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Abstract 

The whole world has been affected by the COVID-19 pandemic. It has changed life drastically, affecting both social and 

business behavior and causing major economic distress throughout the world. The disease is often denominated a 

“novel coronavirus,” meaning that it is a new strain, that none of us carry antibodies to it and that there is much to be 

learned about its pathology. This obviously makes it hard to control. While several countries seem to have grasped ways 

to contain the virus, the United States (the “U.S.”) has seen steady growth in the number of cases and deaths. This paper 

uses multiple regression models to examine the differences among the several U.S. states in the numbers of cases and 

deaths and investigates several possible contributing factors to these totals. 

Keywords: COVID-19, novel coronavirus, multiple regression 

1. Introduction 

The first confirmed case of COVID-19 was reported in the US on January 22, 2020. As of October 30, 2020, the U.S. 

had recorded over nine million confirmed cases and more than 230,000 deaths. The initial cases in the US were travel 

related and for some time there appeared to be no indications of community spread. On February 26, 2020, the CDC 

reported its first known case of community spread when a man in California became infected with no travel history or 

known contact with an infected person. At that time, the U.S. had only 15 cases in total, 12 of them travel related 

(Hauck, Gelles, Bravo & Thorson, 2020). 

Initially, it was believed that the virus could be controlled through testing and contact tracing and that, like the flu, it 

would dissipate in the summer heat. Unfortunately, the virus is resilient and has defied efforts to contain it in the U.S. 

The U.S. surpassed 10,000 cases on March 19, 100,000 cases on March 26 and 1 million on April 28. To put the 

numbers in perspective, the New York Times provided the following comparison: By summer, the total number of 

infections in the U.S. was more than the combined populations of Nebraska, Vermont and Montana and the national 

death toll by summer exceeded the population of Syracuse, N.Y. (Almukhtar, Bloch, Aufrichtig, Calderone, Collins, 

Conlen et al., 2020). 

The overall federal response consisted of a series of non-mandatory guidelines combined with inconsistent messaging 

from various federal agencies. Americans were first urged to stay at home under Presidential guidelines issued on 

March 16, 2020. Because these guidelines were not mandatory, the states were forced to respond independently, with 

various actions taken and results obtained. Many (but not all) states issued stay at home orders; however, the level of 

restriction, the length of the orders and the enforcement of the orders were far from uniform across states. The overall 

result was that the economy was shut down in most states for the better part of April. Millions lost their jobs and 

unemployment reached depression-era levels. The virus has led to some drastic changes in American lifestyles. A visit 

to the theater (should one be open) or dining out at a restaurant or even simple nights out with friends are events that 

appear to be fraught with danger. Large gatherings are forbidden in most states, weddings have been postponed or 

scaled down to name a few changes. Many wonder if life will ever return to what it was pre-pandemic. 

As with the state responses, the spread of cases within the various states has not been uniform. Northeastern states like 

New York and New Jersey were hit hard early and saw wide-spread pain but clamped down early so that the disease 

became manageable. On the other hand, states like Florida, Texas and Arizona were spared early in the pandemic but 

later saw cases soar, and appeared to be on a more downward trend at the time this analysis was undertaken. The 

difference among the states in the number of cases could have multiple causes. The states differ in their demographics, 

education level, population density, economic prosperity, political control of their emergency responses and the actual 
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initial response (such as the extent, length, and enforcement of stay at home orders). All these factors can potentially 

influence the initial outbreak of the disease as well as its trajectory. 

In addition to attempts to reduce the virus’ spread, attempts were also made to expand testing. Initial problems with 

testing included 1) defective tests, (2) insufficient numbers of testing kits, and (3) delays in getting test results from 

medical lab facilities (Shear, Goodnough, Kaplan, Fink, Thomas & Weiland 2020). Despite these issues, testing did 

expand, though at less than ideal rates.  

The number of COVID-19 cases per state and the statewide trajectory of these cases is widely available and published 

almost daily. See for example: (“The New York Times, The Coronavirus Outbreak”, 2020), (“Centers for Disease 

Control and Prevention, Coronavirus (COVID-19)”, 2020), (“Johns Hopkins Coronavirus Resource Center”, 2020). 

