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Abstract

Attempts have been made to define new classes of distributions that provide more flexibility for modeling data that is
skewed in nature. In this work, we propose a new family of distributions namely the Marshall-Olkin Half Logistic-G (MO-
HL-G) based on the generator pioneered by [Marshall and Olkin , 1997]. This new family of distributions allows for a
flexible fit to real data from several fields, such as engineering, hydrology, and survival analysis. The structural properties
of these distributions are studied and its model parameters are obtained through the maximum likelihood method. We
finally demonstrate the effectiveness of these models via simulation experiments.
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1. Introduction

More work has recently been done by various authors on the development of new families of distributions through the
extension of other existing continuous distributions. These new families have found wider applicability in modeling data
in different areas such as engineering, economics, biological studies, environmental sciences, just to mention these few.
The main objectives of generalizing this new family of distributions are as follows: achieve skewness for symmetrical
models; develop special models exhibiting various shapes of hazard rate function; develop heavy-tailed distributions
useful in many real data sets; attain more flexible kurtosis compared to that of the baseline distribution; generate skewed,
symmetric, J-shaped or reversed-J shaped distributions with better fits than other generalized distributions having the same
underlying model.

[Marshall and Olkin , 1997], proposed a new distribution with cumulative distribution function (cdf) and probability
density function (pdf) given by

FMO−G (x; δ, ξ) = 1 −
δḠ(x; ξ)

1 − δ̄Ḡ(x; ξ)
(1)

and
fMO−G (x; δ, ξ) =

δg(x; ξ)[
1 − δ̄Ḡ(x; ξ)

]2 , (2)

respectively, where δ denotes the tilt parameter and G(x; ξ) is the baseline cdf. The distribution is more flexible compared
to the exponential, Weibull and gamma distributions.

Furthermore, [Cordeiro et al. , 2016], developed the type 1 half-logistic family of distributions with the cdf and pdf given
by

F(x; λ, ξ) =

∫ −ln(1−G(x;ξ))

0

2λ exp{−λx}
(1 + exp{−λx})2 dx

=
1 − [1 −G(x; ξ)]λ

1 + [1 −G(x; ξ)]λ
, (3)

where G(x; ξ) is the cdf of the baseline distribution and λ > 0 is the shape parameter. We obtain a special case, namely,
half-logistic-G (HL-G) model, with cdf

FHL−G (x; ξ) =
G(x; ξ)

1 + G(x; ξ)
, (4)
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if we set λ = 1 in equation (3). The corresponding pdf of the HL-G model is given by

fHL−G (x; ξ) =
2g(x; ξ)

(1 + G(x; ξ))2
. (5)

The Marshall-Olkin distribution has been generalized from several distributions to construct many family of distributions
achieving some of the above characteristics. The examples of these include; Marshall-Olkin-G (MO-G) family by [Mar-
shall and Olkin , 1997], beta Marshall-Olkin-G (BMO-G) by [Alizadeh et al. , 2015a], Kumaraswamy Marshall-Olkin-G
(KwMO-G) by [Alizadeh et al. , 2015b], among others. The proposed distribution gives a new flexible parametric model
useful in modeling various forms of data in reliability studies, survival analysis, statistical mechanics, quality control, eco-
nomics, bio medical studies, etc. [Lepetu et al. , 2017], introduced a new class of distributions called the Marshall-Olkin
Log-logistic Extended Weibull (MOLLEW) family of distributions. Their work employs the Marshall-Olkin transforma-
tion to the Log-logistic Weibull distribution to obtain more new flexible models suitable for reliability data.

Marshall- Olkin transformation was applied to various well-known distributions: Weibull by [Ghitany et al. , 2005],
[Zhang and Xie , 2007]. Lately, the general results have been addressed by [Barreto-Souza et al. , 2013]. [Santos-Neo et
al. , 2014], introduces a new class of models called the Marshall-Olkin extended Weibull family of distributions which
defines at least twenty-one special models. [Chakraborty and Handique , 2017], presented the generalized Marshall-Olkin
Kumaraswamy-G distribution. [Lazhar , 2017] developed and studied the properties of the Marshall-Olkin extended
generalized Gompertz distribution. [Kumar , 2016] discussed the ratio and inverse moments of Marshall-Olkin extened
Burr Type III distribution from lower generalized order statistics.

On the similar note, the Half-Logistic (HL) distribution has not received much attention from researchers in terms of
generalization. [Afify et al. , 2017] proposed a new flexible family of distributions called the Odd exponentiated half
logistic-G (OEHL-G) family of distributions using the HL distribution as the generator and studied its mathematical
properties. Their results utilized the flexibility of the baseline distribution in modeling various forms of data.

Other generally known families are the beta-G by [Eugene et al. , 2002], odd log-logistic-G by [Gleaton and Lynch
, 2004], the transmuted-G by [Shaw and Buckley , 2009], the gamma-G by [Zografos and Balakrishnan , 2009], the
Kumaraswamy-G by [Cordeiro and de Castro , 2011], the logistic-G by [Torabi and Montazeri , 2014], exponentiated
generalized-G by [Cordeiro et al. , 2013], the McDonald-G by [Alexander et al. , 2012], T-X family by [Alzaatreh et al. ,
2013], the exponentiated half-logistic generated family by [Cordeiro et al. , 2014], the beta odd log-logistic generalized by
[Cordeiro et al. , 2015], generalized transmuted-G by [Nofal et al. , 2017], generalized odd log-logistic-G by [Cordeiro
et al. , 2017]. Various structural properties of the extended distributions may be easily explored using mixture forms
of exponentiated-G (exp-G) distributions. It is in the same vein that we develop the new family of distributions called
Marshall-Olkin Half Logistic-G (MO-HL-G) family of distributions.

The layout of this paper is as follows; Section 2, presents the new generalized family of distributions with some of its
structural properties. The Maximum likelihood estimates are derived under Section 3. Some of the special cases of this
new generalized distributions are presented in Section 4. Section 5, presents results from Monte Carlo simulation study.
In Section 6. we present applications of the proposed model to real data sets and finally give concluding remarks under
Section 7.

