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Abstract

Parametric modeling imposes rigid assumption on abstraction of physical characteristics of a phenomenon, which in case
of model misspecification could give erroneous results. To address the drawbacks, efforts have been channeled on semi-
parametric and nonparametric modeling and inference. This study focuses on constructing an estimator and consequently
modeling a meteorological temperature time series first by constructing a penalized spline estimator based on cubic
splines. The penalized spline estimator proposed, which are known to impose very minimal restrictions on estimation
process, provides good fits to observed data with very attractive properties namely consistent as observed in values of the
Mean Squared Error from the analysis. The results of our simulations compared favorably with the empirical analysis on
average monthly meteorological temperature data obtained from Climate Knowledge Portal World Bank Organization on
Ghana for periods 1901-2016.
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1. Introduction

A major fundamental problem of all types of meteorological time series variables is their nonlinear features see e.g.
(Wang et al., 2013; Bradley and Kantz, 2015; Hyrkkänen et al., 2016; Krishnamurthy, 2019; Benrhmach et al., 2020; Md.
Karimuzzaman & Md.Hossain, 2020). Approaching from the data generating processes and its inherent physical condi-
tions. Nonlinearity can cause severe methodological inaccuracies in modeling meteorological times series variables if not
taken into account. As a corrective or remedy, the numerical technique of Spline functions (B-spline interpolation) has
been modified to the field of statistical time series modeling,see e.g.(Eilers and Marx, 2010; Grimstad and Sandnes, 2016;
Jauch et al., 2017; Singh et al., 2020; Yeh et al., 2020; Michel and Zidna, 2020). An unlimited advantage of this method
is the ability to correct nonlinearity in the meteorological time series variable. As cited in (Tamsir et al., 2016; Bluemm
et al., 2010; Remontet et al., 2019) with a simple extension of this technique, the elimination of systematic influences,
such as the effect of nonstationarity coming from the seasonality and cyclical, is it possible to model temperature variable
to obtain a high degree efficient temperature model. The study proposed to derive a penalized spline estimator and study
its mean squared error measure in relations to selection of smoothing parameter with illustration to real meteorological
temperature variable.

A study by Mitchell (2001), indicated that, global climate change has already had observable effects on the environment
such as flooding, earth quick, drought, extreme rainfall etc. The effects that scientists had predicted in the past would
result from global climate change are now occurring. Thus, loss of sea ice, accelerated sea level rise and longer, more
intense heat waves. Scientists have predicted that global temperatures will continue to rise for decades to come, as a result
of greenhouse gases produced by human activities. Again,the extent of climate change effects on individual regions will
vary over time and therefore, societies needs conscious effort to mitigate or adapt to changes, (IPCC, 2001).

A key to effective managerial decision-making will be forecasts of climate change that are accurate and cost effective. An
important indicator of climate change, although by no means the only one, is global temperature change, (Romilly, 2005).
As Wangler and Backlund (2005), suggested, systems are defined by a set of entities, named as components, mutually
connected where those connection are responsible for defining the various relationships and dependencies among all
components. The relationships and the dependencies are often unknown. Therefore, the knowledge of the components
and understanding their connections according to (Robert H. Shumway, 2006), one can model the system in order to
improve decision making, forecasting, controlling as well as detecting outliers or failure in the system.

More so, the experimental data study area aims at designing methods to formulate or model and thus understand system
behavior, (Robert H. Shumway, 2006). Also, global temperature is a popular metric for describing the state of global

61



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 9, No. 5; 2020

climate. However, its effects are felt locally, but the global distribution of climate response to many global climate
changes is reasonably congruent in climate models, suggesting that the global metric measure is useful, (Hansen et al.,
2006). By IPCC (2007) the Intergovernmental Panel on Climate Change (IPCC), has forecasted a temperature rise of 2.5
to 10 degrees Fahrenheit over the next century.

According to Godfrey et al. (2012) climate change is one of the extreme significant problems on the worldwide political
and economic agendas. The complexities, confusing, and at times contested scientific information resulted in a slow
public and political response to the climate crisis.

In the African context, climate change is far from intangible, it is presently defining the course of people’s lives. Africa
experienced extreme weather events and more irregularity in weather patterns, leading to serious outcomes for the people,
who depend on land and some water bodies to survive. As a result, Africa’s engagement with the issue is evolving rapidly,
presenting an opportunity to leapfrog the slow evolution of western public opinion and political action, (Godfrey et al.,
2012).

According to Adedeji et al. (2014), climate change is one of the major challenges of our time and adds considerable
stress to our societies and to the environment. This is seen from shifting weather patterns that threaten the survival of the
likelihood of mankind from food production, rising sea levels increasing the risk of catastrophic flooding, this impacts
of climate change are global in scope and unprecedented in scale. This requires a drastic action today, adapting to these
impacts in the present and future will be more difficult and costly.

A report by DeGhetto et al. (2016) on African Agenda 2063 of the Africa we want, point out that, whilst Africa at present
contributes less than 5% of global carbon emissions, it bears the brunt of the impact of climate change. Africa shall
address the global challenge of climate change by prioritizing adaptation in all our actions, drawing upon skills of diverse
disciplines to ensure implementation of actions for the survival of the most vulnerable populations, including islands
states, and for sustainable development and shared prosperity.