There have also been many epidemiological and clinical studies on Covid-19. For example, Yang and Wang et. al. (2020) 

examined 150 patients in Wuhan, China early in the epidemic to investigate the clinical predictors of mortality due to 

Covid. Zhang et al. (2020) studied looked at estimation of the reproductive number and outbreak size of the disease on 

the Diamond Princess Cruise Ship.  Williamson et al. (2020) looked at factors associated with COVID-19 deaths in 

England. However, as far as we know, to date no statistical analysis has been done to investigate the factors that affect 

the number of state-wide COVID cases and deaths in USA. We believe that the results would be of social interest and a 

study like this could perhaps lead to better nationwide planning with more resources directed towards states that are at 

higher risk. Towards this goal, we investigate multiple regression models using the factors that might influence our 

variables of interest. For this study, we have considered data at two critical dates in the path of each state’s outbreak: (1) 

The date 5 weeks (35 days) after the 100th confirmed case, and (2) the date 13 weeks (91 days) after the 100th 

confirmed case. We chose the 5-week date because that is roughly a period of time after lockdown procedures had been 

instituted and results were being seen. We chose the 13-week period because that is roughly a period after the lifting of 

lockdown procedures in which effects were being seen.  

As of October 30, the US had a per 100,000 population confirmed case rate of about 2,720. A quick comparison with 

other highly populated countries like China (approximately 6), Pakistan (approximately 153), Indonesia (approximately 

149) and India (approximately 590) shows the per capita number of cases is much lower compared to the U.S. Europe, 

which was hit very early and very hard, was able to control the spread for a time, but has experienced a resurgence of 

the virus, though levels are still somewhat lower than the US, Spain’s case rate is approximately 2,482 per 100,000, 

while Sweden’s is 1,207 per 100,000, the UK’s is 1,434 per 100,000, France’s is 2,038 per 100,000 and Italy’s is 1,108 

per 100,000. 

The rest of the paper is organized as follows. Section 2 describes the data sources, the data and presents descriptive 

summaries of the data. In Section 3 we develop regression models to describe the number of cases and deaths on Day 

35 as a function of factors like population density, GDP, mobility index etc. In Section 4 we develop similar regression 

models for the number of cases and deaths on Day 91. Section 5 discusses model assumptions. Section 6 contains some 

concluding remarks. A table of the data is in the Appendix. 

2. Data Description 

The initial runs consist of 9 independent variables which we regressed onto 4 response variables. The data are contained 

in the Appendix 1 and 2. The predictor variables (the “Predictor Variables”) are: 

 Proportion of the population that is African-American (af_am). It has been widely noted that 

minority communities have been very hard hit by the virus. We use the proportion of the 

population that is African-American as a proxy for minority composition. 

 Population density (popdens). Epidemiological models predict that the rate of interaction among 

the population is a major contributing factor to disease spread. We will use population density as a 

proxy for the rate of interaction. 

 Per capita GDP (GDPpercap). We use this as a proxy for the overall wealth of the population. 

 Proportion of population with a college degree (coll_deg). Because higher education leads to higher 

paying jobs and less poverty, this is also a proxy for the wealth of the population. 

 Proportion of population that is over 65 (over65). It has been noted that older members of the 

population are more susceptible to the disease and are more likely to succumb to it. 

 Monthly flights into the state before travel bans (flights_to). We use this measure as a proxy for the 

likelihood that the disease will travel into the state by such flights. 

 Party in control of state governor’s office. (party_ctrl, 0=GOP, 1=Dem). This variable test whether 

results have differed depending on the party in control of the governor’s office. 
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 Proportion of the initial 35 days where distancing restrictions in place (prop_dist). This variable is a 

proxy for the extent of the stay at home restrictions, i.e., the extent of the statewide economic 

shutdown. 

 Change in mobility index from the day of the 100th case (calculated for 35 and 91 days)(dmob). 

The mobility index is maintained by Descartes Labs. (“Descartes Labs”, 2020) 

The four response variables we considered in the four different models are the following: 

 Confirmed cases per 100,000 population 5 weeks (i.e., on the 35th day) after 100th case 

(cases_100k35). 

 Confirmed cases per 100,000 population 13 weeks (i.e., on the 91st day) after 100th case 

(cases_100k91). 

 Deaths per 100,000 population 5 weeks (i.e., on the 35th day) after 100th case (deaths_100k35). 

 Deaths per 100,000 population 13 weeks (i.e., on the 91st day) after 100th case (deaths_100k91). 