2. The Model and Statistical Properties

2.1 The Model

We develop the MO-HL-G distribution using the generalization proposed by [Marshall and Olkin , 1997], and taking the
baseline distribution to be the HL-G distribution by [Cordeiro et al. , 2016]. The cdf and pdf of the MO-HL-G family of
distributions is given by

FMO−HL−G (x; δ, ξ) =

[ G(x;ξ)
1+Ḡ(x;ξ)

]
1 − δ̄

[
1 − G(x;ξ)

1+Ḡ(x;ξ)

] (6)

and

fMO−HL−G (x; δ, ξ) =
2δg(x; ξ)

[1 + Ḡ(x; ξ)]2[1 − δ̄(1 − G(x;ξ)
1+Ḡ(x;ξ)

)]2 , (7)

respectively, for δ > 0, δ̄ = 1 − δ and ξ is a vector of parameters from the baseline distribution function G(.).

2.2 Quantile Function

The quantile function for the MO-HL-G family of distributions is derived by solving the non-linear equation
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FMO−HL−G (x; δ, ξ) =

[ G(x;ξ)
1+Ḡ(x;ξ)

]
1 − δ̄

[
1 − G(x;ξ)

1+Ḡ(x;ξ)

] = u

for 0 ≤ u ≤ 1, that is, ( G(x; ξ)
1 + Ḡ(x; ξ)

)
=

(u(1 − δ̄)
1 − uδ̄

)
G(x; ξ) = 2

((u(1 − δ̄)
1 − uδ̄

)−1
+ 1

)−1
.

Therefore, the quantiles of the MO-HL-G family of distributions may be obtained by solving the equation

x(u) = G−1
[
2
((u(1 − δ̄)

1 − uδ̄

)−1
+ 1

)−1
]

(8)

via iterative methods in R or Matlab software.

2.3 Expansion of Density

This sub-section presents statistical properties of the MO-HL-G family of distributions as derived from the general results
for the Marshall and Olkin’s family of distributions by [Barreto-Souza et al. , 2013]. Considering

fMO−HL−G (x; δ, ξ) =
α fHL−G (x; ξ)

(1 − δ̄F̄HL−G (x; ξ))2
, (9)

we can write equation (7) as

fMO−HL−G (x; δ, ξ) =
fHL−G (x; ξ)

δ[1 − δ−1
δ

FHL−G (x; ξ)]2
, (10)

where fHL−G (x; ξ) and FHL−G (x; ξ) are as given in equations (5) and (4), respectively. We apply the series expansion

(1 − z)−k =

∞∑
j=0

Γ(k + j)
Γ(k) j!

z j, (11)

which is valid for |z| < 1 and k > 0. If δ ∈ (0, 1), we can obtain

fMO−HL−G (x; δ, ξ) = fHL−G (x; ξ)
∞∑
j=0

j∑
k=0

w j,kFHL−G (x; ξ) j−k, (12)

where w j,k = w j,k(δ) = δ( j + 1)(1 − δ) j(−1) j−k
(

j
k

)
. For δ > 1, we have

fMO−HL−G (x; δ, ξ) = fHL−G (x; ξ)
∞∑
j=0

v jF j
HL−G

(x; ξ), (13)

where v j = v j(δ) =
( j+1)(1−1/δ)

δ
. For δ ∈ (0, 1), equation (7) becomes

fMO−HL−G (x; δ, ξ) =
2g(x; ξ)

(1 + Ḡ(x; ξ))2

∞∑
j=0

j∑
k=0

w j,k

[ G(x; ξ)
1 + Ḡ(x; ξ)

] j−k

=

∞∑
j=0

j∑
k=0

2w j,kg(x, ξ)
[G(x; ξ)] j−k

[1 + Ḡ(x; ξ)] j−k+2
.

Using the series expansion

[1 + Ḡ(x; ξ)]−( j−k+2) =

∞∑
m=0

(−1)m
(
−( j − k + 2)

m

)
Ḡm(x; ξ)

and

Ḡm(x; ξ) = [1 −G(x; ξ)]m =

∞∑
l=0

(−1)l
(
m
l

)
Gl(x; ξ),
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we can write

fMO−HL−G (x; δ, ξ) =

∞∑
j,m,l=0

j∑
k=0

2(−1)m+l

l + j − k + 1
w j,k

(
−( j − k + 2)

m

)(
m
l

)
× (l + j − k + 1)g(x; ξ)[G(x; ξ)]l+ j−k

=

∞∑
j,m,l=0

w∗j,m,lgl+ j−k (x; ξ). (14)

It follows that for δ ∈ (0, 1), the MO-HL-G family of distributions can be expressed as an infinite linear combination of
the exponentiated-G (Exp-G) distribution with power parameter (l + j − k) and linear component

w∗j,m,l =

j∑
k=0

2(−1)m+l

l + j − k + 1
w j,k

(
−( j − k + 2)

m

)(
m
l

)
. (15)

Furthermore, for δ > 1 equation (7) can be written as

fMO−HL−G (x; δ, ξ) =
2g(x; ξ)

(1 + Ḡ(x; ξ))2

∞∑
j=0

v j

[ G(x; ξ)
1 + Ḡ(x; ξ)

] j

=

∞∑
j=0

2v j
g(x; ξ)[G(x; ξ)] j

[1 + Ḡ(x; ξ)] j+2
.