Africa will participate in global efforts for climate change mitigation that support and broaden the policy space for sus-
tainable development on the continent. Africa shall continue to speak with one voice and unity of purpose in advancing
its position and interests on climate change, (DeGhetto et al., 2016).

Another study by, Amegah et al. (2016) on sub-Saharan Africa found that, sub-Saharan Africa augments very little to
global climate change and nonetheless it is projected to endure the utmost problem of climate change, with 34% of the
global Disability-Adjusted Life Years (DALYs) attributable to the effects of climate change found in sub-Saharan Africa.

As a result,Ye et al. (2013); Mudelsee (2018) modeled the absolute temperature using the traditional parametric methods
to model the relationships and using the ”trial and error” method to determine the order of the polynomial function for
estimation process. These concerns are to be address by using appropriate spline functions.

The study sought to achieved the following objectives: to derive a penalized spline estimator and to study its mean
squared error measure in relations to selection of smoothing parameter with illustration to real meteorological temperature
variable;to study the gains of the models obtained here over other existing models;to assess the accuracy as well as the
consequence of the results achieved.

2. Methods

2.1 Spline Models

A spline model is a piece-wise well-defined function with the separable pieces joined together employing continuity and
smoothness constraints. They are worthwhile in explaining the relationship between a response variable and one or more
independent variables when the relationship involves a curve or flexible model.The segments of a spline function are
usually low order polynomials of up to third degree and the polynomial segments connect at a set of finite points known
as knots.There are numerous forms of spline functions and in order to offer a definition, the ensuing representation is
presented. LetY and X be jointly distributed random variables such that

E (Y |X) = l (x) (2.1)

where Y is the response variable and X is the explanatory variable. The goal is to estimate the function l based on observed
data,(yi, xi), where i = 1, . . . , n. Given that the observed data exhibits a relationship such that linear and quadratic functions
would not be a good fit to the data and using a high-order polynomial does not essentially offer an improved fit to the data
and pose challenges in understanding the coefficients of the large number of polynomial terms. By way of an alternative
methodology, one can subdivide the domain [a, b] of the function l into k + 1 equally spaced segment.

Definition 2.1. Let a < t1 < · · · < tk < b be fixed points called knots. Let t0 = aand tk+1 = b. Generally, splines functions
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are piecewise polynomials joined together smoothly at the knots. Formally,a spline function of order m, is a real-valued
function on the closed interval [a, b], such that

(i) l is piecewise polynomial of order m on the [ti, ti+1), i = 0, 1, · · · , k

(ii) l has m − 2 continuous derivatives and the (m − 1)st derivative is a step function with jumps at the knots. For orders
represented by m = 2r,the function l is a natural spline function of order 2r if, in addition to (i) and (ii), it satisfies
the natural boundary conditions

(iii) l( j)(a) = l( j)(b) = 0, j = r, · · · , 2r − 1.

The natural boundary conditions ensure that l is spline function of order r on the two outside intervals [a, t1] and [tk, b].
Represent the function space of the natural spline function of order 2r with knots t1, · · · , tk as NS 2r(t1, · · · , tk).

To obtain a good approximation of the natural spline function,we define smoothing spline approach where the number and
location of knots is worth considering. We begin, by defining a well-defined model space for the function and introduce a
penalty to account for overfitting.

Suppose l is ”smooth”. Specifically, assume that l ∈ Wr
2[a, b] where the Sobolev space

Wr
2[a, b] =

{
l : l, l′, · · · , lr−1 are absolutely continuous

∫ b

a
(l(r))2dx < ∞

}
(2.2)

Let L(t) be a natural cubic interpolation spline. On each interval,[ti, ti+1], i = 1, · · · ,m − 1, where, l(t) is given by a
different cubic polynomial, li, define as

L(t) =

m−1∑
t=1

1[ti,ti+1)(t)li(t) (2.3)

since L(t) is natural cubic spline, the following must hold,

li(t) = ai(t − ti)3 + bi(t − ti)2 + ci(t − ti) + di 1 ≤ i ≤ m − 1 (2.4)

Using Truncated Power Basis to model natural cubic spline function as given in equation (2.3) is

L (t) =

3∑
j=0

β jt j +

K∑
k=1

θk(t − ηk)3
+ (2.5)

where ηk is the knots and K is number of knots of the data-set The truncated power basis has r+ l−1 basis function. Hence
the truncated power basis function is indeed a basis of the vector space of the splines function. In general the truncated
power basis of a function with degree r and K knots can be written as

L(t) =

r∑
j=0

β jt j +

K∑
k=1

θk(t − ηk)3
+ (2.6)

where

(t − ηk)3
+ =

(t − ηk)3
+, i f (t − ηk)3

+ > 0
0, i f (t − ηk)3

+ ≤ 0
(2.7)

where K and ηk are the number of knots and knots position of the data set. The data represents average monthly meteoro-
logical temperature data collected from (https://climateknowledgeportal.worldbank.
org/download-data) for the period between January,1901-December,2016 on Ghana.

