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Abstract

The copula function is an effective and elegant tool useful for modeling dependence between random variables. Among
the many families of this function, one of the most prominent family of copula is the Archimedean family, which has its
unique structure and features. Most of the copula functions in this family have only a single dependence parameter which
limits the scope of the dependence structure. In this paper we modify the generator of Archimedean copulas in a way
which maintains membership in the family while increasing the number of dependence parameters and, consequently,
creating new copulas having more flexible dependence structure.
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1. Introduction

Dependence between variables has raised much research interest, where the challenge has always been to find a suitable
multivariate distribution with which to model it. One promising direction is based on copula functions which provide
a powerful tool geared to building multidimensional distributions with given marginals. By Sklar’s Theorem (Sklar’s,
1959), every multivariate cumulative distribution function F (X1, ..., Xd) = P (X1 ≤ x1, ..., Xd ≤ xd) of a random vector
(X1, ..., Xd) can be uniquely written in term of the separate parts of its marginals Fi (xi) = P (Xi ≤ xi) which are set of
univariate distributions, and copula C, which holds the dependence structure between them, such as

F (x) = P (X1 ≤ x1, ..., Xd ≤ xd) = C (F1 (x1) , ..., Fd (xd)) , (1)
xi ∈ (−∞,∞) , i = 1, ..., d.

By Nelsen (2006), the copula function must meet three properties. 1. For ui = Fi (xi) when at least one of the marginals
has zero value then C (u1, ..., 0, ..., ud) = 0, 2. if all marginals except for ui are equal to one, then C (1, ..., ui, ..., 1) = ui,

and 3. C is a d-dimensional non-decreasing function, i.e.
2∑

i1=1
...

2∑
id=1

(−1)i1+...+id C
(
u1,i1 , ..., ud,id

)
≥ 0, for any [a, b] ∈ (0, 1)d

ordered ai < bi and u j,1 = a j, u j,2 = b j for j = 1, ..., d. This function has been comprehensively researched by Joe (1997),
Nelsen (2006), and Durante & Sempi (2015) to mention only a few. See also references by Druet & Kotz (2001), and
Genest & MacKay (1986). There are several families of copulas, the most common are the elliptical, which developed
from an elliptically distributed random variables, the extreme value copula, which enables a suitable dependence structure
for rare events, and the Archimedean family. The advantage of the Archimedean family is the unique structure that is
expressed in its generator function. Different choices of generator functions yield different copulas with their particular
expression of dependence. Many interesting parametric functions belong to this family, which contains a wealth of
dependence structures (Embrechts et al., 2001). Among the most common are the Clayton copula (1978) in which the
tails of the distribution are more dependent on the negative tail than on the positive, Frank (1979) which is symmetric
Archimedean copula and Gumbel (1960) in which the tails of the distribution are more dependent on the positive tail than
on the negative.

Table 1. Examples of families of Archimedean copulas

Family Cθ (u, v) ϕθ (t) Range of θ

Clayton
[
max

(
u−θ + v−θ − 1, 0

)]− 1
θ 1

θ

(
t−θ − 1

)
θ ∈ [−1,∞) \ {0}

Gumble exp
(
−

[
(− ln u)θ + (− ln v)θ

]− 1
θ

)
(−ln (t))θ θ ∈ [1,∞)

Frank − 1
θ

ln
[
1 +

(e−θu−1)(e−θv−1)
e−θ−1

]
−ln

(
e−θt−1
e−θ−1

)
θ ∈ (−∞,∞)
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A two-dimensional Archimedean copula is denoted by:

Cθ (u, v) = ϕ−1
θ (ϕθ (u) + ϕθ (v)) , (2)

where ϕθ (t) is the Archimedean generator and θ is the dependence parameter. The generator ϕ is a continuous, strictly
decreasing convex function ϕ : [0, 1]→ [0,+∞] such that ϕθ (1) = 0. Kimberling (1974) proved that ϕθ (t) is a completely
monotone function. Schweizer and Sklar (1983) showed that ϕ−1