Applying the series expansion

[1 + Ḡ(x; ξ)]−( j+2) =

∞∑
m=0

(−1)m
(
−( j + 2)

m

)
Ḡm(x; ξ)

and

Ḡm(x; ξ) = [1 −G(x; ξ)]m =

∞∑
l=0

(−1)l
(
m
l

)
Gl(x; ξ),

we can write

fMO−HL−G (x; δ, ξ) =

∞∑
j,m,l=0

2(−1)m+l

l + j + 1
v j

(
−( j + 2)

m

)(
m
l

)
× (l + j + 1)g(x; ξ)[G(x; ξ)]l+ j

=

∞∑
j,m,l=0

v∗j,m,lgl+ j (x; ξ). (16)

Therefore, for δ > 1, the MO-HL-G family of distributions can be expressed as a linear combination of the Exp-G
distribution with power parameter (l + j) and linear component

v∗j,m,l =
2(−1)m+l

l + j + 1
v j

(
−( j + 2)

m

)(
m
l

)
. (17)

2.4 Distribution of Order Statistics

Suppose that X1, X2, ..., Xn are independent and identically distributed (i.i.d) random variables distributed according to (7).
The pdf of the ith order statistic Xi:n, is given by

fi:n(x; δ, ξ) = δn! fHL−G (x; ξ)
n−i∑
l=0

(−1)l

(i − 1)!(n − i)!
F l+i−1

HL−G
(x; ξ)

[1 − δ̄FHL−G (x; ξ)]l+i−1
. (18)

If δ ∈ (0, 1), we have

fi:n(x; δ, ξ) = fHL−G (x; ξ)
∞∑
j=0

n−i∑
l=0

j∑
k=0

U j,l,kF j+l−k+i−1
HL−G

(x; ξ), (19)
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where

U j,l,k = U j,l,k(δ) =
δn!(−1)l(1 − δ) j(−1) j−k

(i − 1)!(n − i)!

(
j
k

)(
l + i + j

j

)
. (20)

For δ > 1, we write 1 − δ̄F̄HL−G (x; ξ) = δ
{
1 − (δ − 1)FHL−G (x; ξ)/δ

}
, such that

fi:n(x; δ, ξ) = fHL−G (x; ξ)
∞∑
j=0

n−i∑
l=0

c j,lF j+l+i−1
HL−G

(x; ξ), (21)

where

c j,l = c j,l(δ) =
(−1)l(δ − 1) jn!

δl+ j+i(i − 1)!(n − i)!

(
l + i + j

j

)
. (22)

For δ ∈ (0, 1), using equation (19) and substituting f (x) by equation (5) and F(x) by equation (4), we get

fi:n(x; δ, ξ) =
2g(x; ξ)

(1 + Ḡ(x; ξ))2

∞∑
j=0

n−i∑
l=0

j∑
k=0

U j,l,k

[ G(x; ξ)
1 + Ḡ(x; ξ)

] j+l−k+i−1

=

∞∑
j=0

n−i∑
l=0

j∑
k=0

2U j,l,k
g(x; ξ)[G(x; ξ)] j+l−k+i−1

[1 + Ḡ(x; ξ)] j+l−k+i+1
.

By applying the expansions

[1 + Ḡ(x; ξ)]−( j+l−k+i+1) =

∞∑
m=o

(−1)m
(
−( j + l − k + i + 1)

m

)
Ḡm(x; ξ)

and

Ḡm(x; ξ) = [1 −G(x; ξ)]m =

∞∑
p=0

(−1)p
(
m
p

)
Gp(x; ξ),

we can write

fi:n(x; δ, ξ) =

∞∑
j,m,p=0

n−i∑
l=0

j∑
k=0

2(−1)m+p

p + j + l − k + i
U j,l,k

(
−( j + l − k + i + 1)

m

)(
m
p

)
× (p + j + l − k + i)g(x; ξ)[G(x; ξ)]p+ j+l−k+i−1

=

∞∑
j,m,p=0

U∗j,m,pgp+ j+l−k+i (x; ξ), (23)

where gp+ j+l−k+i (x; ξ) = (p+ j+l−k+i)g(x; ξ)[G(x; ξ)]p+ j+l−k+i−1 is an Exp-G distribution with power parameter (p+ j+l−k+i)
and

U∗j,m,p =

n−i∑
l=0

j∑
k=0

2(−1)m+p

p + j + l − k + i
U j,l,k

(
−( j + l − k + i + 1)

m

)(
m
p

)
.

(24)

Furthermore, for δ > 1, we get

fi:n(x; δ, ξ) =
2g(x; ξ)

(1 + Ḡ(x; ξ))2

∞∑
j=0

n−i∑
i=0

c j,l

[ G(x; ξ)
1 + Ḡ(x; ξ)

] j+l+i−1

=

∞∑
j=0

n−i∑
i=0

2c j,l
g(x; ξ)[G(x; ξ)] j+l+i−1

[1 + Ḡ(x; ξ)] j+l+i+1
.

By applying the binomial expansions

[1 + Ḡ(x; ξ)]−( j+l+i+1) =

∞∑
m=o

(−1)m
(
−( j + l + i + 1)

m

)
Ḡm(x; ξ)
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and

Ḡm(x; ξ) = [1 −G(x; ξ)]m =

∞∑
p=0

(−1)p
(
m
p

)
Gp(x; ξ),

we can write

fi:n(x; δ, ξ) =

∞∑
j,m,p=0

n−i∑
i=0

2(−1)m+p

p + j + l + i
c j,l

(
−( j + l + i + 1)

m

)(
m
p

)
× (p + j + l + i)g(x; ξ)[G(x; ξ)]p+ j+l+i−1

=

∞∑
j,m,p=0

c∗j,m,pgp+ j+l+i (x; ξ), (25)

where gp+ j+l+i (x; ξ) = (p + j + l + i)g(x; ξ)[G(x; ξ)]p+ j+l+i−1 is an Exp-G distribution with power parameter (p + j + l + i) and

c∗j,m,p =

n−i∑
i=0

2(−1)m+p

p + j + l + i
c j,l

(
−( j + l + i + 1)

m

)(
m
p

)
. (26)

2.5 Entropy

An Entropy gives a measure of variation of uncertainty for a random variable X with pdf g(x). There are two common
measures of entropy, namely Shannon entropy by [Shannon , 1951] and Rényi entropy by [Rényi , 1961]. Rényi entropy
is defined by

IR(ν) = (1 − ν)−1 log
[∫ ∞

0
gν(x)dx

]
,

where ν > 0 and ν , 1. Using expansion (11), for δ ∈ (0, 1)

f ν
MO−HL−G

(x; δ, ξ) =
δν f ν

HL−G
(x; ξ)

Γ(2ν)

∞∑
j=0

(1 − δ) jΓ(2ν + j)
[1 − FHL−G (x; ξ)] j

j!

and for δ > 1

f ν
MO−HL−G

(x; δ, ξ) =
f ν

HL−G
(x)

δνΓ(2ν)

∞∑
j=0

(δ − 1) jΓ(2ν + j)
F j

HL−G
(x; ξ)

j!
.