Based on the data pairs (Yt, yt−1) , yt−1 ∈ [a, b],t = 1, . . . , n with a true relationship

Yt = l (yt−1) + εi (2.8)

we aim to estimate the unknown smooth function l (.) ∈ Cp+1 ([a, b]), a p + 1 times continuously differentiable function,
with penalized splines. The residuals εi are assumed to be uncorrelated with zero mean and variance σ2 > 0.

Suppose that, n ≥ r = 2 and a < t1, < t2 < · · · < tn ≤ b. Then, for fixed 0 < λ < ∞ (2.9) has a unique minimizer l̂
and l̂ ∈ NS 2(t1, · · · , tn),Eubank (1999). By this result indicates that even though we begun with the infinite dimensional
space Wr

2[a, b] as the model space for l, the solution is the minimizer of the equation (2.9) belonging to a finite dimensional
space. Specifically,the solution is a natural spline function with knots at distinct design points. One approach to computing
the polynomial spline function estimate is to denote l̂ as a linear combination of a basis of NS 2(t1, · · · , tn).
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2.2 The Penalized Least Squares Estimation Method

The function l (t) is to be estimated using penalized cubic spline least squares method where generalized cross-validation
(GCV) will be used to select smoothing parameter. Given any twice-differentiable function l(t) defined on [a, b], and a
smoothing parameter λ > 0, define the penalized sum of squares as

S 2(εt) =

n∑
i=1

{Y(ti) − l(ti)}2 + λ

∫ b

a

{
l′′(t)

}2 dx (2.9)

where l(ti) is defined in equation (2.4). The addition of the roughness penalty term λ
∫

l′′(t)2 in equation (2.9) ensures that
the cost S 2(εt) of a particular curve is determined not only by its goodness-of-fit to the data as quantified by the residual
sum of squares

∑n
i=1 {Y(ti) − l(ti)}2 but also by its roughness

∫
l′′(t)2. The smoothing parameter λ represents the ”rate of

exchange” between residual error and local variation and gives the amount in terms of summed square residual error that
corresponds to one unit of integrated squared second derivative.

In general, we want the resulting function to exhibit some degree of smoothness. The general approach to a formal
generalization of this is to introduce the roughness measure,

P(l) =

∫ tm

t1

{
l′′(t)

}2dt (2.10)

which clearly measure the total curvature of the smoothing function. A fundamental results in spline theory is that the
natural cubic spline (the cubic spline imposing, l′(ti) = l′′(tm) = 0 ensures the smoothest fit by minimizing equation (2.10)
among all C2.

Theorem 2.2. With l denoting the natural cubic interpolation spline, we have for any interpolation function f ∈ C2 such
that P( f ) ≥ P(l), where P(l) is defined in equation (2.10), with equality if and only if f = l.

Proof. Since l ∈ C2 is a cubic spline, we have that,

l′′′(t) = ki,∀t ∈ (ti, ti+1) f or some ki ∈ R, i = 1, · · · ,m − 1 (2.11)

P( f ) = 0 if and only if f ′′(t) = 0, for all t, that is, if and only if f is a first order polynomial. For all, x, y ∈ R,
x2 − y2 = (x − y)2 + 2(x − y)y, and let τ = f − l. This implies that,

P( f ) − P(l) =

∫ tm

t1

[
f ′′(t)

]2 dt −
∫ tm

t1

[
l′′(t)

]2 dt

=

∫ tm

t1

[
f ′′(t) − l′′(t)

]2
+ 2

∫ tm

t1

[
f ′′(t) − l′′(t)

]
l′′(t)dt

=

∫ tm

t1

[
τ′′(t)

]2 dt + 2
∫ tm

t1
τ′′(t)l′′(t)dt

= P(τ) + 2
∫ tm

t1
τ′′(t)l′′(t)dt

Now,
P(τ) = 0, ⇔ τ′′ = 0⇔ f ′′ = l′′

so we have P(τ) ≥ 0, with equality if and only if f ′′ = l′′. Considering second term, we see that,

2
∫ tm

t1
τ′′(t)l′′(t)dt = 2

[τ′(t)l′′(t)]tm
t1 − 2

m−1∑
i=1

∫ ti+1

ti
τ′(t)l′′′(t)


= 2

[
τ′(t)l′′(t)

]tm
t1 − 2

m−1∑
i=1

ki (τ(ti+1) − τ(ti))

using partial integration, the continuity of the derivatives up to and including second order,and (2.11). Recall the definition
of τ,

τ(ti+1) − τ(ti) = f (ti+1) − l(ti+1) − f (ti) + l(ti) = yi+1 − yi+1 − yi + yi = 0 (2.12)
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making the second term zero. Remaining with,

2
[
τ′(t)l′′(t)

]tm
t1 = 2

(
τ′(tm)l′′(tm) − τ′(t1)l′′(t1)

)
(2.13)

We note that by letting,
l′′(t1) = l′′(tm) = 0 (2.14)

(or with l′ = f ′, in which case l = f ), we have,

2
∫ tm

t1
τ′′(t)l′′(t)dt = 0 (2.15)

This immediately allows us to conclude,
P( f ) − P(l) = P(τ) > 0 (2.16)

with equality if and only if l = f �

In other words, the function l is expressed as a linear combination of the basis functions,l(t) =
∑n

j=1 N j(t)θ j, where

N1, . . . ,Nn are the natural spline basis functions:

N1(t) = 1,
N2(t) = t,

Nk+2(t) =
(t − tk)3

+ − (t − tn)3
+

tn − tk
−

(t − tn−1)3
+ − (t − tn)3

+

tn − tn−1
, k = 3, 4, . . . , n − 2.