θ (t) induces a bivariate copula if it is convex. McNeil
& Neslehova (2009) showed that the necessary and sufficient condition for d-dimensional copula is for ϕ−1

θ (t) to be d-

monotone on [0,∞), i.e., to satisfy (−1)k dkϕ−1
θ (t)

dtk ≥ 0 on [0,∞) and k ∈ [1, d − 2]. Many properties of the Archimedean
copulas and their generators are introduced and have been proven in Nelsen (2006). Some of them listed as follows:

• The pseudo-inverse of the generator ϕ is the function ϕ[−1]
θ (t) =

{
ϕ−1
θ (t) , 0 ≤ t ≤ ϕθ (0) ,

0, ϕθ (0) ≤ t ≤ ∞. , Nelsen (2006,4.1.2).

• The distribution function of Archimedean copula C with generator ϕθ(t) is denoted by KC (t) = t − ϕθ(t)
ϕ′θ(t

+) , Nelsen
(2006,4.3.4).

• The density of Archimedean copula C is given by cθ(u, v) =- ϕ
′′(C(u,v))ϕ′(u)ϕ′(v)

[ϕ′(C(u,v))]3 , Nelsen (2006,4.3.6).

Archimedean copulas have been used in different fields, such as actuarial science (Albrecher et al., 2011, Thilini et al.,
2020), finance risk models (McNeil et al., 2005), portfolio allocations (Hennessy & Harvey, 2002), and hydrology (Chen
and Guo, 2019). Several researchers have been involved in generating new Archimedean copulas, using its generator. Joh
and Hu (1996) introduced families of multivariate copulas with tractable dependence structure, which was obtained by a
mixture of a distributions called max-infinitely divisible. Genest et al., (1993) showed five different ways of generating
alternative models having an Archimedean generator. The methods were right and left composition, scaling, composition
via exponentiation, and linear combination. As an example, they generated a new generator which is a combination of
Clayton’s Frank’s and Gummble’s bivariate copulas, given by

ϕα,β,γ(t) = log
(

1 − (1 − γ)β

1 − (1 − γtα)β

)
, α > 0, β > 1, 0 < γ < 1, 0 < t ≤ 1. (3)

Morillas (2005) introduced a method designed to produce new copulas such that Cϕ (x1, ..., xn) = ϕ[−1] (C (ϕ (x1) , ..., ϕ (xn))) .
She showed sufficient conditions for the new copula but didn’t investigate its behavior as compared with that of the orig-
inal. Spreeuw (2010) presented a flexible family of Archimedean copula where the inverse of an Archimedean generator
was generated from ψ, a utility function which is nondecreasing and concave. He assumed that ψ defined on [0, 1] so −ψ
is strictly decreasing and convex and could therefore serve as a generator. He transformed ψ in order to get ψ(0) = −1 and
defined an Archimedean generator of the form ϕ(s) = max

[
1 + β (ψ (0) − ψ (s)) , 0

]
, s ≥ 0, β > 0. Bernardino & Rulliere

(2017) proposed conversion of the generator that allowed choosing an upper tail dependence without changes in the shape
of the copula. They changed only part of a given generator and called it an Upper-Patched generator because the transfor-
mation is local and affects only the upper tail dependence. The new generator is given by ϕ (t) = Pd−1(t)+(1−Pd−1(t))ϕD(t),
where t < t0, ϕD(t) is a non-strict generator with endpoint d0 ≤ t0 and u2 := max (u1, u2). Xie et al., (2017) extended
the Durante copula to a multivariate case by applying Marshall-Olkin distribution ideas (Marshall & Olkin, 1967). In
our work we choose a different approach for enriching the Archimedean family and to apply it for two dimensions. We
intend to replace θ, the generator parameter by new parameters, and propose a methodology for generating new copulas
characterized by enhanced structures and improved properties. In section 2, we introduce a compounding method and
the notion of compound generator. A short introduction of dependence measures is given in section 3. An example of
generating a compound copula and a comparison of the original and the resulting compound copula is given in section 4.
Conclusions are given in section 5.