We can see differing trajectories of the epidemic in the time series plots for various states. Figures 1 and 2 contain time 

series plots of confirmed cases (Figure 1) and deaths (Figure 2) for each of the six most populous states: California, 

Texas, New York, Florida, Pennsylvania and Illinois. It is clear that New York was hit very hard very early and had 

high numbers of cases and deaths, and then got things under control. Pennsylvania had similar, but less severe timing. 

Illinois has had a double peak in number of cases; the first peak occurred at the same time as New York and 

Pennsylvania while the second occurred later on, however fatalities were much less pronounced the second time around. 

Florida, Texas and California had later outbreaks which were more severe in terms of cases, but less so in terms of 

fatalities. 

 

Figure 1. Daily deaths new cases per 100,000 for most the six most populous states 
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Figure 2. Daily deaths new cases per 100,000 for most the six most populous states 

3. Method and Results 

We fit a regression models to (1) the number of cases per 100,000 population on the 35th day (5th week) after the 100th 

confirmed case in the state (2) the number of deaths per 100,000 population on the 35th day after the 100th confirmed 

case in the state (3) the number of cases per 100,000 population on the 91st  day (13th week) after the 100th confirmed 

case in the state (4) the number of deaths per 100,000 population on the 91st  day after the 100th confirmed case in the 

state.  The results are in the following paragraphs. 

3.1 Model 1: Dependent Variable: Confirmed Cases as of 35th Day (5th Week) 

In the first regression model, we fit a regression model to the number of cases per 100,000 population for the several 

states 5 weeks (the 35th day) after the 100th confirmed case within each state. The response variable is the number of 

cases per 100,000 residents on that day. The initial predictor variables are the Predictor Variables enumerated in Section 

2. 

The initial model run shows that the model is significant with an R-squared of 0.743 and an adjusted R-squared of 0.685, 

however, the only variable that is significant at 𝛼 = 0.05 (in the presence of all the other independent variables) is 

population density. The party in control of the governorship and the number of flights into the city are marginally 

significant (p-value < 0.06) in the presence of the other variables. 

We used the backward selection method to choose the best subset of regressors resulting in retention of the following 

variables in our final model: 

• Population Density, 

• Per-capita GDP, 

• Proportion of the population with a college degree, 

• Flights into the state (pre-travel bans), 

• Party in control of governorship, and 

• Proportion of the initial 35-day period with distancing restrictions in place. 

The final model is significant with an R-squared of 0.733 (adjusted R-squared of 0.696). Of the predictor variables, 

population density (popdens) is highly significant (p-value near 0), and party in control (party_ctrl) of the governorship 
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is significant (p-value=0.0381). All other variables are marginally significant (0.05 < p-value < 0.10). The scatter plot 

matrix for the variables contained in the final regression model for confirmed cases per 100,000 on Day 35 is shown in 

Figure 3 while the summary of the model is in Table 1. 

 

Figure 3. Scatter plot matrix and correlation coefficients of variables in Final Regression Model for confirmed cases per 

100,000 on Day 35 

Table 1. Final Regression Model summary of confirmed cases per 100,000 on Day 35 

(R2
:  0.7332, adj.R

2
 :  0.696) 

Term Coefficients Standard Error t Stat P value 

(Intercept) 161.1 115.35 1.397           1.397           

popdens 0.6199 0.0704 8.801 <0.00001 

GDPpercap 0.0036 0.0020 1.768 0.0841 

coll_deg     -855.3 468.2 -1.827           0.0747 

flights_to     -0.00021 0.000106 -1.985 0.0535 

party_ctrl     80.15 37.46 2.140 0.0381 

prop_dist    -109.1 59.24 -1.842 0.0724 

It was of special interest to examine the effect of the party in control on the dependent variable. To that end, we decided 

to look at scatter plots between the dependent variable and some of the independent variables using different markers 

for the party in control (Red is Republican and blue is Democratic.) These plots are shown in Figures 4 and 5.  Note 

that that the number of cases (as well as the deaths) seem to be higher in Democratic States rather than the Republican 

States. This may be because the states that were hit hardest at the beginning of the pandemic were in the primarily 
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Democratic northeast U.S. 

