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Abstract

We propose a new method for estimating an unknown regression function f∗ : [α, β]→ R from a dataset (X1,Y1), . . . , (Xn,
Yn) when the only information available on f∗ is the fact that f∗ is convex and twice differentiable. In the proposed method,
we fit a convex function to the dataset that minimizes the sum of the roughness of the fitted function and the average
squared differences between the fitted function and f∗. We prove that the proposed estimator can be computed by solving
a convex quadratic programming problem with linear constraints. Numerical results illustrate the superior performance
of the proposed estimator compared to existing methods when i) f∗ is the price of a stock option as a function of the strike
price and ii) f∗ is the steady-state mean waiting time of a customer in a single server queue.

Keywords: convexity regression, penalizes least squares, nonparametric regression, constrained smoothing, convex
smoothing, smoothing splines

1. Introduction

In this paper, we propose a new method for estimating an unknown regression function f∗ : [α, β] → R from a dataset
(X1,Y1), · · · (Xn,Yn), satisfying α < X1 < · · · < Xn < β and Yi = f∗(Xi) + εi for 1 ≤ i ≤ n and some error terms
(εi : 1 ≤ i ≤ n), when the only information available on f∗ is the fact that f∗ is convex and twice differentiable.

In many applications, the unknown regression function f∗ is not assumed to have any particular functional form, but is
known to have certain shape characteristics, such as convexity, twice differentiability, or both. For example, the price of a
call option is known to be a twice differentiable convex function as a function of the option’s strike price; see Section 2
of Aı̈t-Sahalia and Duarte (2003) for details. In such a setting, incorporating both shape restrictions, convexity and twice
differentiability, on the estimator of f∗ seems to be a natural step to follow.

When f∗ is only known to be convex, an intuitive way to estimate f∗ is to fit a convex function f minimizing the average
of squared errors

∑n
i=1(Yi − f (Xi))2/n. This estimator can be found by solving the following problem:

Minimize
1
n

n∑
i=1

(Yi − f (Xi))2 (1)

Subject to f is convex,

which is equivalent to the following finite-dimensional quadratic programming problem in the decision variables f (X1),
· · · , f (Xn):

Minimize
1
n

n∑
i=1

(Yi − f (Xi))2 (2)

Subject to ( f (X2) − f (X1))/(X2 − X1) ≤ · · · ≤ ( f (Xn) − f (Xn−1))/(Xn − Xn−1);

see Hildreth (1954) for details. The solution to (2) is referred to as the “convex regression estimator,” and is typically not
smooth, but piecewise linear.

On the other hand, when f∗ is only known to be smooth enough to be twice differentiable, one can notice that the roughness
of f∗ can be measured by

∫ β

α

{
f (2)
∗ (x)

}2
dx, where f (2)

∗ denotes the second derivative of f∗. We can then estimate f∗ by
finding the solution to

Minimize f∈F
1
n

n∑
i=1

(Yi − f (Xi))2 + λ

∫ β

α

{
f (2)(x)

}2
dx (3)
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for some positive constant λ, where

F =
{
f is differentiable on [a, b] and has absolutely continuous first derivative

}
.

It should be noted that f ∈ F if and only if f is differentiable everywhere on [α, β] with derivative f (1) and there is
an integrable function f (2) such that

∫ x
α

f (2)(t)dt = f (1)(x) − f (1)(α) for all x ∈ [α, β]. The first term in (3) is called the
goodness-of-fit term, and measures how close the fitted function f is to the dataset (X1,Y1), · · · , (Xn,Yn), while the second
term in (3) is called the roughness term, and measures how “wiggly” f is. There is a trade-off between the goodness-of-fit
and roughness terms because as the function f gets close to the data points, its roughness increases. The constant λ
appearing in (3) is called the smoothing constant, and makes a balance between the goodness-of-fit and roughness terms.
The solution to (3) is called the penalized least squares estimator of f∗ and can be computed by solving a system of linear
equations; see, for example, Theorem 2.4 on page 19 of Green & Silverman (1994).

The convex regression estimator and the penalized least square estimator only incorporate one of the shape characteristics
of f∗; the former incorporates convexity only, while the latter incorporates twice differentiability only. In many settings,
f∗ is known to be both convex and twice differentiable, and hence, one wishes to incorporate both convexity and twice
differentiability into an estimator of f∗. With this goal in mind, our proposed estimator is motivated as follows. Since f∗
is twice differentiable, the solution to (3) provides a twice differentiable estimator of f∗, which is not necessarily convex.
We notice that the solution f̂n to (3) exists uniquely and has the following properties:

P1. f̂n is twice continuously differentiable,

P2. f̂n is a polynomial of degree 3 on [Xi−1, Xi] for 2 ≤ i ≤ n, and

P3. f̂n is a polynomial of degree 1 on [α, X1] and [Xn, β];

see, for example, Green & Silverman (1994) or Exercise 5.7 of Hastie et al. (2009). A function satisfying P1, P2, and P3
is called a natural spline of degree 3. In particular, f̂n can be represented as

f̂n(x) = a0 + a1x +

n∑
i=1

bi(x − Xi)3
+

for some constants a0, a1, b1, · · · , bn ∈ R and x ∈ [α, β], where x+ , max(0, x) for x ∈ R; see, for example, page 3 of
Greville (1969).

