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Abstract 

Drug coating is one of the most important processes in the modern pharmaceutical industry. Improving the utilization 

rate of raw materials (URRM) in the drug coating process is thus important for cost saving and efficiency enhancement. 

There is little existing research on this topic in the literature of applied statistics. In this paper, motivated by a real 

dataset collected from a pharmaceutical company in China, we propose to use a novel predictive model that integrates a 

Bayesian framework with the Gibbs sampling algorithm to characterize the pattern of URRM. Based on certain prior 

distributional assumptions, the Gibbs sampling algorithm is then applied to sample the posterior distribution of the 

parameters to obtain more accurate and robust estimation results. By using the proposed method, the drugs can be 

properly separated into several categories with different patterns of URRM, and the pattern of each category can be 

properly recognized with selected covariates, which achieves the goals of clustering, variable selection, and regression 

simultaneously, and provides valuable insights into the improvement of the URRM for drug coating. Numerical studies 

show that the proposed method works well in practice. 

Keywords: Bayesian analysis, clustering, Gibbs sampling, drug coating, utilization rate 

1. Introduction 

With the rapid development of modern pharmaceutical production, a wide variety of drugs are devised, and their 

production processes are now highly complicated. In the production process, drug coating is a process by which a thin 

continuous layer of solid is applied onto the surface of a tablet to protect drugs from dissolution or disintegration in the 

stomach (Ketterhagen et al., 2017). It is then of great importance to model and to improve the utilization rate of raw 

materials in the drug coating process for cost saving and efficiency enhancement. In this paper, we focus on the critical 

drug coating process, and apply modern computational statistical methods to assist in the improvement of the utilization 

rate of raw materials (URRM) used to coat tablets. 

The process of drug coating consists of several sequential stages, including drying of core tablets, feeding of raw 

materials, preheating, spraying, drying of the coated tablets, cooling, and discharging. The raw materials for drug 

coating are first feed into a roller. After the aforementioned sequential steps with proper tuning parameter settings, 

tablets with enteric coating are produced, and the URRM of the tablets can be calculated and collected. The whole drug 

coating process involves many tuning parameters (e.g., roller rotation speed, air flow temperature) that need to be 

properly set up during the process. It is crucial to investigate statistically how the tuning parameters affect the final 

utilization rate, such that accurate and effective decisions and adjustments can be made in order to handle various 

scenarios. 

Intuitively, in order to model the relationship between the URRM and the tuning parameters, a simple multiple linear 

regression model (Kutner et al., 2005) can be applied, i.e. 𝑌 = 𝑿𝑇𝜷 + 𝜀, where 𝑌 is the URRM, 𝑿 is the vector of 

tuning parameters/covariates, 𝜷 is the corresponding vector of coefficients that can be estimated by using the famous 

least square method (Lai et al., 1978), and 𝜀 is the random error term. The major drawback of such approach is that it 

is based on an impractical assumption that different drugs follow the same regression model, i.e. share the same 𝜷. 

However, in practice, the relationship between the URRM and the tuning parameters varies from drug to drug. In such 

cases, using the same linear model is inaccurate, which may fail to properly describe such complicated relationship. On 

the other hand, it is also unrealistic to establish regression model for each type of drug, given the fact that the number of 

drug types is large, and the observations of certain drugs are collected in limited quantities, bringing efficiency loss and 
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the well-known “curse of dimensionality” problem. Based on the above discussion, it is desirable to develop a new 

approach to model the relationship between the URRM and the tuning parameters while considering the similarities and 

differences between different drugs. Ideally, drugs can be properly clustered into several groups, and the URRM pattern 

of each group can be characterized. 