2. Compound Archimedean Copula

In this paper we present a tool for generating new Archimedean copulas and we provide an extension to this family by
creating new generators. This is achieved by using a compound of an existing generator with respect to gη (θ), a probability
density of the dependence parameter θ,

ϕM (t) =

∫
Θ

ϕθ (t) gη (θ) dθ, (4)
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where M denotes compound. We now give sufficient conditions on the new generator guaranteeing that the resulting
copula belongs to the Archimedean family.

Theorem 1 Let ϕM (t) =
∫

Θ
ϕθ (t) gη (θ) dθ be a compound of ϕθ (t) , a generator of an Archimedean copula, with respect to

gη (θ), a density function of θ. Then for any ϕθ (t) and density function gη (θ) the compound ϕM (t) is also an Archimedean
copula generator.
Proof. We need to show that the inverse of the Archimedean generator ϕ−1

M (t) is strictly decreasing and convex and that
the generator satisfying ϕM (1) = 0.

Using the fact that for Archimedean generator complies ϕθ (1) = 0 we get

ϕM (1) =

∫
Θ

ϕθ (1) gη (θ) dθ = 0. (5)

It is obvious that
ϕ−1
θ (ϕθ (t)) = t. (6)

By differentiating both sides of Eq. (6) by t, we get

ϕ−1′
θ (ϕθ (t))ϕ′θ (t) = 1, (7)

ϕ′θ (t) =
1

ϕ−1′
θ (ϕθ (t))

. (8)

Taking into account that ϕ−1
θ (t) is strictly decreasing, we conclude that ϕ−1′

θ (t) < 0 and ϕ−1′
θ (ϕθ (t)) < 0. Finally, by Eq.(8),

we obtain that ϕ′θ (t) < 0. Similarly we get

ϕ′M (t) =
1

ϕ−1′
M (ϕM (t))

. (9)

Let ϕ′M (t) be the first derivative by t of the compound generator ϕM (t) such as

ϕ′M (t) =

∫
Θ

ϕ′θ (t) gη (θ) dθ. (10)

Taking into account that ϕ′θ (t) < 0 we conclude that ϕ′M (t) < 0 and ϕ−1′
M (ϕM (t)) < 0 and that leads to ϕ−1′

M (t) < 0.
Similarly, we get

d
dt
ϕ−1′

M (t) = ϕ−1′′
M (t) = −

ϕ
′′

M

(
ϕ−1

M (t)
)

(
ϕ′M

(
ϕ−1

M (t)
))2ϕ

−1′
M (t) (11)

where ϕ′′M (t) is the second derivative by t, i.e.

ϕ′′M (t) =

∫
Θ

ϕ′′θ (t) gη (θ) dθ. (12)

Due to the fact that the generator ϕθ (t) is convex (Nelsen, 2006. Theorem 4.1.4), we get that ϕ′′θ (t) > 0 and taking into
account (12) we get ϕ′′M (t) > 0. We can, therefore, conclude that ϕ

′′

M

(
ϕ−1

M (t)
)
> 0. Using ϕ−1′

M (t) < 0, from Eq.(11) the
desired result ϕ−1′′

M (t) > 0 is obtained.

corollary 2 For any ϕθ (0) < ∞, the copula Cθ(u, v) is defined as a non-strict copula (Nelsen, 2006), and CM(u, v), the
compound copula, is also non-strict , and the compound generator holds the same end value, ϕM (0) as that of the original
generator, ϕθ (0).

Proof. Let ϕθ (t) be a non-strict generator, then ϕθ (0) is a real number smaller than infinity. Let ϕM (t) be a compound
generator defined in Eq.(4) then

ϕM(0) =

∫
θ

ϕθ (0) gη(θ)dθ (13)

= ϕθ (0)
∫
θ

gη(θ)dθ = ϕθ (0) < ∞.
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3. Measures of Association and Compound Copula

The most common approach for characterizing a copula is measuring the strength of dependence which the data hold and
its asymptotic properties. In this paper, we focus on two key measures of association, Kendall’s tau, which is known as a
bivariate concordance and discordance measure, and cross-ratio, which describes local dependence. We also examine the
finite tail dependence of the compound copula (Sweeting and Fotiou, 2011).

