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Abstract

We provide a new, concise derivation of necessary and sufficient conditions for the explicit characterization of the general
nonnegative-definite covariance structure V of a general Gauss-Markov model with E(y) and Var(y) such that the best
linear unbiased estimator, the weighted least squares estimator, and the least squares estimator of Xβ are identical. In
addition, we derive a representation of the general nonnegative-definite covariance structure V defined above in terms of
its Moore-Penrose pseudo-inverse.
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1. Introduction

We consider the general Gauss-Markov model
y = Xβ + ε, (1)

where y is an n×1 vector of observations, X is an n×p known fixed, non-null model (design) matrix such that rank(X) = p,
β is a p × 1 vector of unknown model parameters, and ε is an n × 1 vector of random perturbations such that E(ε) = 0n×1
and Var(ε) = V, where V is a known n × n non-null, symmetric nonnegative-definite (n.n.d.) matrix. We denote the
Gauss-Markov model defined above by

{
y, Xβ,V

}
, and we assume y ∈ C(X : V), where C(X : V) represents the column

space of the partitioned matrix (X : V).

Throughout the remainder of this paper, the notation Rm×n represents the vector space of all m × n matrices over the real
field R, RS

n denotes the set of n × n real symmetric matrices, R≥n represents the cone of all symmetric n.n.d. matrices in
Rn×n, and R>n denotes the interior of R≥n , which is the set of all symmetric positive-definite (p.d.) matrices. We use the
notation K′ to denote the transpose of the real matrix K ∈ Rm×n. Furthermore, we let K+ ∈ Rn×m and K− ∈ Rn×m represent
the Moore-Penrose pseudo-inverse and a generalized inverse of K, respectively. Also, for K ∈ Rm×n, we use the notation
PK and P⊥K to denote the orthogonal projection matrix onto C(K) and C(K)⊥, respectively.

Given X, we define the ordinary least squares (LS) estimator of Xβ as

Xβ̂LS = X
(
X′X

)− X′y.

Puntanen, Styan, and Isotalo (2011) have defined the best linear unbiased (BLU) estimator of Xβ as

Xβ̂BLU = X
(
X′T−X

)− X′T−y, (2)

where T = V + XU′X and U ∈ RS
n is any n× n matrix such that C (T) = C (X :V). Puntanen et al. (2011) have defined the

weighted least squares (WLS) estimator as

Xβ̂WLS = X
(
X′V+X

)− X′V+y.

In this paper we give two characterizations of the general n.n.d. error covariance structure V in the Gauss-Markov model
{y, Xβ,V} for which Xβ̂BLU = Xβ̂WLS = Xβ̂LS where y ∈ C (X :V). We define these covariance matrices to be BLU-WLS-
LS estimator-equivalent (e.e.) covariance matrices. Specifically, in the first characterization we give a derivation of the
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explicit general n.n.d. BLU-WLS-LS e.e. covariance structure that is considerably more concise and straight-forward than
the derivation given in Young, Odell and Hahn (2000). In the second characterization, we demonstrate that the Moore-
Penrose pseudo-inverse of the covariance matrices contained in the set of n.n.d. BLU-WLS-LS e.e. covariance structures
are themselves elements of the set.

A large majority of previous work has focused on implicitly and explicitly characterizing the general covariance matrix
V such that the BLU and LS estimators are equal. Puntanen and Styan (1989), Alalouf and Styan (1984), Tian and Wiens
(2006), Proposition 10.1 in Puntanen et al. (2011), and numerous additional journal articles have presented many of these
implicit characterizations.

However, we have found fewer results on explicit n.n.d. WLS-LS e.e. covariance structure characterizations. Plackett
(1960), McElroy (1967), and Williams (1967) have derived sufficient (p.d.)WLS-LS e.e. covariance matrices. Additionally,
for certain model matrices X, Herzberg and Aleong (1985) have presented a sufficient p.d. WLS-LS e.e. covariance matrix,
and Zyskind and Martin (1969), Searle (1994), and Tian and Wiens (2006) have presented several implicit WLS-LS e.e.
covariance-structure characterizations. Results on both implicit and explicit characterizations of the general n.n.d. BLU-
WLS-LS e.e. covariance structure for the Gauss-Markov model {y, Xβ,V} appear to be more sparse. Herzberg and Aleong
(1985) have presented two sufficient WLS-BLU-LS e.e. covariance matrices. Moreover, Baksalary and Kala (1983) have
given an implicit characterization of the general n.n.d. e.e. covariance structure for V, and Young et al. (2000) have
explicitly characterized the general n.n.d. BLU-WLS-LS e.e. covariance structure.