In this paper, motivated by a real dataset that comes from a real production line for drug coating of a pharmaceutical 

company in China, we introduce a novel Bayesian analytical framework for modelling the relationship between the 

URRM for drug coating and the tuning parameters. Specifically, based on prior distributional assumptions, the Gibbs 

sampling algorithm is applied to sample the posterior distributions of the tuning parameters to obtain more accurate and 

robust estimation results. The Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm applied for obtaining a 

sequence of observations which are approximated from multivariate conditional probability distributions, in cases when 

direct sampling is nontrivial. It was originally applied in the field of image processing (Geman and Geman, 1984). 

Gelfand and Smith (1990) showed how the Gibbs sampler can be used to solve various Bayesian inference problems. A 

detailed tutorial was given by Casella and George (1992). Nowadays, the Gibbs sampler has been widely applied in 

many important research frontiers including natural language processing (Chen et al., 2018), gene expression (Wang et 

al., 2019), etc. By using the proposed method, the drugs can be properly clustered into several categories, and the 

pattern of each category between the URRM and the tuning parameters can be effectively characterized with selected 

influential covariates, which provides valuable insights into the improvement of the URRM for drug coating. 

The remainder of the paper is organized as follows. Section 2 gives the proposed Bayesian framework and the methods 

based on Gibbs sampling for the modelling of URRM pattern. Section 3 presents the real dataset. Section 4 present the 

numerical results for analyzing the real dataset. The conclusions are given in Section 5. 

2. Statistical Methodology  

2.1 Problem Formulation 

Suppose we have real observations of M types of drugs. For each type of drug, there is at least one observation. The 

model of concern can then be written as  

𝑌𝑖𝑗 = 𝑿𝑖𝑗
𝑇 𝜷𝑖 + 𝜀𝑖𝑗 , 𝑖 = 1,… ,𝑀, 𝑗 = 1,… , 𝑛𝑖 ,                           (1) 

where 𝑌𝑖𝑗  denotes the observed value of URRM for the 𝑗 th observation of the 𝑖 th drug, 𝑿𝑖𝑗  denotes the 

𝑝 -dimensional covariates after certain feature engineering, 𝜷𝑖 = (𝛽𝑖1, … , 𝛽𝑖𝑝)
𝑇  is the vector of 𝑝 -dimensional 

coefficients for the 𝑖th drug, 𝜀𝑖𝑗 is the random error term, and 𝑛𝑖 ≥ 1 is the number of observations for the 𝑖th drug. 

Noting that different drugs may share the same pattern (i.e. their coefficient vectors are equal), our goals are then to find 

the drugs with identical utilization rate pattern, to cluster the drugs into several groups, and to estimate the regression 

coefficients of each group. Unfortunately, such goals can hardly be achieved by using classic regression analysis 

methods such as least squares regression. The main reason is that 𝜷𝑖s need to be estimated separately, and the 

estimation results are extremely unrobust or even invalid in cases when 𝑛𝑖 is extremely small (e.g. 𝑛𝑖 = 1 or 𝑛𝑖 ≪ 𝑝). 

For instance, in the real dataset described in Section 2.1, many drugs only have one observation. To solve this problem, 

in this paper we utilize a Bayesian modelling framework to learn the hidden relationship between different drugs. Then 

by using the Gibbs sampling algorithm, the drugs can be clustered properly, and the coefficients for each cluster can be 

estimated. 

We now give the basic assumptions of the Bayesian framework as follows. 

1. Each type of drug belongs to a specific category with unique URRM pattern. Denote by 𝐻𝑖 the category of the 

𝑖th drug. Its possible values could be 1,… , 𝐾, where 𝐾 is the number of categories. The prior probability of 

𝐻𝑖 = 𝑘 is 𝜋𝑖𝑘 = 1/𝐾, 𝑘 = 1,… , 𝐾. 

