = fgw_eo(Zn — 46) sin(20) dO
2

s s

= [—(r — 28) cos(ZéP)EJr(p_eo—[sin(26?)]g+(p_e0

= —(2¢ — 20,) cos(m + 2¢p — 26,) + sin(mw + 2¢ — 26,)

Combine the results to get

Jaor @2 = ) sin(26)d6 = [, . (v, — y1) sin(26) d6

= sin(26,) +%sin(rt —2p — 26y + %sin(n +2¢ — 26,)

= sin(26,) + sin(m — 26,) cos(2¢) = (1 + cos(2¢)) sin(26,)
= 2 cos? ¢ sin(26,) = 8m,;m, sin(26,)

It is interesting to note that all the terms with a cosine function are canceled.

For m; = m, = 1/2, ¢ = 0, only two integration paths are needed: (AKF) and (APF).

Jur (Y2 = v1)sin(20) d6 = [, . (v, —y1) sin(26) d6

= sin(26,) + sin(m — 26,) = 2sin(26,) = 8m,m, sin(26,)

b) Integration paths across the regions (AMGF), (AMG’), and (M’G’):

fBL6 £,d0 = f;ET"”'GO(zLQ) sin(20) d§ = [_zecos(29>]§'<"' [sm(29)]2 e

= —(m—2¢ — 26,) cos(mr — 2¢ — 26,) + sin(w — 2¢ — 26,)
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) BL, _ 6o .
M: fBL6 fudo = fg—q)—eo(” —2¢@ + 26 — 26,) sin(20) d6
=1 [— (T —2¢p +20 — 290)cos(26)]g° +1 [sin(26)]%
2 E—(p—eo 2 E—qa—BO

= (r—2¢ — 26,) cos(mt — 2¢ — 26,) —%(n — 2¢) cos(26,)

—2sin(r — 29 — 260) + 3 sin(26,)

BL
M’: fBL:

_ rbo .
fudo = f—(§—<ﬂ—90)(n —2¢ + 26 — 26,) sin(260) d6

=-[-(r—2p+20 - zeo)cos(ze)]fﬂ( o)t > [sin(ze)]fﬂ(g_(p_eo)

T _o—
PE4

= —%(n — 2¢) cos(26,) + %sin(n —2¢ —20y) + %sin(ZBo)

,  (BL 2 _o+6 .
Gt fpo fad8 = [2777°(m — 2 — 26 + 26,) sin(26) df

E—(p+90

Z_p+0
[—( — 2 — 26 + 26,) cos(26)]3 or "~ 2[sin(20)],

N | =

= %(n — 2¢) cos(26,) + %sin(n +2¢p —26,) + isin(ZGo)

G: [y fodf = [27"7"(m — 200 — 26 + 26,) sin(26) df

T
E+<p—90

Zip-0
[— (1 — 2¢ — 26 + 26,) cos(ze)];:"’ "~ 2[sin(20)],

N

= (2¢ — 26,) cos(m + 2¢ — 26,) +§(n — 2¢) cos(26,)

—%sin(n +2¢p —26,) + isin(ZQO)

BL z )
F: fBL: frdf = f§+(p_90(27r —40)sin(20) d6

=—(2¢ —26,) cos(m + 2¢ — 26,) + sin(mw + 2¢ — 26,)

Combine the results to get

fAMGF(yz - Y1) Sln(ze) da = fAMG,(]/Z - Y1) Sln(ze) da = fM,G,(VZ - Y1) Sln(zg) de

= %sin(ﬂ —2¢p — 26, + %sin(Z@o) + éSil’l(Tl’ +2¢p —26,) + isin(ZGo)

= sin(26,) + sin(w — 26,)) cos(2¢) = 8m,;m, sin(26,)
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The integration path (M’G’) is the only path for very small m;.

¢) Integration paths across the regions (AMPF) and (M’PF):

A, BLsz do = [27*7"(46) sin(26) dO

=—(m—2¢ — 20,) cos(t — 2¢ — 26,) + sin(m — 2¢ — 26,)

M: [ fiy d6 = fg_*;"_‘ei"(n — 20 + 26 — 26,) sin(26) d6
2

= %[—(n —2¢ + 26 —26,) cos(29)]g + [sm(29)] T ZO
4 o

= —(m —26,) cos(m + 2¢p — 26,) + (T — 2¢ — 26,) cos(n —2¢p —26,)

+%sin(n +2¢ —26)) — %sin(n —2¢ —26,)

Mt [ fiy B = f2(+“’ 1) = 20 + 20 = 260)sin(26) d6

NlH

0 6
[—( — 20 + 26 — 20,) cos2O)]* " %[31n(29)]2+(p °

“rpan)t (5000

= —(m — 26,) cos(m + 2¢ — 26,) + %sin(n +2¢p —26,) + %sin(n —2¢p —26,)

p: fBLZ frdf = +(p 6, (2 — 46,) sin(26) db = [~ (m — 26,) cos(29)]§i

= (r — 260,) cos(m + 2¢ — 20,) — (T — 26,)cos(206,)

F: fBL1 frdo = fe%o (2r — 46) sin(20) d§ = [—(x — 26) cos(ze)]go—[sin(ze)]go

= (m — 260,) cos(20,) + sin(26,)

Combine the results to get

Vaapr (2 = v1) sin(26) d6 = [, .(v2 — 1) sin(26) d6

= %sin(n —2¢ —26,) + %sin(n + 2¢ — 26,) + sin(26,)
= sin(w — 26,) cos(2¢) + sin(268,) = 8m,;m, sin(26,)
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