We have organized the remainder of the paper as follows. In Section 2 we state two lemmas that we use to derive the first
of our two theorems. In Section 3 we present a new concise derivation our general n.n.d. BLU-WLS-LS e.e. dependency
structure characterization for V. We also demonstrate that the Moore-Penrose pseudo-inverse of elements contained in
the set of n.n.d. BLU-WLS-LS e.e. covariance structures are themselves elements of this set. Last, in Section 4 we briefly
summarize the two characterization results proven here.

2. Preliminary Lemmas

We next present two lemmas that we use in the proof of our first e.e.-covariance-structure characterization. The first
lemma gives conditions for V such that Xβ̂BLU = Xβ̂WLS = Xβ̂LS . A proof of part a) is in the lemma in Zyskind (1967),
a proof of b) is in Zyskind and Martin (1969), and a proof of part c) is in Theorem 2.2 of Baksalary and Kala (1983).

Lemma 1. For the Gauss-Markov model
{
y, Xβ,V

}
, we have

a) Xβ̂BLU = Xβ̂WLS if and only if C(X) ⊂ C(V),

b) Xβ̂BLU = Xβ̂LS if and only if C(VX) ⊂ C(X), and

c) Xβ̂WLS = Xβ̂LS if and only if Xβ̂BLU = Xβ̂WLS = Xβ̂LS .

In the second lemma, we state the general symmetric n.n.d. solution matrix to a particular homogeneous matrix that
contains the column space of a specified matrix.

Lemma 2. Let A ∈ Rn×q such that rank(A) = k, where k ≤ q < n, and let U :=
{
U ∈ R≥n : C(A) ⊂ C(U)

}
. Then, a

representation of the general n.n.d. solution to PAZP⊥A = 0 such that C(A) ⊂ C(Z) is

Z = PAU1 PA + P⊥AU2 P⊥A,

where U1 ∈ U and U2 ∈ R≥n is arbitrary.

Proof. The proof is similar to the proof of Lemma 6 in Young et al. (2000).

3. Main Results

We now present a concise proof of the explicit characterization of the general n.n.d. BLU-WLS-LS e.e. covariance
structure. The proof immediately below is considerably shorter and more direct than a previous proof given in Young et
al. (2000).

Theorem 1. For the general Gauss-Markov model
{
y, Xβ,V

}
, we have Xβ̂BLU = Xβ̂WLS = Xβ̂LS if and only if V ∈ V ,

where
V :=

{
V ∈ R≥n : V = PXW1 PX + P⊥XW2 P⊥X

}
(3)

with
W1 ∈

{
W ∈ R≥n : C(X) ⊂ C(W

}
, (4)

and W2 ∈ R≥n is arbitrary.
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Proof. From Lemmas 1 and 2, we have that

Xβ̂BLU = Xβ̂WLS = Xβ̂LS ⇐⇒ PXVX = VX and PV X = X
⇐⇒ PXVX − VX = 0 and PV X = X
⇐⇒ (PX − I)VPX = 0 and PV X = X
⇐⇒ P⊥XVPX = 0 and VV+X = X
⇐⇒ V ∈ V , where V is given in (3). 2

Next, for the general Gauss-Markov model
{
y, Xβ,V

}
, we characterize the n.n.d. e.e. covariance matrices V ∈ V , defined

in (3), by showing that for V ∈ V , the Moore-Penrose inverse V+ has a particular form.

Theorem 2. For the general Gauss-Markov model
{
y, Xβ,V

}
, consider the covariance matrices V ∈ V defined in (3).

Then, V ∈ V if and only if V+ ∈ V .

Proof. We first prove the necessity portion of Theorem 2. Let V ∈ V be defined as in (3). In addition, let

V∗ = PXW+
1 PX + P⊥XW+

2 P⊥X.

Then, using the definition of a Moore-Penrose pseudo-inverse and the facts that for Wi ∈ R≥n , PX P⊥X = P⊥X PX = 0, and
PXWi = Wi PX = Wi, i = 1, 2, we have

VV∗V =
(
PXW1 PX + P⊥XW2 P⊥X

)(
PXW+

1 PX + P⊥XW+
2 P⊥X

)(
PXW1 PX + P⊥XW2 P⊥X

)
=

(
PXW1 PX

)(
PXW+

1 PX
)(

PXW1 PX
)

+
(
P⊥XW2 P⊥X

)(
P⊥XW+

2 P⊥X
)
P⊥XW2 P⊥X

)
=

(
PXW1W+

1 W1 PX
)

+
(
P⊥XW2W+

2 W2 P⊥X
)

=
(
PXW1 PX + P⊥XW2 P⊥X

)
= V.