Thus, Rényi entropy for δ ∈ (0, 1) and δ > 1 are given by

IR(ν) = (1 − ν)−1 log

 ∞∑
j=0

e j

∫ ∞

0
f ν

HL−G
(x; ξ)(1 − FHL−G (x; ξ)) jdx

 (27)

and

IR(ν) = (1 − ν)−1 log

 ∞∑
j=0

h j

∫ ∞

0
f ν

HL−G
(x; ξ)F j

HL−G
(x; ξ)dx

 , (28)

where

e j = e j(δ) =
δν(1 − δ) jΓ(2ν + j)

Γ(2ν) j!
and

h j = h j(δ) =
(δ − 1) jΓ(2ν + j)
δν+ jΓ(2ν) j!

.

Now, for δ ∈ (0, 1) and using equation (27), we have

IR(ν) = (1 − ν)−1 log
[ ∞∑

j=0

e j

∫ ∞

0

2νgν(x; ξ)
(1 + Ḡ(x; ξ))2ν

[
1 −

G(x; ξ)
1 + Ḡ(x; ξ)

] j
dx

]
.

By considering the following expansions[
1 −

G(x; ξ)
1 + Ḡ(x; ξ)

] j
=

∞∑
m=0

(−1)m Γ( j + 1)
Γ( j + 1 − m)m!

[ G(x; ξ)
1 + Ḡ(x; ξ)

]m
,
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(1 + Ḡ(x; ξ))−(2ν+m) =

∞∑
p=0

(−1)p
(
−(2ν + m)

p

)
Ḡp(x; ξ)

and

[Ḡ(x; ξ)]p = [1 −G(x; ξ)]p =

∞∑
q=0

(−1)q
(
p
q

)
Gq(x; ξ),

we can write

IR(ν) = (1 − ν)−1 log
[ ∞∑

j,m,p,q=0

e j
2ν(−1)p+m+qΓ( j + 1)

Γ( j + 1 − m)m!

(
−(2ν + m)

p

)(
p
q

)
×

1(m+q
ν

+ 1
)ν ∫ ∞

0

((m + q
ν

+ 1
)
g(x; ξ)[G(x; ξ)]

m+q
ν

)ν
dx

]
= (1 − ν)−1 log

[ ∞∑
j,m,p,q=0

e∗j,m,p,q exp(1 − ν)IREG

]
, (29)

where

e∗j,m,p,q = e j
2ν(−1)p+m+qΓ( j + 1)

Γ( j + 1 − m)m!

(
−2ν

p

)(
p − m

q

)
1(m+q

ν
+ 1

)ν (30)

and IREG =
∫ ∞

0

((m+q
ν

+ 1
)
g(x; ξ)[G(x; ξ)]

m+q
ν

)ν
dx is the Rényi entropy of the Exp-G distribution with power parameter

m+q
ν

. Furthermore, for δ > 1

IR(ν) = (1 − ν)−1 log
[ ∞∑

j=0

h j

∫ ∞

0

2νgν(x; ξ)
(1 + Ḡ(x; ξ))2ν

[ G(x; ξ)
1 + Ḡ(x; ξ)

] j
dx

]
.

By considering the following expansions

(1 + Ḡ(x; ξ))−(2ν+ j) =

∞∑
m=0

(−1)m
(
−(2ν + j)

m

)
Ḡm(x; ξ)

and

[Ḡ(x; ξ)]m = [1 −G(x; ξ)]m =

∞∑
p=0

(−1)p
(
m
p

)
Gp(x; ξ),

we can write

IR(ν) = (1 − ν)−1 log
[ ∞∑

j,m,p=0

h j2ν(−1)p+m
(
−(2ν + j)

m

)(
m
p

)
1( p+ j

ν
+ 1

)ν
×

∫ ∞

0

(( p + j
ν

+ 1
)
g(x; ξ)[G(x; ξ)]

p+ j
ν

)ν
dx

]
= (1 − ν)−1 log

[ ∞∑
j,m,p=0

h∗j,m,p exp(1 − ν)IREG

]
, (31)

where

h∗j,m,p = h j2ν(−1)p+m
(
−(2ν + j)

m

)(
m
p

)
1( p+ j

ν
+ 1

)ν (32)

and IREG =
∫ ∞

0

(( p+ j
ν

+ 1
)
g(x; ξ)[G(x; ξ)]

p+ j
ν

)ν
dx is the Rényi entropy of the Exp-G distribution with power parameter p+ j

ν
.
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2.6 Moments and Generating Functions

Let X ∼ MO − HL −G(δ, ξ), then the rth moment can be obtained from equations (14) and (16). For δ ∈ (0, 1),

E(Xr) =

∞∑
j,m,l=0

w∗j,m,lE(Wr
l+ j−k),

where w∗j,m,l is as defined in equation (15) and E(Wr
l+ j−k) denotes the rth moment of Wl+ j−k which follows an Exp-G

distribution with power parameter (l + j − k). For δ > 1

E(Xr) =

∞∑
j,m,l=0

v∗j,m,lE(Wr
l+ j), (33)

where v∗j,m,l is as defined in equation (17) and E(Wr
l+ j) denotes the rth moment of Wl+ j which follows an Exp-G distribution

with power parameter (l + j). The incomplete moments can be obtained as follows:
For δ ∈ (0, 1)