 

 

Figure 4. (Left) population density and (Right) per capita GDP vs cases per 100,000 cases, Day 35 

 

Figure 5. (Left) proportion of population over 65 and (Right) mobility index vs cases per 100,000 cases, Day 35  

3.2 Model 2: Dependent Variable: Deaths as of 35th Day (Week 5) 

In this model we looked at a regression model fitting the number of deaths per 100,000 population for the states for the 

time period of 5 weeks (the 35th day) after the 100th case. The dependent variable is the number of deaths per 100,000 

residents on that day. As before, the initial predictor variables are the Predictor Variables enumerated in Section 2. The 

initial regression analysis shows that the model is significant with an R-squared of 0.609 and an adjusted R-squared of 

0.521. The analysis shows that population density is extremely significant (in the presence of other variables) and party 

in control is marginally significant. 

Just as in the first model, we used the backward selection procedure to parse the model which results in the retention of 

the following variables: 

• Population Density, 

• Per-capita GDP, 

• Proportion of the population that is African-American, 

• Proportion of the population with a college degree, 

• Flights into the state (pre-travel bans), and 

• Party in control of governorship. 

The final model has an R-squared of 0.601 and adjusted R-squared of 0.545. The significant variables are population 

density and party in control of the governor’s office. Population density (popdens) is once again highly significant 
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(p-value near 0). Party in control (party_ctrl) of the governorship is significant (p-value < 0.05). No other variables are 

significant. The scatterplot matrix for the variables in the final model for Deaths as of 35th Day is shown in Figure 6 

while the summary of the model is given in Table 2. 

 

Figure 6. Scatter plot matrix and correlation coefficients of variables in Final Regression Model for Deaths per 100,000 on 

Day 35 

Table 2. Final Regression Model summary of Deaths per 100,000 on Day 35  

(R2
:  0.601, adj.R

2
:  0.545) 

Term Coefficients Standard Error t Stat P value 

(Intercept) -3.8029 9.627 -0.395 0.6948 

popdens 0.03030 0.0059 5.129 <0.00001 

GDPpercap 0.00025 0.0002 1.619      0.1127     

coll_deg     -41.50 37.02 -1.121          0.2685     

flights_to     -0.000009 0.000008 -1.079      0.2864     

party_ctrl     5.556 2.527 2.198      0.0333 

af_am    -16.932 14.199 1.193      0.2396 

3.3 Model 3: Dependent Variable: Confirmed Cases on Day 91 (13th Week) 

In this model we considered as the dependent variable the number of confirmed cases as of 13 weeks (or 91 days) after 

the 100th case. The predictor variables were the same as the ones used for day 35 except that the change in mobility 

index is computed for the 91st day.   

The model is significant with an R-squared of 0.745 and an adjusted R-squared of 0.694. The significant variables (in 

the presence of all the other independent variables) are population density, the proportion of the first 35 days that were 

under stay at home orders, and percentage of the population that is African-American. 

As in Models 1 and 2, we have used backward selection method resulting in the retention of the following predictors: 

• Proportion of the initial 35-day period with distancing restrictions in place. 

• Proportion of the population that is African-American, 
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• Flights into the state (pre-travel bans), 

• Per-capita GDP, and 

• Party in control of governorship. 

The final model is significant with an R-squared of 0.743 and adjusted R-squared of 0.707. Population density (popdens) 

is once again highly significant (p-value near 0). The proportion of the initial 35 days that were under distancing 

restrictions (prop_dist) and the proportion of the population that are African American (af_am) are both significant 

(p-value < 0.05). Per-capita GDP (GDPpercap) and the number of pre-travel ban flights into the jurisdiction were both 

marginally significant (p-value < 0.10). The scatter plot matrix and the output for the final regression model for 

Confirmed Cases on Day 91 are given below in Figure 7 and Table 3. 

 

Figure 7. Scatter plot matrix and correlation coefficients of variables in Final Regression Model for confirmed cases per 

100,000 on Day 91 

Table 3. Final Regression Model summary of Confirmed cases per 100,000 on Day 91  

(R2
:  0.7433, adj.R

2
 :  0.7074) 

Term Coefficients Standard Error t Stat P value 

(Intercept) 43.744 228.25 0.192 0.8489 

popdens 1.086 0.14835 7.323 <0.00001 

GDPpercap 0.0068 0.0035 1.941 0.0588 

flights_to     -0.00044 0.00022 -2.003 0.0515 

party_ctrl     110.033   77.083 1.427 0.1607     

af_am    944.96 366.025 2.582 0.0133 

prop_dist -323.286 120.727 -2.678 0.0105 

3.4 Model 4: Dependent Variable: Deaths per 100,000 on Day 91(13th Week) 

In this model we considered as the dependent variable the number of deaths as of 13 weeks (or 91 days) after the 100th 

case. The predictor variables were the same as the ones used for day 35 except that the change in mobility index is 

computed for the 91st day.  The final model, as with the other models, is significant with an R-squared of 0.777 and an 

adjusted R-squared of 0.727. Here the only significant variable (in the presence of all the other independent variables) is 

population density. As before, we use backward selection to choose the best regressors resulting in the following 

independent variables to be retained in the model:  
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• Population Density, 