2. The prior distribution of 𝛽𝑖𝑗 is 𝛽𝑖𝑗~𝑁(𝜇𝑘𝑗, 𝑣), where 𝑘 denotes the category to which the 𝑖th drug truly belongs. 

3. Denote by 𝑍𝑘𝑗 the status of 𝜇𝑘𝑗. 𝑍𝑘𝑗 = 1 if 𝜇𝑘𝑗 is influential and 𝑍𝑘𝑗 = 0 otherwise. The prior distribution of 

𝜇𝑘𝑗 given 𝑍𝑘𝑗 is  

𝜇𝑘𝑗|𝑍𝑘𝑗~𝐼(𝑍𝑘𝑗 = 0)𝛿0(𝜇𝑘𝑗) + 𝐼(𝑍𝑘𝑗 = 1)𝑁(0, 𝜏2). 

4. The prior distribution of 𝑍𝑘𝑗 is 𝑍𝑘𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜔). 

5. The prior distributions of 𝜔 , 𝑣 , and 𝜏2  are respectively 𝜔~𝐵𝑒𝑡𝑎(𝑎0, 𝑏0), 𝜏2~𝐼𝑛𝑣𝐺𝑎(𝑠1, 𝑠2),  and 

𝑣~𝐼𝑛𝑣𝐺𝑎(𝛾1, 𝛾2). 

 

2.2 Parameter Estimation via Gibbs Sampling 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                Vol. 10, No. 2; 2021 

30 

Based on the problem formulation in Section 2.1, the parameters in the Bayesian framework that need to be estimated 

can be summarized as *𝛽𝑖𝑗 , 𝜇𝑘𝑗, 𝑍𝑘𝑗 , 𝜔, 𝑣, 𝜏2, 𝜋𝑖𝑘+. In such a situation, the Gibbs sampling algorithm is often used to 

sample posterior distribution in a Bayesian framework. It is a MCMC algorithm that is applicable when the joint 

distribution of the parameters is unknown, but the conditional distributions of the parameters is easy to sample from 

(Geman and Geman, 1984). Specifically, the Gibbs sampler generates a sample from the distribution of each parameter 

in turn, conditional on the current values of the other parameters. It has been well demonstrated that the sequence of 

samples constitutes a Markov chain, whose stationary distribution is just the sought-after joint distribution (Gelman et al. 

2013). Based on the above discussion, in this paper we utilize the Gibbs sampling algorithm to sample the posterior 

distributions of parameter to be estimated. 

Before implementing the Gibbs sampling algorithm, the distributions of the parameters conditional on the other 

parameters must be given. After derivations, we have the following results: 

𝑍𝑘𝑗|𝑌, 𝛽, 𝐻, 𝜔, 𝑣, 𝜏2~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (
𝑅𝑘𝑗

1 + 𝑅𝑘𝑗
) , 𝑘 = 1,… , 𝐾, 𝑗 = 1,… , 𝑝, 

where log(𝑅𝑘𝑗) = log .
𝜔

1+𝜔
/ +

1

2
log .

𝑣

𝑣+𝑚𝑘𝜏
2/ +

𝑚𝑘𝜏
2(∑ 𝛽𝑖𝑗/𝑚𝑘*𝑖: 𝐻𝑖=𝑘+ )2

2𝑣(𝑣+𝑚𝑘𝜏
2)