IX(t) =

∫ t

0
xs fMO−HL−G(x; ξ)dx =

∞∑
j,m,l=0

w∗j,m,lIl+ j−k(t),

where Il+ j−k(t) =
∫ t

0 xrgl+ j−k(x; ξ)dx and w∗j,m,l is as defined in equation (15). Also, For δ > 1

IX(t) =

∫ t

0
xs fMO−HL−G(x; ξ)dx =

∞∑
j,m,l=0

v∗j,m,lIl+ j(t),

where Il+ j(t) =
∫ t

0 xrgl+ j(x; ξ)dx and v∗j,m,l is as defined in equation (17). The moment generating function (mgf) of X is as
follows:
For δ ∈ (0, 1)

MX(t) =

∞∑
j,m,l=0

w∗j,m,lE(etWl+ j−k ),

where E(etWl+ j−k ) is the mgf of the Exp-G distribution with power parameter (l + j − k) and w∗j,m,l is as defined in equation
(15). For δ > 1

MX(t) =

∞∑
j,m,l=0

v∗j,m,lE(etWl+ j ),

where E(etWl+ j ) is the mgf of the Exp-G distribution with power parameter (l + j) and v∗j,m,l is as defined in equation (17).

Furthermore, we can get the characteristic function and is given by φ(t) = E(eitX), where i =
√
−1, for δ ∈ (0, 1)

φ(t) =

∞∑
j,m,l=0

w∗j,m,lφl+ j−k(t),

where φl+ j−k(t) is the characteristic function of Exp-G distribution with power parameter (l + j− k) and w∗j,m,l is as defined
in equation (15). For δ > 1

φ(t) =

∞∑
j,m,l=0

v∗j,m,lφl+ j(t),

where φl+ j(t) is the characteristic function of Exp-G distribution with power parameter (l + j) and v∗j,m,l is as defined in
equation (17).

3. Maximum Likelihood Estimation

If Xi ∼ MO−HL−W(δ; ξ) with the parameter vector ∆ = (δ; ξ)T . The total log-likelihood ` = `(∆) from a random sample
of size n is given by

` = n log(2δ) +

n∑
i=1

log[g(xi; ξ)] − 2
n∑

i=1

log[1 + Ḡ(xi; ξ)]2
n∑

i=1

log
[
1 − δ̄

(
1 −

G(xi; ξ)
1 + Ḡ(xi; ξ)

)]
.
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The elements of a score vector, U =
( ∂`
∂δ
, ∂`
∂ξk

)
are given by:

∂`

∂δ
=

n
δ
− 2

n∑
i=1

1 − G(xi;ξ)
1+Ḡ(xi;ξ)[

1 − δ̄
(
1 − G(xi;ξ)

1+Ḡ(xi;ξ)

)]
and

∂`

∂ξk
=

n∑
i=1

1
g(xi; ξ)

∂g(xi; ξ)
∂ξk

− 2
n∑

i=1

1
[1 + Ḡ(xi; ξ)]

∂[1 + Ḡ(xi; ξ)]
∂ξk

− 2
n∑

i=1

1[
1 − δ̄

(
1 − G(xi;ξ)

1+Ḡ(xi;ξ)

)] ∂
[
1 − δ̄

(
1 − G(xi;ξ)

1+Ḡ(xi;ξ)

)]
∂ξk

,

respectively. These partial derivatives does not have closed form and can be solved using numerical methods such as
Newton-Raphson procedure..

4. Some Special Cases

In this Section, we present some special cases of the MO-HL-G family of distributions. We considered cases when the
baseline distributions are log-logistic, Weibull and normal distributions.

4.1 Marshall-Olkin-Half Logistic-Log-Logistic Distribution

Consider the log-logistic distribution as the baseline distribution. The log-logistic distribution has pdf and cdf given by
g(x) = cxc−1(1 + xc)−2 and G(x) = 1 − (1 + xc)−1, for c > 0, respectively. Therefore, the Marshall-Olkin-Half Logistic-
Log-Logistic (MO-HL-LLo) distribution have the cdf and pdf given by

FMO−HL−LLo (x; δ, c) =
1 − (1 + xc)−1

[1 + (1 + xc)−1]
[
1 − δ̄

(
1 − 1−(1+xc)−1

1+(1+xc)−1

)]
and

fMO−HL−LLo (x; δ, c) =
2δcxc−1(1 + xc)−2

[1 + (1 + xc)−1]2[1 − δ̄(1 − 1−(1+xc)−1

1+(1+xc)−1

)]2
,

respectively, for δ, c > 0.

Figure 1. Plots of the pdf and hrf for the MO-HL-LLo distribution

Figure 1 shows the plots of the pdfs and hrfs of the MO-HL-LLo distribution for selected parameters values. The pdf
can take various shapes including reverse-J, unimodal, left and right skewed. The MO-HL-LLo distribution exhibits both
monotonic and non-monotonic hazard rate functions.
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4.2 Marshall-Olkin Half Logistic-Weibull Distribution

Consider the Weibull distribution as the baseline distribution with pdf and cdf given by g(x; λ, ω) = λωxω−1e−λxω and
G(x; λ, ω) = 1 − e−λxω , respectively, for λ, ω > 0. The cdf and pdf of the Marshall-Olkin-half-logistic-Weibull (MO-HL-
W) distribution are given by

FMO−HL−W (x; δ, λ, γ) =
1 − eλxω

(1 + eλxω )
[
1 − δ̄

(
1 − 1−eλxω

1+eλxω
)]

and

fMO−HL−W (x; δ, λ, γ) =
2δλωxω−1e−λxω

(1 + eλxω )2[1 − δ̄(1 − 1−eλxω

1+eλxω
)]2 ,

respectively, for δ, λ, ω > 0.

Figure 2. Plots of the pdf and hrf for the MO-HL-W distribution

The pdfs shown in Figure 2 of the MO-HL-W distribution can take various shapes that include reverse-J, uni-modal, left
or right skewed shapes. Furthermore, the MO-HL-W distribution exhibit increasing, decreasing, reverse-J, bathtub and
upside bathtub shapes for the hazard rate function.