• Per-capita GDP, 

• Proportion of the population that is African-American, 

• Flights into the state (pre-travel bans), and 

• Party in control of governorship. 

The final model is significant with an R-squared of 0.700 and adjusted R-squared of 0.666. Population density (popdens) 

is extremely significant (p-value near 0). Per-capita GDP (GDPpercapita) and the proportion of the population that are 

African-American (af_am) are both significant (p-value < 0.05). The number of pre-travel ban flights into the 

jurisdiction is marginally significant (p-value < 0.10).  The scatter plot matrix and the output for the final model for 

deaths per 100,000 on Day 91 are given below in Figure 8 and Table 4. 

Table 4. Final Regression Model summary of Deaths per 100,000 on Day 91 

(R2
:  0.7004, adj.R

2
 :  0.6664) 

Term Coefficients Standard Error t Stat P value 

(Intercept) -219.303 220.005 -0.997 0.3243 

popdens 1.0009 0.1547 6.470 <0.00001 

GDPpercap 0.00897 0.00365 2.459 0.0179 

flights_to -0.00047 0.00024 -1.960 0.0564 

party_ctrl 3.449 70.489 0.049 0.9612 

af_am 969.307 390.73 2.481 0.0170 

3.5 Model Assumptions 

In checking model assumptions, we found that multicollinearity was not a problem in any of the models. The normality 

assumption was violated in Models 1 and 2 while Models 3 and 4 did not present any serious violation. The 

homogeneity of variance assumption was violated in Model 2, but none of the other models posed serious violations. 

We did not attempt any transformations of the variables because the main purpose of the models was to describe the 

relationship between the independent variables and the response variables, and transformations would have made 

interpretation of the results much less straightforward. 

 

Figure 8. Scatter plot matrix and correlation coefficients of variables in Final Regression Model for Deaths per 100,000 on 

Day 91 
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4. Discussion and Conclusion 

In this paper, we used multiple linear regression models to identify the significant factors affecting the number of 

confirmed COVID-19 cases and the number of deaths per 100,000 in the states of the US. We identified population 

density as the most influential factor in all the models. Interestingly, the model suggests Party control is a significant 

factor for number of deaths and number of cases at the fifth week, but not at the thirteenth week. The percentage of 

African American citizens is another interesting factor that was not significant at the fifth week but became significant 

at the thirteenth week. Per-capita GDP was significant or marginally significant in all the models except the number of 

deaths at the fifth week. We believe that this paper is an important first step towards a deeper understanding of the 

factors which influence the number of Covid-19 cases and deaths. Understanding the factors will help us get a better 

understanding of how to control the virus. However, the trajectory of this disease continues to evolve. In the United 

States, the first states to feel the wrath of this virus were in the Northeast back in March. Later in the summer we saw 

the Sun Belt states get hit and as of the time of this analyis it appears to be the Midwest feeling the worst effects of the 

virus.  Another factor to consider is that early in the onset of the virus, the death rate from the disease was extremely 

high but now seems to have decreased. It is clearly of interest then to see why the waves of infection hit different parts 

of the country at different times and why the death rate seems to be more stable now. Towards that end, for future 

research, we would like to see if the addition of a predictor variable that distinguishes between states that were hit by 

the virus early and those that were hit later and see if that changes the effects of the independent variable. Another factor 

of interest would be to investigate what if any are the differences in testing protocols and data collection methods in 

different states and how that affects the models. One important factor in data collection methods is the difference 

between officially reported deaths due to COVID-19 and excess deaths (the difference between total statewide deaths 

and the average number of deaths in the past several years).  If there are significant differences in this count between 

states, then that warrants a deeper investigation. Finally, this paper looked at two discrete points in time to model the 

number of cases and deaths for the different US states. A time series analysis of our two dependent variables would 

definitely add to the understanding of this new disease. 
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Appendix 1. State Statistics 