Writing N ∈ Rn×n with Ni j = N j(ti), and ΩN ∈ Rn×n with Ωi j =
∫

N′′i (t)N′′j (t)dt, the minimization problem over l now
becomes a minimization problem over θ = (θ1, . . . , θn)T ∈ Rn:

θ̂λ = argmin
θ∈Rn

(y − Nθ)T (y − Nθ) + λθTΩNθ. We can solve for θ, thus,(
yT − θTNT

)
(y − Nθ) + λθTΩNθ

yT y − yT Nθ − θTNTy + θTNTNθ + λθTΩNθ

yT y − 2θTNTy + θTNTNθ + λθTΩNθ

∂

∂θ

(
yT y − 2θTNTy + θTNTNθ + λθTΩNθ

)
= 0

−2NTy + 2NTNθ + 2λΩNθ = 0
2NTNθ + 2λΩNθ = 2NTy

NTNθ + λΩNθ = NTy

θ
(
NTN + λΩN

)
= NTy

θ̂ =
(
NTN + λΩN

)−1
NTy (2.17)

Since l (t) =
∑n

j=1 Nl (t) θ, from equation (2.17)

l̂ (λ) = N
(
NTN + λΩN

)−1
NTy (2.18)

From equation (2.18), we represent the smoother matrix S λ = N
(
NTN + λΩN

)−1
NT Hence l̂ (λ) = S λy. By the Reinsch

(1967) form, for a smoothing spline is by manipulating the singular value decomposition (SVD) of N = UZVT, we can
rewrite Sλ as

S λ = N
(
NTN + λΩN

)−1
NT

= UZVT
((

UZVT
)T

UZVT + λΩN

)−1 (
UZVT

)T

= UZVT
((

VZUT
)

UZVT + λΩN
)−1 (

VZUT
)

= UZVT
(
VZUTUZVT + λΩN

)−1
VZUT

=
(
UZ−1VTVZUTUZVTVZ−1UT + λUZ−1VTΩNVZ−1UT

)−1

= (I + λK)−1 (2.19)

where K = UT Z−1VTΩNVZ−1U and depends only on the t′i s and nothing else.
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2.3 Selecting the Smoothing Parameter and Model Diagnostics

In this section, we discuss various data driven criteria for selecting λ in fitting criterion (2) conditional on the value of
K: Akaike’s information criterion corrected (AICc), Bayesian information criterion (BIC), Cross-Validation(CV) and
Generalized Cross-Validation (GCV) criterion. Each of these data driven criteria provides an approach to select the value
of λ conditional on the number of knots, and each criterion is a function of λ. For the AICc, BIC, CV, and GCV criteria,
the value of λ that gives the minimum value of the criteria is taken to be a good value for the smoothing parameter
conditional on the value of K. Each of these methods is dependent on the sum of squares error,

S S E(λ) =

n∑
i=1

(Yi − l̂(ti, λ))2 (2.20)

Ruppert et al. (2003) The procedure explained by Ruppert et al. (2003)using a Demmler-Reinsch Orthogonalization to
compute our fitted values for each smoothing parameter value is adopted in this study. This is accomplished using the
identity

S S E(λ) = yT y − 2yT l̂λ + l̂T l̂λ (2.21)

The Demmler-Reinsch Orthogonalization is explained below Ruppert et al. (2003). Assumed that

l̂λ = N(NT N + λΩN)−1NT y (2.22)

• The Procedure

1. Obtain matrix R using the Cholesky decomposition: NT N = RT R.

2. Use Singular Value Decomposition(SVD)on the symmetric matrix R−T ΩNR−1 to obtain Udiag(s)UT .

3. Compute A and b as follows: A ≡ NR−1U and b = AT y.

4. The fitted values, l̂λ, are l̂λ = A
(

b
1 + λs

)
, where s is from the singular value decomposition.

5. The degrees of freedom, d f f it(λ), is, d f f it(λ) = 1T
(

1
1 + λs

)

The cross-validation criterion is

min
λ

CV(λ) = n−1
n∑

i=1

{
Yi − l̂(−i)(ti; λ)

}2
(2.23)

The CV method is also known as the leave- one-out method. The value of λ that gives the minimum CV score is taken to
be a good choice for the smoothing parameter. If a smoother matrix exists,then the CV formula Silverman (1985) may be
expressed as

CV(λ) =

n∑
i=i

(
Y − l̂(ti)
1 − S ii

)2

(2.24)

Where S ii denotes the ith diagonal element of S λ, defined as

S λ = N(N′N + λΩN)−1N′ (2.25)

and l̂(ti)is the spline smoother with λ. Akaike’s information criterion corrected, AICc, was introduced by Hurvich et al.
(1998) because the commonly used Akaike’s information criterion Eubank (1999) may have a tendency to over-fit the
curve estimate for small samples. The AICc criterion may be expressed as

AICc(λ) = ln(n−1S S E(λ)) +
2(d f (λ) + 1)
n − d f (λ) − 2

(2.26)

The BIC criterion Schwarz et al. (1978) may be defined as,

BIC(λ) = ln(n−1S S E(λ)) +
(d f (log n)d f (λ)

n
(2.27)
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where d f (λ)=tr(S λ) which is similar to AICc but penalizes a model fit with a larger d f (λ) more strongly than the AICc
for large n.