 and 𝑚𝑘 = ∑ 𝐼(𝐻𝑖 = 𝑘)𝑀
𝑖=1 , 

𝜇𝑘𝑗|𝑍𝑘𝑗, 𝑌, 𝛽, 𝐻, 𝜔, 𝑣, 𝜏2~𝐼(𝑍𝑘𝑗 = 0)𝛿0(𝜇𝑘𝑗) + 𝐼(𝑍𝑘𝑗 = 1)𝑁 (
𝜏2

𝑣 + 𝑚𝑘𝜏
2
∑ 𝛽𝑖𝑗

*𝑖: 𝐻𝑖=𝑘+
,

𝜏2𝑣

𝑣 +𝑚𝑘𝜏
2
) ,

𝑘 = 1,… , 𝐾, 𝑗 = 1,… , 𝑝, 

𝛽𝑖𝑗|𝜇𝑘𝑗 , 𝑌, 𝛽, 𝐻, 𝜔, 𝑣, 𝜏2~𝑁((
1

𝑣
+ 𝑿.𝑗

𝑇𝑿.𝑗)
−1

[
1

𝑣
𝜇𝑘𝑗 + 𝑿.𝑗

𝑇(𝒀𝑖 − 𝑿,−𝑗-
𝑇 𝜷𝑖,−𝑗-)] , (

1

𝑣
+ 𝑿.𝑗

𝑇𝑿.𝑗)
−1

) ,

𝑖 = 1,… ,𝑀, 𝑗 = 1,… , 𝑝, 

where 𝑿.𝑗 is the jth column of the feature matrix (𝑿𝑖1, … , 𝑿𝑖𝑛𝑖
)𝑇, 𝒀𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖

)𝑇, 𝜷𝑖,−𝑗- is 𝜷𝑖 except that the 

𝑗th element equals zero, 

𝜋𝑖𝑘|𝑌, 𝛽, 𝑍, 𝑣 =
𝑒−

∑ (𝛽𝑖𝑗−𝜇𝑘𝑗)
2𝑝

𝑗=1
2𝑣

∑ 𝑒−
∑ (𝛽𝑖𝑗−𝜇𝑘′𝑗)

2𝑝
𝑗=1

2𝑣𝐾
𝑘′=1

, 𝑖 = 1,… ,𝑀, 𝑘 = 1,… ,𝐾 

𝑣|𝑌, 𝛽, 𝜇, 𝐻~𝐼𝑛𝑣𝐺𝑎 (𝛾1 +
𝑀𝑝

2
, 𝛾2 +

∑ (𝛽𝑖𝑗 − 𝜇𝑘𝑗)
2

𝑖,𝑗

2
), 

𝜏2|𝑌, 𝛽, 𝑍, 𝜇, 𝐻~𝐼𝑛𝑣𝐺𝑎 (𝑠1 +∑
𝑍𝑘𝑗

2𝑘,𝑗
, 𝑠2 +∑ 𝜇𝑘𝑗

2 𝑍𝑘𝑗
𝑘,𝑗

), 

and 

𝜔|𝑌, 𝑍, 𝐻~𝐵𝑒𝑡𝑎 (𝑎0 +∑ 𝑍𝑘𝑗
𝑘,𝑗

, 𝑏0 +∑ (1 − 𝑍𝑘𝑗)
𝑘,𝑗

). 

Based on the above conditional distributions of the parameters, the Gibbs sampling algorithm can now be applied to 

sample the posterior distributions of the parameters, and the expected value of any parameter can be approximated by 

averaging over all the samples after steady state. The specific algorithm is summarized as follows. 

Step 1. Set 𝑡 = 0 and initial value  ( ) = (𝛽𝑖𝑗
( ), 𝜇𝑘𝑗

( ), 𝑍𝑘𝑗
( ), 𝜔( ), 𝑣( ), 𝜏2( ), 𝜋𝑖𝑘

( ))  ( 1
( ), … ,   

( )
). 

Step 2. Obtain the next sample  ( +1) . To do this, we sample each component of   ( +1)  from its 

distribution conditioned on all other components sampled so far. Specifically, to sample  𝑖
( +1)

, we update it 

based on the distribution specified by  𝑖
( +1)| 1

( +1), … ,  𝑖−1
( +1),  𝑖+1

( ) , … ,   
( ). 

Step 3. Repeat Step 2 B times. 

Based on the stationary distributions of each parameter after Gibbs sampling, the URRM patterns of the drugs can be 
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properly divided into 𝐾 groups, and the coefficients of each group can be estimated. It should be noted that 𝐾 is a 

hyperparameter that can be selected by using the Bayesian information criterion (BIC). The BIC is a criterion for model 

selection among a finite set of possible models, and the model with the smallest BIC value is preferred. The BIC is 

typically defined as (Wit, Heuvel, & Romejin, 2012): 

𝐵𝐼𝐶 = −2 ln(𝐿) + 𝑘 ∗ ln(𝑛), 

where 𝐿 is the maximized likelihood function of the considered model, 𝑛 is the total number of observations, and 𝑘 

is the number of parameters to be estimated. 