State af_am popdens GDPpercap coll_deg over65 flights_to party_ctrl prop_dist 

Alabama 0.264 95.4 47735 0.245 0.169 23843 0 0.5428571 

Alaska 0.043 1.3 76220 0.290 0.118 35897 0 1.0000000 

Arizona 0.042 58.3 51179 0.284 0.175 176531 0 0.6857143 

Arkansas 0.158 56.9 44808 0.220 0.170 14974 0 0.0000000 

California 0.067 246.1 80563 0.326 0.143 740782 1 0.6857143 

Colorado 0.043 50.8 68828 0.394 0.142 245548 1 0.6285714 

Connecticut 0.103 742.6 81055 0.384 0.172 21501 1 0.8571429 

Delaware 0.210 475.1 78468 0.310 0.187 0 1 0.9714286 

Florida 0.159 364.6 51745 0.285 0.205 452180 0 0.4285714 

Georgia 0.314 173.7 58896 0.299 0.139 391889 0 0.4571429 

Hawaii 0.031 218.6 69593 0.320 0.184 102602 1 1.0000000 

Idaho 0.010 19.5 46043 0.268 0.159 21500 0 1.0000000 

Illinois 0.149 232.0 71727 0.334 0.156 352071 1 1.0000000 

Indiana 0.091 183.4 56702 0.253 0.158 39282 1 0.8857143 

Iowa 0.027 55.3 62493 0.277 0.171 12817 0 0.0000000 

Kansas 0.062 35.4 60310 0.323 0.159 9703 1 0.8000000 

Kentucky 0.082 111.3 48697 0.232 0.164 16178 1 0.8571429 

Louisiana 0.324 107.1 57445 0.234 0.154 67165 1 0.7142857 

Maine 0.010 43.1 50915 0.303 0.206 7299 1 0.6857143 

Maryland 0.301 610.8 71838 0.390 0.154 99031 0 0.6571429 

Massachusetts 0.081 858.0 86942 0.421 0.165 125110 0 0.6285714 

Michigan 0.142 175.0 54928 0.281 0.172 155896 1 0.8000000 

Minnesota 0.046 68.1 68427 0.348 0.159 138461 1 0.7714286 

Mississippi 0.373 63.7 40464 0.213 0.159 10068 0 0.6000000 

Missouri 0.115 87.9 54879 0.282 0.169 104404 0 0.5428571 

Montana 0.007 7.0 49540 0.307 0.187 17004 1 0.9428571 

Nebraska 0.045 24.3 66737 0.306 0.157 22970 0 0.0000000 

Nevada 0.090 25.4 58570 0.237 0.157 167198 1 0.6285714 

New Hampshire 0.012 147.8 66069 0.360 0.181 6364 1 0.8571429 

New Jersey 0.145 1210.1 73451 0.381 0.161 122974 1 0.7428571 

New Mexico 0.030 17.2 50201 0.269 0.175 21399 1 0.9428571 

New York 0.152 417.0 90043 0.353 0.164 246409 1 0.5714286 

North Carolina 0.216 202.6 56862 0.299 0.163 162329 1 0.6571429 

North Dakota 0.011 10.5 75321 0.289 0.153 10726 0 0.0000000 

Ohio 0.120 283.2 60464 0.272 0.171 85730 0 0.8571429 

Oklahoma 0.080 56.1 52409 0.248 0.157 30020 0 0.0000000 

Oregon 0.020 40.9 60558 0.323 0.176 71099 1 0.8857143 

Pennsylvania 0.108 285.5 64412 0.301 0.182 110556 1 0.5428571 

Rhode Island 0.075 1017.1 60830 0.330 0.172 13151 1 0.8285714 

South Carolina 0.285 158.8 48547 0.270 0.177 30263 0 0.4857143 

South Dakota 0.011 11.1 61104 0.278 0.166 8052 0 0.0000000 

Tennessee 0.168 157.5 56451 0.261 0.164 81729 0 0.6000000 

Texas 0.119 101.2 66149 0.287 0.126 565292 0 0.5142857 

Utah 0.013 35.3 59892 0.325 0.111 114239 0 0.0000000 

Vermont 0.009 68.0 56525 0.368 0.194 3708 0 0.9714286 

Virginia 0.199 209.2 65824 0.376 0.154 32205 1 0.6571429 

Washington 0.037 104.9 80170 0.345 0.154 148410 1 0.5142857 

West Virginia 0.036 77.1 43806 0.199 0.199 2387 0 1.0000000 

Wisconsin 0.061 106.0 60425 0.290 0.170 51257 1 0.7714286 

Wyoming 0.013 6.0 68757 0.267 0.165 7917 0 0.0000000 
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Appendix 2: COVID-19 Related State Statistics 