Developed by Craven and Wahba (1979),Generalized cross-validation (GCV) may be defined by

min
λ

GCV(λ) = n−1

n∑
i=1

(
Yi − l̂(ti)

)2

{
1 − n−1trS (λ)

}2 (2.28)

To compare the proposed model, the mean squared error,predictive squared error, Mallow’s Cp measures will be employed.
Given that our model is defined as

y = µ + ε (2.29)

we assume that E (y) = µ. The vector µ = (µ1, . . . , µn) is the spline function and evaluated at the design model µi = l (ti)
and the components of the error vector ε are normally with mean zero and σ2 < ∞. Since l̂ (λ) = S λy, then its expectation
is

E
(
l̂ (λ)

)
= E (S λy) = S λE (y) = S λµ (2.30)

2.4 Bias of the Estimator

Let bλ be bias of the estimator, then

bλ = E
(
l̂ (λ)

)
− µ = S λE (y) − µ = S λµ − µ = (S λ − I) µ (2.31)

2.5 Variance of the Estimator

The variance of y is the same as ε, that is,
Var (y) = σ2 (2.32)

Var
(
l̂ (λ)

)
= Var (S λ (y)) = S T

λVar (y) S λ = σ2S λS T
λ (2.33)

Note that the variance of the residual vector is given as

Var
(
y − l̂ (λ)

)
= Var (y − S λy)

= Var
[
(I − S λ) y

]
= σ2 (I − S λ) (I − S λ)T

= σ2
(
I − S λ − S T

λ + S λS T
λ

)
(2.34)

2.6 The Variance Estimate, σ̂2

To estimate the variance, σ2,in case of regression, we divide the residual sum of squares ||y − l̂ (λ) ||2 =

n∑
i=1

(
y − l̂ (λ)i

)
by

the degrees of freedom for the error to obtained an unbiased estimator of σ2. We need the expectation of the residual sum
of squares. For any random variable, W,

Var (W) = E
(
W2

)
− (E (W))2

Thus
E

(
W2

)
= Var (W) + (E (W))2

Using this, with W = yi − S λyi

E (W) = bλ,i, is it bias

Var (W) = σ2
(
I − S λ − S T

λ + S λS T
λ

)
The sum of the diagonal elements of a matrix is called its trace. A trace of a matrix A = tr (A)

E
{
||y − l̂ (λ) ||2

}
= σ2tr

(
I − S λ − S T

λ + S λS T
λ

)
+ bT

λ bλ

= σ2
(
n − 2tr (S λ) + tr

(
S λS T

λ

))
+ bT

λ bλ

The estimate of σ2 is to divide the MS E by the degrees of freedom given s

d ferr = n − 2tr (S λ) + tr
(
S λS T

λ

)
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Then

σ̂2 =
||y − l̂ (λ) ||2

d ferr

is our biased estimate of σ2. Generally, σ̂2 over estimates σ2 due to fact that its bias, bT
λ bλ/d ferr is necessarily non-

negative.

3. Performance Criteria

3.1 Mean Squared Error

The mean Squared Error of the estimator, l̂λ (t) is

MS E
(
l̂λ (t)

)
= E

{(
l̂λ (t) − l (t)

)2
}

(3.1)

Remark 1. MSE is variance plus the biased squared, but the bias is as

bλ (t) = E
(
l̂ (λ)

)
− l (t)

Then the Mean squared error

MS E
(
l̂λ (t)

)
= E

{(
l̂λ (t) − l (t)

)2
}

= E
{[

l̂λ (t) − E
(
l̂λ (t)

)
+ bλ (t)

]2
}

= E
{[(

l̂λ (t) − l (t) − bλ (t)
)

+ bλ (t)
]2
}

= E
{[(

l̂λ (t) − l (t) − bλ (t)
)2

+ 2bλ (t)
(
l̂λ (t) − l (t) − bλ (t)

)
+ (bλ (t))2

]}
= E

{(
l̂λ (t) − l (t) − bλ (t)

)2
}

+ 2bλ (t) E
(
l̂λ (t) − l (t) − bλ (t)

)
+ E (bλ (t))2

From Remark (1)

bλ (t) + l (t) = E
(
l̂ (λ)

)
MS E

(
l̂λ (t)

)
= E

{[
l̂λ (t) − E

(
l̂λ (t)

)]2
}

+ bλ (t)2

= Var
(
l̂λ (t)

)
+ bλ (t)2

3.2 The Predictive Squared Error

The predictive Squared Error of the estimator,l̂λ (t) is defined as

PS E (λ, t) = E
{(

y ∗ −l̂λ (t)
)2
}

where y∗ is a new response value associated with the predictor,(”new” here means not of one of the ”old” values used in
the estimation of the l̂λ (t)). There is a direct relationship between the PS E and MS E of the estimator.