4.3 Marshall-Olkin-Half Logistic-Normal Distribution

Consider the normal distribution with pdf g(x; µ, σ) = σ−1φ
( x−µ
σ

)
and cdf G(x; µ, σ) = Φ

( x−µ
σ

)
, for µ ∈ < and σ > 0,

as the baseline distribution, we obtain the Marshall-Olkin-half-logistic-normal (MO-HL-N) distribution with cdf and pdf
given by

FMO−HL−N (x; δ, µ, σ) =
Φ
( x−µ
σ

)
(
2 − Φ

( x−µ
σ

))[
1 − δ̄

(
1 − Φ

(
x−µ
σ

)
2−Φ

(
x−µ
σ

) )]
and

fMO−HL−N (x; δ, µ, σ) =
2δσ−1φ

( x−µ
σ

)
(
2 − Φ

( x−µ
σ

))2
[
1 − δ̄

(
1 − Φ

(
x−µ
σ

)
2−Φ

(
x−µ
σ

) )]2 ,

for δ, σ > 0 and −∞ < µ < ∞.

Figure 3 shows that the MO-HL-N distribution can take various shapes for its pdf. Also, the hazard rate function for the
MO-HL-N distribution exhibit different shapes for the hazard rate functions for the MO-HL-N distribution.
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Figure 3. Plots of the pdf and hrf for the MO-HL-N distribution

5. Simulation Study

A simulation study is conducted to evaluate consistency of the maximum likelihood estimators. We simulated for N=1000
times with sample size n= 50, 100, 200, 400, 800 and 1000. Simulation results are shown in Table 1. From the Monte
Carlo simulation results, we conclude that our model produces consistent results when estimating parameters for the
model.

6. Applications

In this Section, three real data examples are used to illustrate the usefulness of the proposed new model compared to
other competing known non-nested models. We use the following goodness-of-fit statistics: -2loglikelihood (-2 log L),
Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (AICC), Bayesian Information Criterion
(BIC), Cramér von Mises (W∗) and Andersen-Darling (A∗) as described by [Chen and Balakrishnan , 1995], Kolmogorov-
Sminorv (K-S) and its p-value to assess the best fitting model. The model with the smaller values of these statistics, is
deemed to be the better model.

We used the nlm function in R software to estimate the model parameters and the package AdequacyModel in R software
for goodness-of-fit test. Model parameters estimates (standard errors in parenthesis) and the goodness-of-fit-statistics for
the three data sets are shown in Tables 2, 3 and 4. Plots of the fitted densities, the histogram of the data and probability
plots (Chambers, Cleveland, Kleiner and Tukey (1983)) are also presented to show how well our model fits the observed
data sets compared to the selected non-nested models. The plots are shown in Figures 4 (a), 4 (b), 5 (a), 5 (b), 6 (a) and 6
(b).

We compared the MO-HL-W distribution with other competing three parameter non-nested models: the exponentiated-
Fréchet (EFr) distribution by [Nadarajah and Kotz , 2003], other two non-nested studied by [Barreto-Souza et al. , 2013],
namely, Marshall-Olkin extended Fréchet (MOEFr) and Marshall-Olkin extended generalized exponential (MOEGE)
distributions, Marshall-Olkin extended inverse Weibull (IWMO) by [Pakungwati et al. , 2018], exponentiated Weibull by
[Pal et al. , 2006] and alpha power Weibull (APW) by [Nassar et al. , 2018] distributions. The pdfs of the non-nested
models are given by:

fIWMO (x;α, θλ) =
αλθ−λx−λ−1e−(θx)−λ

[α − (α − 1)e−(θx)−λ ]2
,

for α, θ, λ > 0,
fEF (x;α, λ, δ) = αλδλ

[
1 − e−(δ/x)λ

]α−1
x−(1+λ)e−(λ+1)(δ/x)λ ,

for α, λ, δ > 0,

fMOEF (x;α, λ, δ) =
αλδλx−(λ+1)e−(δ/x)λ

[1 − ᾱ(1 − e−(δ/x)λ )]2
,

for α, λ, δ > 0,

fMOEGE (x;α, γ, λ) =
αγλe−λx(1 − e−λx)γ−1

(1 − ᾱ[1 − e−λx]γ)2 ,
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Table 1. Monte Carlo Simulation Results for MO-HL-W Distribution: Mean, RMSE and Average Bias

δ = 0.3, λ = 0.02, ω = 0.3 δ = 0.04, λ = 0.04, ω = 0.7
parameter n Mean RMSE Bias Mean RMSE Bias

50 1.762498 9.685856 1.462498 0.610298 6.655783 0.570298
100 0.844508 3.890994 0.544508 0.129558 1.395083 0.089558

δ 200 0.699785 4.770718 0.399785 0.063553 0.049943 0.023553
400 0.342086 0.147265 0.042086 0.049088 0.023075 0.009088
800 0.320848 0.090219 0.020848 0.046309 0.017197 0.006309

1000 0.314583 0.069455 0.014583 0.044346 0.013374 0.004346
50 0.079121 0.229997 0.059121 0.130856 0.350873 0.090856
100 0.048857 0.138366 0.028857 0.078191 0.148263 0.038191

λ 200 0.035782 0.126931 0.015782 0.061161 0.045279 0.021161
400 0.023250 0.013159 0.003249 0.048323 0.022022 0.008323
800 0.021462 0.008276 0.001462 0.046057 0.016502 0.006057

1000 0.020888 0.006446 0.000888 0.044062 0.013070 0.004062
50 0.280205 0.060672 -0.019795 0.672670 0.106492 -0.027330
100 0.285469 0.044548 -0.014531 0.685898 0.076765 -0.014102

ω 200 0.291384 0.033146 -0.008616 0.686340 0.055460 -0.013660
400 0.296389 0.021142 -0.003611 0.694657 0.036994 -0.005343
800 0.298494 0.015789 -0.001506 0.694497 0.026790 -0.005503