State cases_100k35 deaths_100k35 dmob35 cases_100k91 deaths_100k91 dmob91 

Alabama 118.94310 4.119771 -31 575.25873 16.519874 23 

Alaska 49.89440 1.230273 50 116.32914 1.913758 86 

Arizona 83.05035 3.654490 0 644.48171 18.148803 40 

Arkansas 86.12223 1.491151 -12 461.52765 6.892429 22 

California 57.70366 1.619752 -92 330.67489 11.722955 -69 

Colorado 157.10045 6.754955 -43 500.23130 27.471306 12 

Connecticut 630.21574 43.306472 -13 1274.20317 118.335494 35 

Delaware 427.41362 12.836786 5 1111.15219 44.672015 48 

Florida 118.69034 3.482676 -45 342.45694 13.618753 16 

Georgia 172.36763 6.470497 -75 543.26742 23.084698 -26 

Hawaii 43.64801 1.130046 6 60.10430 1.200673 33 

Idaho 109.22938 3.357460 20 246.32568 4.980233 68 

Illinois 248.68565 10.645668 -23 1049.69917 49.921791 6 

Indiana 203.21680 11.006772 29 620.09272 37.372522 81 

Iowa 173.56192 3.740012 -15 822.89775 21.742782 41 

Kansas 119.21132 4.324972 11 426.59322 8.855894 42 

Kentucky 87.62951 4.588519 11 305.08052 11.728701 70 

Louisiana 514.71414 27.878198 -75 1002.81923 64.834019 -26 

Maine 75.50892 3.719651 -17 219.98018 7.588089 60 

Maryland 244.38938 11.545434 -22 1041.55364 49.556047 12 

Massachusetts 434.08033 16.075437 -94 1511.14914 108.146489 -48 

Michigan 340.92808 27.496138 -36 663.56212 60.419409 32 

Minnesota 52.16652 3.546331 -5 561.65012 24.398755 39 

Mississippi 182.58494 7.022498 21 693.54727 31.517239 55 

Missouri 107.26837 5.387564 17 272.50210 14.683754 65 

Montana 42.38485 1.497037 15 75.13253 1.964861 80 

Nebraska 274.86445 3.773764 32 970.58118 13.802672 81 

Nevada 136.61646 6.330848 -32 395.07739 15.421297 23 

New Hampshire 137.08795 4.412702 -12 407.73370 24.931769 42 

New Jersey 960.36000 61.977958 -49 1878.82718 163.416905 -32 

New Mexico 134.72725 4.721415 6 510.00821 22.367108 38 

New York 691.95119 48.838622 -49 1442.24727 118.394574 -21 

North Carolina 71.46205 2.526677 -13 447.49832 11.260398 10 

North Dakota 156.28650 3.280573 9 458.62410 10.366611 54 

Ohio 120.77063 5.218537 -5 362.91930 22.337049 48 

Oklahoma 82.91696 4.978556 2 271.26810 9.325315 24 

Oregon 50.42989 1.967880 -41 150.93402 4.433657 18 

Pennsylvania 264.91196 10.529614 -31 652.93760 48.765860 15 

Rhode Island 702.21577 21.333615 -7 1542.15607 84.390496 45 

South Carolina 95.49958 2.913349 -33 418.22094 12.061264 10 

South Dakota 297.40273 2.373796 19 755.20624 10.286449 85 

Tennessee 108.27078 2.298960 -14 464.93178 7.219028 19 

Texas 68.11657 1.941655 -26 311.11660 7.459680 -4 

Utah 117.96786 1.216485 17 512.32736 4.834748 64 

Vermont 138.14346 7.532184 10 186.54175 8.974517 69 

Virginia 120.27388 4.088796 -14 653.44591 18.546031 11 

Washington 132.88434 6.342834 -56 301.94778 15.088853 -12 

West Virginia 66.12181 2.678352 49 155.23280 5.189306 78 

Wisconsin 79.43413 4.190687 -13 398.42444 12.073988 43 

Wyoming 102.97896 1.209484 20 250.53606 3.455670 74 
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