PS E (λ, t) = E
{(

y ∗ −l̂λ (t)
)2
}

= E
{(

y ∗ −l (t) + l (t) − l̂λ (t)
)2
}

= E
{[

(y ∗ −l (t)) +
(
l (t) − l̂λ (t)

)]2
}

= E
{
(y ∗ −l (t))2 + 2 (y ∗ −l (t))

(
l (t) − l̂λ (t)

)
+

(
l (t) − l̂λ (t)

)2
}

= E
{
(y ∗ −l (t))2

}
+ 2E (y ∗ −l (t))

(
l (t) − l̂λ (t)

)
+ E

(
l (t) − l̂λ (t)

)2

= E
{
(y ∗ −l (t))2

}
+ 0 + E

(
l (t) − l̂λ (t)

)2

= E
{
(y ∗ −l (t))2

}
+ E

(
l (t) − l̂λ (t)

)2

= σ2 + MS E (λ, t)
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To obtain a uniform criterion of performance, we averaged the MS E and PS E over the observed observations as

MS E (λ) =
1
n

n∑
i=1

MS E (λ, ti)

=
1
n

n∑
i=1

Var
(
l̂λ (ti)

)
+

1
n

n∑
i=1

bλ (ti)2

=
tr

(
Var

(
l̂λ (ti)

))
n

+
bT
λ bλ
n

=
σ2tr

(
S λS T

λ

)
n

+
bT
λ bλ
n

and

PS E (λ) = σ2 +
σ2tr

(
S λS T

λ

)
n

+
bT
λ bλ
n

= σ2

1 +
tr

(
S λS T

λ

)
n

 +
bT
λ bλ
n

3.3 Mallow’s Cp

A very bad approximation of the PS E (λ) is the average squared residual

AS R (λ) =
1
n

n∑
i=1

(
yi − l̂ (λ)

)2
=
||y − ŷλ||2

n

the expectation is

E (AS R (λ)) =
σ2

(
n − 2tr (S λ) + tr

(
S λS T

λ

))
+ bT

λ bλ
n

= σ2

1 − 2tr (S λ)
n

+
tr

(
S λS 2

λ

)
n

 +
bT
λ bλ
n

= PS E (λ) − σ2 (3.2)

Hence

Cp (λ) = AS E (λ) + σ̂2 2tr (S λ)
n

(3.3)

is a sensible estimate of the predictive squared error.

3.4 Asymptotic Properties of Penalized Spline Estimator

In studying the theoretical properties of the penalized spline estimator as the minimizer of the (2.9) , we considered the
average mean squared error (AMSE) and the asymptotic bias and variance of the model. In addition, we also deliberate
on the optimum choice of the smoothing parameter. Asymptotic properties of the penalized spline estimator are discussed
under subsection 3.4, subsection 3.5 Average mean squared error of the estimator and Asymptotic of the variance and the
bias in subsection 3.6.

See Zhou et al. (1998) for asymptotic properties of the regression spline estimator and we adopt the following assumptions.

Assumption 1. let δ = max0≤ j≤K

(
κ j+1 − κ j

)
. There exist a constant M > 0, such that δ/min0≤ j≤K

(
κ j+1 − κ j

)
≤ M and

δ = o
(
K−1

)
.

Assumption 2. For deterministic designs points yt ∈ [a, b], t = 1, . . . n, assume that there exists a distribution function
Q with corresponding positive continuous design density ρ such that, with Qn the empirical distribution of y1, . . . , yn

supy∈[a,b] |Qn(y) − Q(y)| = o(K−1).

Assumption 3. The number of knots K = o (n)
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The asymptotic bias and variance for the regression splines are obtainable from Zhou et al. (1998) as

E
[
l̂reg (yt)

]
− l (yt) = ba (yt; p + 1) + o

(
δp+1

)
Var

[
l̂reg (yt)

]
=
σ2

n
N (yt) G−1NT (yt) + o

{
(nδ)−1

}
where

ba (yt; p + 1) = −
l(p+1) (yt)
(p + 1)!

K∑
j=0

I[κ j,κ j+1) (yt)
(
κ j+1 − κ j

)p+1
Bp+1

(
yt − κ j

κ j+1 − κ j

)
(3.4)

and

G =

∫ b

a
NT (yt) N (yt) ρyt dx (3.5)

given that Bp+1 (.) is the (p + 1) th Bernoulli polynomial see Abramowitz and Stegun (1972)

3.5 Average Mean Squared Error of the Estimator

Agreeing to Demmler and Reinsch (1975), it is possible to express the average bias and variance in terms of the eigenvalues
having been obtained from the singular value decomposition.