1000 0.298659 0.012699 -0.001341 0.697050 0.023444 -0.002950
δ = 0.04, λ = 0.7, ω = 0.7 δ = 0.05, λ = 0.05, ω = 0.6

50 0.081044 0.100232 0.041044 0.406615 4.491051 0.356615
100 0.309052 5.419012 0.269052 0.169623 1.752614 0.119623

δ 200 0.049754 0.034046 0.009754 0.072667 0.053849 0.022667
400 0.040278 0.017388 0.000278 0.059569 0.026896 0.009569
800 0.034577 0.008367 -0.005423 0.055151 0.019439 0.005151

1000 0.035456 0.007580 -0.004544 0.053182 0.015412 0.003182
50 1.122168 0.849914 0.422168 0.127529 0.280013 0.077529
100 0.950882 0.645455 0.250882 0.089910 0.175096 0.039910

λ 200 0.813907 0.396657 0.113907 0.069754 0.047828 0.019754
400 0.709154 0.229924 0.009154 0.058419 0.025297 0.008419
800 0.645285 0.098588 -0.054715 0.054782 0.018518 0.004782

1000 0.668169 0.083547 -0.031831 0.052771 0.014996 0.002771
50 0.712711 0.092397 0.012711 0.583070 0.088722 -0.016930
100 0.713895 0.078494 0.013895 0.588429 0.066197 -0.011571

ω 200 0.714713 0.054730 0.014713 0.590984 0.047204 -0.009016
400 0.719261 0.040985 0.019261 0.595801 0.032625 -0.004199
800 0.721728 0.036012 0.021728 0.597247 0.023541 -0.002753

1000 0.723451 0.034163 0.023451 0.599234 0.020848 -0.000766

for α, γ, λ > 0,

fEW (x;α, β, δ) = αβδxβ−1e−αxβ (1 − e−αxβ )δ,

for α, β, δ > 0 and

fAPW (x;α, β, θ) =
log(α)
(α − 1)

βθxβ−1e−θxβα1−e−θxβ

for α, β, θ > 0.

6.1 Strengths of 1.5 cm Glass Fibres Data

The first data set is on strengths of 1.5 cm glass fibres. The data set was also analyzed by [Bourguignon et al. , 2014] and
[Smith and Naylor , 1987]. The data are 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74,
1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66,
1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51,
1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89.
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Table 2. Parameter estimates and goodness-of-fit statistics for various models fitted for 1.5 cm glass fibres data set

Estimates Statistics
Model δ λ ω −2 log L AIC AICC BIC W∗ A∗ K-S p-value

MO-HL-W 8.3217 0.6948 3.2018 24.1 30.1 30.5 36.5 0.1057 0.5912 0.0999 0.5547
(10.3885) (0.5651) (0.9478)

α γ λ
MOEGE 1.3296 ×10−3 10.7200 5.8366 31.9 37.9 38.4 44.4 0.4410 2.4309 0.9995 < 2.200 ×10−16

(0.3306) (0.1849) (0.2071)
α δ λ

EFr 0.04621 0.4993 20.1145 189.1 195.1 195.5 201.6 1.1986 6.3098 0.4279 1.9210 ×10−10

(0.0153) (0.0147) (6.1482)
MOEFr 54074 0.3858 7.9253 45.6 51.6 51.9 58.0 19.2509 122.7666 0.9997 < 2.200 ×10−16

(3.8277 ×10−8) (6.0532 ×10−2) (0.8731)
α β δ -

EW 1.8741 1.3803 15.3624 64.9 70.9 71.3 77.3 0.7088 3.8788 0.2487 0.0008
(0.5608) (0.3216) (9.0935)

α λ θ
IWMO 52636 7.9256 2.5828 45.6 51.6 51.9 58.0 0.4974 2.7509 0.1536 0.1020

(9.7035) (0.1041) (54.9189)
α β θ

APW 10.8558 4.4836 0.1948 26.9 32.9 33.4 39.4 0.1686 0.9272 0.1225 0.3009
(12.7241) (0.7632) (0.1083)

The estimated variance-covariance matrix for MO-HL-W model on 1.5 cm glass fibres data set is given by107.9206 5.6728 −9.0626
5.6728 0.3193 −0.5279
−9.0626 −0.5279 0.8983


and the 95% confidence intervals for the model parameters are given by δ ∈ [8.3217 ± 20.3614], λ ∈ [0.6948 ± 1.1076]
and ω ∈ [3.2018 ± 1.8577]. Based on the results shown in Table 2 and the plots shown in Figures 4 (a) and 4 (b), we can
conclude that the new proposed model performs better than the selected non-nested models on strength of 1.5 cm glass
fibres.

Figure 4. Fitted densities and probability plots for glass fibres data

6.2 Silicon Nitride Data

The second data set is on fracture toughness of silicon nitride measured in MPa m1/2. The data set was also analyzed by
[Nadarajah and Kotz , 2007] and also by [Ali et al. , 2015]. The data are 5.50, 5.00, 4.90, 6.40, 5.10, 5.20, 5.20, 5.00,
4.70, 4.00, 4.50, 4.20, 4.10, 4.56, 5.01, 4.70, 3.13, 3.12, 2.68, 2.77, 2.70, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61,
1.68, 2.04, 2.08, 2.13, 3.80, 3.73, 3.71, 3.28, 3.90, 4.00, 3.80, 4.10, 3.90, 4.05, 4.00, 3.95, 4.00, 4.50, 4.50, 4.20, 4.55,
4.65, 4.10, 4.25, 4.30, 4.50, 4.70, 5.15, 4.30, 4.50, 4.90, 5.00, 5.35, 5.15, 5.25, 5.80, 5.85, 5.90, 5.75, 6.25, 6.05, 5.90,
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3.60, 4.10, 4.50, 5.30, 4.85, 5.30, 5.45, 5.10, 5.30, 5.20, 5.30, 5.25, 4.75, 4.50, 4.20, 4.00, 4.15, 4.25, 4.30, 3.75, 3.95,
3.51, 4.13, 5.40, 5.00, 2.10, 4.60, 3.20, 2.50, 4.10, 3.50, 3.20, 3.30, 4.60, 4.30, 4.30, 4.50, 5.50, 4.60, 4.90, 4.30, 3.00,
3.40, 3.70, 4.40, 4.90, 4.90, 5.00.