Next, we have

V∗VV∗ =
(
PXW+

1 PX + P⊥XW+
2 P⊥X

)(
PXW1 PX + P⊥XW2 P⊥X

)(
PXW+

1 PX + P⊥XW+
2 P⊥X

)
=

(
PXW+

1 PX
)(

PXW1 PX
)(

PXW+
1 PX

)
+

(
P⊥XW+

2 P⊥X
)(

P⊥XW2 P⊥X
)
P⊥XW+

2 P⊥X
)

=
(
PXW+

1 W1W+
1 PX

)
+

(
P⊥XW+

2 W2W+
2 P⊥X

)
=

(
PXW1 PX + P⊥XW2 P⊥X

)
= V∗.

Third, let W1 be defined as in (4). Then, using the fact that WiW+
i = big(WiW+

i
)′

= W′+
i W′

i = W+
i Wi, i = 1, 2, we have[

VV∗
]′

=
[(

PXW1 PX + P⊥XW2 P⊥X
)(

PXW+
1 PX + P⊥XW+

2 P⊥X
)]′

=
(
PXW+

1 PX + P⊥XW+
2 P⊥X

)′(PXW1 PX + P⊥XW2 P⊥X
)′

=
(
PXW+

1 PX
)(

PXW1 PX
)

+
(
P⊥XW2 P⊥X

)(
P⊥XW+

2 P⊥X
)
.

= PXW+
1 W1 PX + P⊥XW+

2 W2 P⊥X
= PXW1W+

1 PX + P⊥XW2W+
2 P⊥X

=
(
PXW1 PX

)(
PXW+

1 PX
)

+
(
P⊥XW2 P⊥X

)(
P⊥XW+

2 P⊥X
)
.

=
(
PXW1 PX + P⊥XW2 P⊥X

)(
PXW1 PX + P⊥XW2 P⊥X

)
.

= VV∗.

Last, again using the fact that WiW+
i = W+

i Wi, i = 1, 2, we have that[
V∗V

]′
=

[(
PXW+

1 PX + P⊥XW+
2 P⊥X

)(
PXW1 PX + P⊥XW2 P⊥X

)]′
=

(
PXW1 PX + P⊥XW2 P⊥X

)′(PXW+
1 PX + P⊥XW+

2 P⊥X
)′

=
(
PXW1 PX

)(
PXW+

1 PX
)

+
(
P⊥XW2 P⊥X

)(
P⊥XW+

2 P⊥X
)
.

= PXW1W+
1 PX + P⊥XW2W+

2 P⊥X
= PXW+

1 W1 PX + P⊥XW+
2 W2 P⊥X

=
(
PXW+

1 PX
)(

PXW1 PX
)

+
(
P⊥XW+

2 P⊥X
)(

P⊥XW2 P⊥X
)
.

=
(
PXW+

1 PX + P⊥XW2 P⊥X
)(

PXW1 PX + P⊥XW2 P⊥X
)
.

= V∗V.
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Hence, V∗ = V+. The sufficiency portion of the proof is similar to the necessity portion because of the facts that [V+]
+

= V
and [Wi

+]
+

= Wi, i = 1, 2. 2

The following corollary, which follows directly from Theorems 1 and 2, gives several implicit characterizations of the
general n.n.d. BLU-WLS-LS e.e. dependency matrix.

Corollary. Let V be defined as in (3). Then, V ∈ V if and only if C(X) ⊂ C(V), and

a) P⊥XVP⊥X = P⊥XV

b) P⊥XV+ P⊥X = P⊥XV+

c) PXVPX = PXV

d) PXV+ PX = PXV+

e) PXV = VPX

f) PXV+ = V+ PX

g) P⊥XV = VP⊥X

h) P⊥XV+ = V+ P⊥X.

4. Summary

We have derived two explicit characterizations of the general n.n.d. e.e. covariance structure such that Xβ̂BLU = Xβ̂WLS =

Xβ̂LS . Theorem 1 provides a brief derivation of the explicit general n.n.d. BLU-WLS-LS e.e. dependency structure that
considerably shortens a proof given in Young et al. (2000). Theorem 2 presents a second characterization of the general
n.n.d. BLU-WLS-LS e.e. covariance matrix V in which we prove that V and V+ have the same general structure. Last, we
give some implicit characterizations of the general n.n.d. e.e. covariance matrices such that Xβ̂BLU = Xβ̂WLS = Xβ̂LS .
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