(N tN)−1/2Dq(N tN)−1/2 = Udiag(s)UT (3.6)

where U is the matrix of vectors and s is the vector of eigenvalues s j. Representing A = N(N tN)−1/2U. Forming a
semi-orthogonal matrix with AtA = [N(N tN)−1/2U]t[N(N tN)−1/2U], simplified as AtA = IK+p+1 and AAt = N(N tN)−1N t.
Where AAt is express as [N(N tN)−1/2U][N(N tN)−1/2U]t Rewriting the penalized spline estimator, l̂ = N(N tN+αDq)−1N tY
as

l̂ = A
{
In + αdiag(s)

}−1 AtY (3.7)

=
{
In + Aαdiag(s)At

}−1
AAtY

=
{
In + Aαdiag(s)At

}−1
l̂reg (3.8)

We obtain the AMS E as

AMS E(l̂) =
1
2

E
{
l̂ − l

}t {
l̂ − l

}
=
σ2

n

K+p+1∑
j=1

1
(1 + αs j)2 +

α2

n

K+p+1∑
j=1

s2
jb

2
j

(1 + αs j)2 +
1
n

lt(In − AAt)l (3.9)

where AAtl = E(l̂reg), l = {l(t1) . . . l(tn)}t ,b = Atl with components b j and AAt an Idempotent matrix, obtaining

AMS E(l̂) =
σ2

n

K+p+1∑
j=1

1
(1 + αs j)2 +

α2

n

K+p+1∑
j=1

s2
jb

2
j

(1 + αs j)2 +

1
n

n∑
j=1

[
E

{
l̂reg(t j)

}
− l(t j)

]2
(3.10)

From AMS E equation (3.10) the first term is the average variance while the second term is the average squared bias
(shrinkage) as a result of penalization and the third term is the average squared approximation bias.

Let define
Kq = (K + p + 1 − q)(αc1)1/(2q)n−1/(2q) (3.11)

Theorem 3.1. Under Assumptions 1-3, we consider two asymptotic cases: (i) if Kq < 1 and l(.) ∈ Cp+1[a, b], then

AMS E(l̂) = O(
K
n

) + O(
α2

n2 K2q) + O(K−2(p+1))
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where K ∼ C1n1/(2p+3), with C1 a constant, α = O(nγ) with γ 6 (p + 2− q)/(2p + 3), the penalized spine estimator attains
the optimal rate of convergence for l ∈ Cp+1[a, b] with AMSE(l̂) = O(n−(2p+2)/(2p+3)). (ii)if Kq > 1 and l ∈ Wq[a, b]

AMS E(l̂) = O(
n1/(2q−1)

α1/(2q) ) + O(
α

n
) + O(K−2(q))

and for α = O(n1/(2q+1)), such that αn2q−1 → ∞ and K ∼ C2nv with v > 1/(2q + 1) and C2 a constant, the penalized spline
estimator attains the optimal rate of convergence for l ∈ Wq[a, b] with AMSE(l̂) = O(n−2q/(1+2q))

Considering case (i) with Kq < 1 the result we obtained is similar to the regression splines. In this case, the AMSE
is determined by the squared approximation bias and the mean asymptotic variance. Thus the smaller the smoothing
parameter, α, the insignificant the shrinkage bias is, that is γ < (p + 2 − q)/(2p + 3) with the asymptotically optimal
number of knots having same order as the regression splines, that is K ∼ C1n1/(2p+3). We also notice in the case(ii) with
Kq > 1 that this result obtained is similar to the smoothing spline. Where AMSE in this case is dominated by the squared
shrinkage bias and average asymptotic variance. The mean squared approximation bias has the same order as that of the
shrinkage bias for Kq = 1 and is negligible order for Kq > 1. The results suggest that convergence rate for the penalized
spline estimator is much faster in the case (i) where Kq < 1 relying on the assumption that q 6 p.

3.6 Asymptotic of the Variance and the Bias

Theorem 3.2. Under Assumptions 1-3, we derive the Asymptotic of the Variance and the Bias under following two cases:
(i) If Kq < 1 and l(.) ∈ Cp+1[a, b], then

Var
{
l̂(t)

}
=
σ2

n
N(t)(G + αDq/n)−1G(G + αDq/n)−1N t(t) + o

{
(nδ)−1

}
Giving that,

E
{
l̂(t)

}
− l(t) = ba(t; p + 1) + bα(t) + o(δp+1) + o(αn−1δ−q)

(ii)If Kq > 1 and l ∈ Wq[a, b]

Var
{
l̂(t)

}
=
σ2

n
N(t)(G + αDq/n)−1G(G + αDq/n)−1N t(t) + o

(
(n−1(δ/n)−1/2q

)
Where,

E
{
l̂(t)

}
− l(t) = ba(t; q) + bα(t) + o(δq) + o

{
(α/n)1/2

}
The shrinkage bias bα is defined as bα(t) = −αn−1N(t)(G + αDq/n)−1Dqβ, where G and β are define as in Zhou et al.
(1998).

Proof. See proof of of Theorem (3.1) and Theorem (3.2) in Claeskens et al. (2009) �

4. Simulation, Analysis, Results and Discussion

4.1 Simulation Studies

A climate data (indicator) was generated using simulation method to measure strength of our proposed modeling adequacy.
We anticipate the climate or whether signal may have composed of different components, namely, trend, periodicity as
well as stochastic patterns.
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Figure 1. Time plot of the components of the climate indicator

The Figure1 show the time plot exhibiting an increasing trend and seasonal components. The highly oscillatory nature
of simulated signal requires the use of nonlinear functions such as the splines functions to model it, since the traditional
model might fail with mis-specified function form of the model.