The estimated variance-covariance matrix for MO-HL-W model on silicon nitride data set is given by21.4266 0.1708 −6.2857
0.1708 0.0013 −0.0516
−6.2857 −0.0516 1.9136


and the 95% confidence intervals for the model parameters are given by δ ∈ [2.8087 ± 9.0726], λ ∈ [0.0134 ± 0.0732]
and ω ∈ [3.3255 ± 2.7114]. Results in Table 3 show that the MO-HL-W distribution performs better than the various
non-nested models on silicon nitride data. We can also deduce from the fitted densities and probability plots that the
MO-HL-W distribution fits the silicon nitride data better than the selected non-nested models.

Table 3. Parameter estimates and goodness-of-fit statistics for various models fitted for silicon nitride data set

Estimates Statistics
Model δ λ ω −2 log L AIC AICC BIC W∗ A∗ K-S p-value

MO-HL-W 2.8087 0.0134 3.3255 335.6 341.6 341.8 349.9 0.0506 0.3047 0.0523 0.9009
(4.6289) (0.0374) (1.3834)

α γ λ
MOEGE 1.0718×10−2 20.7600 1.7321 340.3 346.3 346.5 354.6 0.2326 1.4637 0.9926 < 2.2000 ×10−16

(7.0715 ×10−3) (3.5685 ×10−5) (0.1434)
α δ λ

EFr 0.0555 1.5719 18.4091 586.9 592.9 593.2 601.3 1.3837 7.6851 0.3861 7.772 ×10−16

(0.0244) (0.0359) (7.7522)
MOEFr 2407.7 1.4344 7.0579 356.6 362.6 362.9 370.9 38.2495 235.4782 0.9989 < 2.2000 ×10−16

(7.7867 ×10−6) (0.1296) (0.5495)
α β δ -

EW 0.7015 1.1441 23.9388 381.5 387.5 387.7 395.8 0.6594 3.8924 0.1676 0.0025
(0.2973) (0.2012) (12.5289) -

α λ θ
IWMO 2407.7 7.0579 0.6972 356.6 362.6 362.9 370.9 0.3596 2.2543 0.0804 0.4241

(8.9422 ×10−7) (0.5495) (0.0630)
α β θ

APW 7.4246 3.8975 0.0039 335.8 341.8 342.0 350.2 0.0571 0.3591 0.0560 0.8492
(0.0201) (0.2965) (0.0019)

Figure 5. Fitted densities and probability plots for silicon nitride data
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6.3 Turbocharger Failure Times Data

The third data set represents failure times (103h) of turbocharger of one type of engine as report by [Xu et al. , 2003]. The
data are 1.6, 2.0, 2.6, 3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7, 7.0, 7.1, 7.3, 7.3,
7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7, 8.8, 9.0.

Table 4. Parameters estimates and goodness-of-fit statistics for various models fitted for turbocharger failure times data
set

Estimates Statistics
Model δ λ ω −2 log L AIC AICC BIC W∗ A∗ K-S p-value

MO-HL-W 2.4294 0.0096 2.7877 162.6 168.6 169.3 173.7 0.0496 0.3766 0.0918 0.8889
(2.8327) (0.0203) (0.8728)

α γ λ
MOEGE 0.116 3.1108 0.8755 167.1 173.1 173.8 178.2 0.1183 0.8382 0.9932 < 2.2000 ×10−16

(0.0280) (0.6155) (0.1246)
α δ λ

EF 0.0398 1.4314 18.2212 253.7 259.7 260.3 264.7 0.6684 3.7808 0.4145 2.1430 ×10−6

(0.0065) (0.0414) (0.6291)
MOEF 4836.2 1.0782 4.8391 177.4 183.4 184.1 188.5 12.8752 78.7089 0.9987 < 2.2000 ×10−16

(1.1593 ×10−5) (0.2678) (0.6512)
α β δ -

EW 0.7549 0.8389 17.9156 187.4 193.4 194.1 198.5 0.3195 1.9997 0.1672 0.2134
(0.6721) (0.0400) (22.6988) -

α λ θ
IWMO 4836.3 4.8391 0.9274 177.4 183.4 18401 188.5 0.2153 1.4129 0.1438 0.3796

(8.4139 ×10−6) (0.6512) (0.2303)
α β θ

LATW 4.3051 3.3068 0.0024 163.8 169.8 170.5 174.9 0.0621 0.4691 0.0986 0.8320
(0.0444) (0.4576) (0.0022)

The estimated variance-covariance matrix for MO-HL-W model on turbocharger failure times data set is given by 8.0241 0.0528 −2.1838
0.0528 0.0004 −0.0176
−2.1838 −0.0176 0.7617


and the 95% confidence intervals for the model parameters are given by δ ∈ [2.4294 ± 5.5521], λ ∈ [0.0096 ± 0.0399]
and ω ∈ [2.7877 ± 1.7106]. Results in Table 4 and plots in Figures 6 (a) and 6 (b) show that the MO-HL-W distribution
performs better than the various non-nested models on failure times of turbocharger data.

Figure 6. Fitted densities and probability plots for turbocharger failure times data
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7. Concluding Remarks

A new model was developed, which is referred to as the Marshall-Olkin-Half Logistic-G family of distributions. The new
distribution is a linear combination of the Exp-G distribution. The new proposed distribution can be applied to heavily
skewed data and also data that have non-monotonic hazard rate shapes. From real data examples presented in Tables 2, 3
and 4, we conclude that the MO-HL-W distribution performs better than several competing non-nested models.
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