Kendall’s tau. Genest and Rivest (1993) showed that for Archimedean copulas this measure is given by:

τθ = 1 + 4
∫ 1

0

ϕθ (t)
ϕ′θ (t)

dt. (14)

Let ϕθ(t) be an Archimedean generator resulting in Kendall’s tau τθ as introduced in Eq.(14). Let gη (θ) be a compounding
distribution of θ used to create a compound generator shown by (4). By substituting ϕθ (t) into ϕM (t) the Kendall’s tau for
a compound copula is defined as

τM = 1 + 4
∫ 1

0


∫
θ
ϕθ (t) gη (θ) dθ∫

θ
ϕ′θ (t) gη (θ) dθ

 dt. (15)

τM can be expressed as an expectation of τθ with respect to a specified distribution g∗η, as seen in the following theorem.

Theorem 3 Let the compounding distribution defined in (4), then τM = Eg∗η [τθ] , where g∗η =
ϕ′θ(t)gη(θ)∫

θ
ϕ′θ(t)gη(θ)dθ

.

Proof.

Eg∗η [τθ] = 1 + 4
∫
θ

g∗η

[∫ 1

t=0

ϕθ (t)
ϕ′θ (t)

dt
]

dθ.

= 1 + 4
∫ 1

t=0

∫
θ

ϕθ (t)
ϕ′θ (t)

ϕ′θ (t) gη (θ)∫
θ
ϕ′θ (t) gη (θ) dθ

dθdt

= 1 + 4
∫ 1

t=0


∫
θ
ϕθ (t) gη (θ) dθ∫

θ
ϕ′θ (t) gη (θ) dθ

 dt = τM . (16)

Cross-ratio. The cross-ratio function is a commonly used tool to describe local dependence between two correlated
variables. It can detect characteristics of association that cannot be captured by any other global dependence measures as
Kendall’s tau (Abrams et al., 2020). Oakes (1989) defined the measure as:

Rθ(u, v) =
Cθ(u, v) d2

dudvCθ(u, v)
d
dvCθ(u, v) d

duCθ(u, v)
. (17)

Positive or negative local dependence and independence at a location (u, v) are obtained for Rθ(u, v) > 1, 0 < Rθ(u, v) < 1
and Rθ(u, v) = 1, respectively. Using basic derivative rules he gave a simplified measure for the Archimedean copula,
Rθ(u, v) = rθ {Cθ(u, v)} = rθ(s) =

−sϕ′′θ (s)
ϕ′θ(s) |s=Cθ(u,v). For the compound copula rθ is replaced by rM and Cθ(u, v) is replaced by

CM(u, v).

Finite tail dependence. The coefficient of tail dependence measures the amount of dependence in the upper and the lower
tail of distribution at the limit. For a copula function this boundary does not always exist. An alternative which we adopt
here is to calculate the measure at a finite value k, (Sweeting and Fotiou, 2011). The finite upper tail dependence (FUTD)
for the compound copula at k is defined as

λ(k)
U =

1 − 2k + CM(k, k)
1 − k

, (18)

and the finite lower tail dependence (FLTD) as

λ(k)
L =

CM(k, k)
k

. (19)

4. Generating a Compound Copula: An Example

In this section, we introduce an example of generating a compound copula. We show the benefits gained by using the
compound copula, as compared to the standard Archimedean copula, by comparing the values of the dependence measures
discussed above.
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Example 1.

Let Cθ(u, v) be a copula introduced by Nelsen (2006, 4.2.8)

Cθ (u, v) = max
[

θ2uv − (1 − u) (1 − v)
θ2 − (θ − 1)2 (1 − u) (1 − v)

, 0
]
. (20)

This copula is an Archimedean copula with generator function

ϕθ (t) =
1 − t

1 + (θ − 1) t
, θ > 1. (21)

Note that this a non-strict copula with ϕθ (0) = 1.