In Figure 2a, using a spline function to estimate the function for varying order k with a fixed number of m = 8 inner
equidistant knot. For k = 1 the function consists of horizontal straight lines with jumps at the knots and for k > 2 indicates
a smooth function but the orders cannot well be distinguished visually anymore. In contrast,Figure 2b shows the curves for
polynomials of degreep = 3, · · · , 12. The curves are characterized with degrees of fluctuations and for higher values of p,
the polynomial curves exhibit an oscillatory form. Also, in Figure 2c, the curve is estimated using Penalized splines with
m = 20 equidistant inner knots and varying smoothing parameter values. Figure 2d shows the plot of selected smoothing
parameter for simulated data for the penalized spline function. While Figure 2e represents the smoothing with k = 4 and
varying values of λ. Figure 2f shows the plot of selected smoothing parameter for simulated data for the smoothing spline
function.
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(a) Spline functions with 8 equidistant inner knots and different orders
k = 1, · · · , 6

(b) A polynomial function fitting the simulated temperature with different
orders p = 3, · · · , 12.

(c) Penalize spline functions of order k = 4 with 20 equidistant inner knots
and varying values forλ.

(d) Smoothing parameter λ vs. resulting selection criteria for Penalized
spline function of order k = 4 with 20 equidistant inner knots.

(e) Smoothing spline functions of order k = 4 with varying values for λ. (f) Smoothing parameter λ vs. resulting selection criteria for smoothing
spline function of order k = 4

Figure 2. Simulation of Temperature data
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4.2 Application to Real data

This study used a secondary data on average monthly temperature from the World Bank Climate Change Knowledge
Portal (CCKP), an online tool that provides access to comprehensive global and country data information related to
climate change and development on temperature of Ghana for period 1901 to 2016. The open source R.3.5.2 version is
employed in analyzing the data.

4.2.1 Results and Discussion

The Figure3 below comprises panels 3a-3h representing different spline function of different orders, number of knots
and smoothing parameter λ. From Figure 3a shows the time series plots of the average monthly temperature exhibiting
irregular oscillations and increasing trend. It is also, observed in Figure 3b that, using a spline function to estimate the
function for varying order k with a fixed number of m = 8 inner knots in an equidistant knot sequence. For k = 1 the
function consists of horizontal straight lines with jumps at the knots and for k = 2 the curve is constructed from straight
lines with non-zero slopes which are continuously connected. For k = 3 and k = 4 the quadratic and cubic pieces can be
observed but for k > 5 the orders cannot well be distinguished visually anymore. In contrast,Figure 3c shows the curves
for polynomials of degreep = 3, · · · , 12. The curves is characterized with degree of fluctuations and for higher values of
p, the polynomial curves exhibit an undesirable behavior by oscillating more and more especially at the end point. Also,
in Figure 3d, the curve is estimated using Penalized splines with m = 20 equidistant inner knots and varying smoothing
parameter values. Figure 3e shows the plot of selected smoothing parameter for data under considerations. With the
selected smoothing parameters in Figure 3g, the B-spline, the penalized spline and smoothing splines were used to fit data
in Figure 3h.

The performance criteria of fitted models are presented below based on MSE,PSE, and ASR taken into account the
influence of the smoothing parameter, position and the number of knots as in the theoretical studies shown in section 3
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(a) A Time Series Plot of the Average Monthly Temperature (b) Spline functions with 8 equidistant inner knots and different orders
k = 1, · · · , 6

(c) A polynomial function fitting the average monthly temperature data
with different orders p = 3, · · · , 12.

(d) Penalize spline functions of order k = 4 with 20 equidistant inner knots
and varying values forλ.

(e) Smoothing parameter λ vs. resulting selection criteria for Penalized
spline function of order k = 4 with 20 equidistant inner knots. (f) Smoothing spline functions of order k = 4 with varying values for λ.

(g) Smoothing parameter λ vs. resulting selection criteria for smoothing
spline function of order k = 4

(h) Fitted functions from B − spline(k = 4,m = 8, equidistant knots),
P − spline(k = 4,m = 20, equidistant knots, λ = 0.06) and smoothing spline

(k = 4, λ = 6)

Figure 3. Fitting of the Average Monthly Temperature data
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Table 1. Model performance measures

Function Variance MSE PSE ASR Cp
B-spline (k = 4,m = 8, equidistant knots) 13.43152 2.254234 4.588284 2.234756 2.256641
P-spline (k = 4,m = 20, equidistant knots, λ = 0.06) 47.89018 2.215432 4.549482 2.180061 2.249155
Smoothing spline (k = 4, λ = 6) 544.045 1.454607 3.788657 0.712444 1.139812

From Table(1), the model performance measures for B-spline, Penalized spline and the Smoothing spline functions fitted
to temperature data. The three spline functions perform fairly comparable, particularly the B-spline function and Penalized
spline curves with suitably selected values for λ using the CV and GCV criteria. Largely, the specifications for the three
curves seem all well chosen to represent the average monthly temperature for Ghana.

5. Conclusion

Considering the average monthly temperature data characterized by nonlinear the trend, seasonal and periodic compo-
nents, the study proposed a penalized spline model. The study compared the B-spline, Penalized spline and the smoothing
spline which in all cases with the appropriate determination of the smoothing parameter adequately fit the average monthly
temperature for Ghana.
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