3. Real Dataset  

The real dataset used in the paper comes from a real production line for drug coating of a pharmaceutical company in 

China. The dataset was recorded from Nov 2017 to Mar 2018, and consists of 𝑛 = 809 observations of 𝑀 = 85 types 

of drugs. In each observation, the utilization rate of drug coating materials and the influential covariates are recorded. 

The number of observations for different drug varies, which is displayed in Figure 1. From Figure 1, it can be observed 

that some drugs only have limited observations, causing challendges for further statistical analysis. The fitted density 

function and the Q-Q plot of the utilization rate values after standardization are shown in Figure 2, from which we can 

observe that the normality assumption is significantly invalid. Based on the above discussions, it is unreasonable to 

build a single linear regressional model for all the observations, or to build separate linear regressional models for each 

type of drug. To solve this problem, in the following section, we apply the proposed Bayesion framework based on 

Gibbs sampling in Section 2 to achieve clustering and parameter estimation. 

 
Figure 1. The number of observations for each type of drug 

 

 
Figure 2. The fitted density function and the Q-Q plot of the observed values of URRM 

4. Results 

In the current section, we apply the proposed method based on the Gibbs sampling algorithm to model the real dataset 

mentioned in Section 2. Originally, for each observation, there are 201 covariates. Based on exploratory analysis, we 

found that many covariates barely change among different drugs. To abandon such redundant covariates, we apply the 

idea of sure independence screening (SIS) method proposed by Fan and Lv (2008) for dimension reduction and feature 

selection. The basic idea of SIS is to select the most contributed covariates based on certain correlation criterion and to 

abandon the others. To implement SIS, we first calculate the Spearman‟s rank correlation coefficient between the 

response and each covariate: 
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𝜌 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2 − 1)
, 

where 𝑑𝑖 is the difference between the two ranks of each observation and 𝑛 is the number of observations. It should 

be noted that unlike Pearson‟s correlation, there is no requirement of normality for Spearman‟s correlation and hence it 

is nonparametric and more robust (Corder and Foreman, 2014). In this paper, we choose those covariates with 𝜌 ≥ 0.1, 

and 56 covariates that are significantly correlated with the utilization rate are remained for the following statistical 

analysis. The correlation matrix of the 56 covariates are displayed in Figure 3. From the plot, it can be concluded that 

certain weak correlation structure exists and that the effect of multicollinearity can be neglected. 

 
Figure 3. The correlation matrix of the 56 covariates 

Now, we apply the proposed method to analyze the real dataset. Under model (1) and the Bayesian framework in 

Section 2.1, we apply the Gibbs sampling algorithm presented in Section 2.2 to estimate the model parameters. The 

mean square error (MSE) curves of the Gibbs sampling algorithm with various choices of 𝐾 are displayed in Figure 4. 

From the plots, it can be observed that as the number of iterations increases, the MSE curves converge to very low 

levels and tend to be steady, indicating that the proposed procedure is effective. We then compute the BIC values of the 

model with various choices of 𝐾, and the results are summarized in Table 1. From the table, we can observe that the 

model with 𝐾 = 3 has the smallest BIC value, which indicates that the drugs can be properly divided into 3 different 

groups with significantly different URRM patterns. 