Let us assume that θ, the dependence parameter, is distributed

gη(θ) =
1

ln(b) − ln(a)
1
θ
, a < θ < b. (22)

Then using Eq.(4) we get a compound generator of the form

ϕM(t) =
1

ln(b) − ln(a)

∫ b

a

1
θ

1 − t
1 + (θ − 1) t

dθ (23)

=
1

ln(b) − ln(a)
(ln(θ) − ln ((θ − 1)t + 1))b

a

=
1

ln(b) − ln(a)

(
log(b) − ln ((b − 1)t + 1)
− log(a) + ln ((a − 1)t + 1)

)

= 1 +
ln

(
((a−1)t+1)
((b−1)t+1)

)
ln

(
b
a

) , ∀ b > a, (24)

which provides ϕM(1) = 1 +
ln( a

b )
ln( b

a ) = 1 − 1 = 0, and ϕM(0) = 1 +
ln(1)
ln( b

a ) = 1, with an inverse

ϕ−1
M (t) =

bat − abt

bat − bat+1 + abt+1 − abt . (25)

By placing Eq.(25) and Eq.(23) in Eq.(2) , a new compound copula is obtained:

CM (u, v) = max
[

bak − abk

bak − bak+1 + abk+1 − abk , 0
]
, (26)

for k = (ϕM(u) + ϕM(v)) =

(
1 +

ln
(

((a−1)u+1)
((b−1)u+1)

)
ln( b

a )

)
+

(
1 +

ln
(

((a−1)v+1)
((b−1)v+1)

)
ln( b

a )

)
,

∀ b > a.

Kendall’s tau: Using Eq.(14), for the original copula we get

τθ = 1 −
2(θ + 2)

3θ
, (27)

and for the compound generator in Eq.(23) we get
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τM = 1 + 4( (28)∫ 1

t=0

(((a − 1)t + 1) ((b − 1)t + 1))
(
ln

(
b
a

)
+ ln

(
((a−1)t+1)
((b−1)t+1)

))
a − b

)dt

= 1 +
4

6(a − b)



2 (a − 1) (b − 1)
(
ln

(
b
a

))
+3 (a + b − 2) ln( b

a ) + b − a
+ (2(a − 1)(b − 1) + 3(a + b)) ln( a

b )
−

2(b−1)
(a−1) +

3(a+b)
(a−1) −

3(a+b)
(b−1) +

2(a−1)
(b−1)

+6 ln( b
a ) +

(3a−b−2) ln(a)
(a−1)2 +

(a+2−3b) ln(b)
(b−1)2

− 6a
(a−1) + 6b

(b−1)


.

The cross ratio for the original copula,is given by:

rθ(s) =

−s
(

2(θ−1)2(1−s)
(1+(θ−1)s)3 +

2(θ−1)
(1+(θ−1)s)2

)
− θ

(1+(θ−1)t)2

, (29)

where s = Cθ (u, v) = max
[

θ2uv−(1−u)(1−v)
θ2−(θ−1)2(1−u)(1−v)

, 0
]
, rθ(s) ∈ [0, 2] .

For the compound copula we get

rM(s) =

−s
[

(b−a)(2(a−1)(b−1)s+a+b−2)
((a−1)s+1)2((b−1)s+1)2 log( b

a )

]
−

(
(b−a)

((a−1)s+1)((b−1)s+1) log( b
a )

)
=

s (2(a − 1)(b − 1)s + a + b − 2)
((a − 1)s + 1)((b − 1)s + 1)

, (30)

where s = CM(u, v).

The upper and lower tail dependence are given by (18)-(19) with (23) substituted in CM(u, v). We now explore graphically
the three measures of dependence discussed above with respect to the original and compound copulas. Figures 1,2 and 3
are related to Kendall’s tau, Cross-ratio and FLTD, respectively.
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The blue lines represent the values of the measures as a function of θ for the original copulas. The other four lines represent
the values for the compound copula, where each line corresponds to different fixed values of a and varying values of b.
From the graphs, it can be seen that the compound copula offers a richer choice of dependence structures.