 
Figure 4. The MSE curves of the Gibbs sampling algorithm with various choices of 𝐾 

Table 1. The BIC values for various choices of 𝐾 

K BIC 

1 1128.15 

2 1035.23 

3 978.76 

4 1061.35 

5 1083.02 

6 1197.11 
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Based on the steady states of the parameters after using the Gibbs sampling algorithm, we can obtain the specific 

pattern for each type of drug when K=3. Specifically, the first pattern includes 32 types of drugs and 291 observatons in 

total, the second pattern includes 20 types of drugs and 93 observations in total, and the third pattern includes 33 types 

of drugs and 425 observations in total. The histograms and fitted density functions of the utilization rate of the three 

groups are displayed in Figure 5. From the plots, it can be observed that the three patterns differ significantly, and the 

utilization rate of each pattern approximately follows normal distribution. The number of selected covariates of each 

group are shown in Table 2. It can be seen from the table that after the Gibbs sampling, the goal of high-dimensional 

variable selection is also achieved. For demonstration, we choose five covariates, and the corresponding estimated 

coefficients are shown in Table 3. Based on the estimated coefficients, the pattern of how the covariates affect the 

utilization rate is clear. 

 

Figure 5. The histograms and fitted density functions of the utilization rate of the three groups 

Table 2. Number of selected covariates of each group 

 Group I Group II Group III 

Number of 

selected 

covariates 

14 7 8 

Table 3. Estimated coefficients of some covariates. “-” means that the covariate is not selected 

Covariate Group I Group II Group III 

Cooling time - - -0.08 

Peristaltic pump speed when 

cooling 
0.029 0.078 - 

Spray time 0.042 - 0.083 

Motor frequency 0.073 - - 

Peristaltic pump speed when 

discharging 
-0.043 - - 

Now, we compare the proposed method with the classic multiple linear regression method. In other words, it is assumed 

in such a situation that different drugs share the same relationship between the URRM and the tuning parameters. The 

model can then be written as Yi = 𝐗i
T𝛃 + εi, i = 1, . . . , n. Specifically, we apply the 10-fold cross validation approach, 

in which the original dataset is randomly partitioned into 10 equal size subset. Of the 10 subsets, a single subset is the 

validation data for evaluating the fitted model, and the remaining 9 subsets are used as training data to train the model. 

The MSE values by using the 10-fold cross validation are summarized in Table 4. From the table, we can observe that 

the results are very unstable for many subsets, indicating that the basic assumption of linear regression fails, and that the 

drugs do not follow the same distribution. Based on the three groups by using Gibbs sampling, the fitting residuals of 

the three groups of the two approaches are shown in Figure 6. From the plots, it can be clearly observed that the 

residuals of linear regression tend to be much larger than those of Gibbs sampling. Finally, we can conclude that, 

instead of directly applying linear regression to all the data, it is more appropriate and effective to utilize the proposed 

Gibbs sampling approach. 
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Table 4. The MSE values of the linear regression method by using the 10-fold cross validation approach 

ID 1 2 3 4 5 6 7 8 9 10 

MSE 0.57 0.46 0.18 0.29 0.25 0.31 0.17 0.08 0.31 0.23 

 

Figure 6. The fitting residuals of the three groups by using Gibbs sampling and linear regression 

5. Conclusions 

In this paper, in order to model the functional relationship between the utilization rate of raw materials for drug coating 

and the tuning parameters during the coating process, we propose a Bayesian framework that integrates the Gibbs 

sampling algorithm. Based on certain prior distributional assumption, Gibbs sampling is applied to sample the posterior 

distributions of the parameters for obtaining accurate and robust parameter estimation results. Applying the proposed 

method on a real dataset, the drugs are clustered into three groups, and the patterns of utilization rate of the groups 

distinct from each other. Also, the influential covariates for each group are selected with estimated coefficients, by 

which engineers can properly recognize how the covariates affect the utilization rate.  

Some important issues remain that need to be solved. First, the proposed approach is based on the assumption of 

normality. In certain cases, such assumption may be invalid. In future research, the application of the Gibbs sampler for 

other distributions (e.g. uniform) should be investigated. Second, convergence diagnostics for the Gibbs sampling when 

applying in the current problem should be investigated systematically in the future. 
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