Figure 4. presents Kendall’s tau (x-axis) vs. Cross-ratio values (y-axis) for the original and the compound copulas. The
top left represents the original and for the bottom left the compound copula. The right pair is similar to that on the left
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except that Kendall’s tau is limited to (0 − 0.1). We note that while for each value of Kendall’s tau there is only one
corresponding value of the cross-ratio, the range of such values in the compound copula is much wider. This clearly offers
extended modeling possibilities.
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Figure 4. Kendall’s tau vs. Cross-ratio for mixed and original copula

Example 2.

Let Cθ(u, v) be a copula introduced by Nelsen (2006, 4.2.16)

Cθ(u, v) =
1
2


(
u + v − 1 − θ

(
1
u

+
1
v
− 1

))
+

√(
u + v − 1 − θ

(
1
u

+
1
v
− 1

))2

+ 4θ

 . (31)

With generator function

ϕθ (t) =

(
θ

t
+ 1

)
(1 − t) , θ > 0 (32)

note that this is a strict copula with ϕθ (0) = ∞. Let us assume that θ, the dependence parameter, is distributed Gamma i.e.
gα,β(θ) =

e−θββαθα−1

Γ(α) . Then using Eq.(4) the compound generator equal to

ϕM(t) =

∞∫
θ=0

gα,β(θ)ϕθ (t) dθ (33)

=

∞∫
θ=0

e−θββαθα−1

Γ (α)

((
θ

t
+ 1

)
(1 − t)

)
dθ

=
(α + βt)(1 − t)

βt
,

with an inverse

ϕ[−1]
M =

1
2β

(
(−α − βt + β) +

√
(αβ − β − t)2 − 4βt

)
. (34)

And using Eq.(2) a new compound copula is obtained

CM(u, v) =
1

2β

((
−α − β ·

((
(α + βu)(1 − u)

βu

)
+

(
(α + βv)(1 − v)

βv

))
+ β

))
+ (35)

1
2β


√√√ (

α + β ·
((

(α+βu)(1−u)
βu

)
+

(
(α+βv)(1−v)

βv

))
− β

)2
+

4β
((

(α+βu)(1−u)
βu

)
+

(
(α+βv)(1−v)

βv

))  ,
which it is a strict copula with ϕM(0) = ∞. We now explore this copula function using two dependence measures.
Kendall’s tau and Blomqvit’s β, which describe the position of pairs of observations relative to their quadrants and obtained
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by

βl = 4 ·C
(

1
2
,

1
2

)
− 1 (36)

For this purpose we substitute (33) and (32) into Kendall’s tau Eq.(14) , and calculate Blomqvit’s β by substituting (31)
and (35) into Eq.(36) for u = 1

2 and v = 1
2 . We will explore this two measures numerically. Figure 5 relates to Kendall’s

tau and Blomqvit’s β.
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Figure 5. Kendall’s tau vs. Blomqvit’s β for the original and the compound copulas

The red dots represent the values of Blomqvit’s β corresponding to Kendall’s tau in the original copula. We note that
for each value of τθ there is a single corresponding Blomqvit’s β. The blue lines represent the values of Blomqvit’s β
corresponding to Kendall’s tau in the compound copula. For each τθ there are multiple values of Blomqvit’s β. While for
the original copula, positive values of τθ resulted in only positive values of Blomqvit’s β and negative values of τθ resulted
in only negative values of Blomqvit’s β, this restriction is removed when it comes to the compound copula, e.g. in the
second quadrant there are positive values of Blomqvit’s β corresponding to negative values of τθ.

5. Conclusions

In this paper, we introduce a novel method for generating new members of Archimedean copulas. We use a compound
distribution approach by which we compound the generator function of a copula with a density function of its depen-
dence parameter. We therefore create a new compound generator function which subsequently generates a compound
Archimedean copula. We demonstrate this process with particular Archimedean copulas and show that the compound
copulas offer a higher degree of flexibility in terms of dependence measures.
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