Inspired by this, we consider the following variation of (3):

Minimize f∈G
1
n

n∑
i=1

(Yi − f (Xi))2 + λ

∫ β

α

{
f (2)(x)

}2
dx, (4)

where

G = {g : [α, β]→ R such that g(x) = a0 + a1x +

n∑
i=1

bi(x − Xi)3
+ for some a0, a1, b1, · · · , bn ∈ R}.

Additionally, when f∗ is known to be convex, i.e., f (2)(x) ≥ 0 for all x ∈ [α, β], we can incorporate the convexity
requirement by modifying (4) as follows:

Minimize f∈G
1
n

n∑
i=1

(Yi − f (Xi))2 + λ

∫ β

α

{
f (2)(x)

}2
dx (5)

Subject to f (2)(x) ≥ 0 for all x ∈ [α, β].

Problem (5) appears to have an infinite number of constraints. However, one can realize that for any f ∈ G, f (2) is linear
over [Xi−1, Xi] for i = 2, · · · , n, [a, X1], and [Xn, b]. Hence, the condition f (2)(x) ≥ 0 for x ∈ [α, β] can be replaced by
f (2)(α) ≥ 0, f (2)(Xi) ≥ 0 for 1 ≤ i ≤ n, and f (2)(β) ≥ 0. We can therefore suggest the following formulation, which is
equivalent to (5):

Minimize f∈G
1
n

n∑
i=1

(Yi − f (Xi))2 + λ

∫ β

α

{
f (2)(x)

}2
dx (6)

Subject to f (2)(α) ≥ 0
f (2)(Xi) ≥ 0, 1 ≤ i ≤ n

f (2)(β) ≥ 0
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Proposition 1 in Section 2 establishes that Problem (6) can be converted to a finite-dimensional convex quadratic program-
ming problem. The solution ĝn to Problem (6) is our proposed estimator of f∗. Figure 1 displays instances of the convex
regression estimator, the penalized least squares estimator, and the proposed estimator when f∗(x) = x2 for x ∈ [0, 1] and
Yi = f (Xi) + εi for 1 ≤ i ≤ n, where the εi’s are independent and identically distributed (iid) normal random variables
with a mean of 0 and a standard deviation of 0.5. Figure 1 shows that the convex regression estimator is not smooth, the
penalized least squares estimator is not convex, but the proposed estimator is both convex and smooth.

Proposition 1 in Section 2 ensures that the proposed estimator ĝn exists always and can be found by solving a con-
vex quadratic programming problem with linear constraints. There exist numerous algorithms that can solve a convex
quadratic programming problem in polynomial time; see, for example, Ye & Tse (1984). Thus, Proposition 1 provides a
framework that enables us to compute the proposed estimator with numerical efficiency. The numerical results in Section
3 demonstrate that ĝn converges to f∗ as n→ ∞, thereby justifying the consistency of the proposed estimator numerically.
They also indicate that ĝn shows superior performance compared to the convex regression estimator and the penalized
least squares estimator.

The problem of enforcing the smoothness condition to the shape constrained estimators has received a considerable
amount of attention in the literature. However, most work in the literature has focused on incorporating monotonicity
and smoothness conditions (Mammen (1991), Hall and Huang (2001), Mammen et al. (2001), Du et al. (2013), Li et al.
(2017), Sysoev and Burdakov (2019), and Yagi et al. (2020)). When incorporating convexity and smoothness conditions,
most work has proposed methods for the case where f∗ is both convex and monotone, and these methods cannot be easily
generalized to the case where f∗ is convex and not necessarily monotone, because they used basis functions that are both
monotone and convex (Dole (1999) and Meyer (2008)). A number of researchers considered the case where f∗ is convex
and not necessarily monotone, but their methods are two-step procedures, in which the first step computes the smoothed
version of the Yi’s using nonparametric smoothing methods, and the second step finds the shape restricted estimator of the
smoothed Yi values; see, for example, Mammen and Thomas-agnan (1999). Aı̈t-Sahalia and Duarte (2003) also consider
a two-step procedure, in which the first step computes a shape restricted estimator, and the second step smoothes the
shape restricted estimator using local polynomial regression. In our proposed method, we propose an estimator for a
smooth convex function f∗ that is not necessarily monotone. Our method uses a single-step, in which convexity and
smoothness are incorporated simultaneously. In the numerical experiments conducted in Section 3, we compared our
proposed estimator to an estimator computed from a two-step procedure, and observed that the proposed estimator shows
superior performance. To our knowledge, this paper is the first to incorporate the convexity condition directly into the
framework of the penalized least squares estimator in order to estimate a smooth convex function.

The rest of this paper is organized as follows. Section 2 establishes that the proposed estimator can be computed by
solving a convex quadratic programming problem. The numerical performance of the proposed estimator is examined in
Section 3 in three settings: i) f∗ is a quadratic function, ii) f∗ is the price of a European call option as a function of the
strike price, and iii) f∗ is the steady-state mean waiting time of a customer in a single server queue as a function of the
service rate. Concluding remarks are included in Section 4.

2. Proposed Estimator

In this section, we establish Proposition 1, which proves that the solution to (6) exists and can be found by solving a convex
quadratic programming problem. In Proposition 1, we view vectors as columns, and write xT to denote the transpose of a
vector x.

Proposition 1 Suppose α < X1 < · · · < Xn < β. The solution ĝn to Problem (6) exists and can be represented as

ĝn(x) = â0 + â1x +

n∑
i=1

b̂i(x − Xi)3
+,

where (â0, â1), (b̂1, · · · , b̂n), and (ĝn(X1), · · · , ĝn(Xn)) is the solution to the following convex quadratic programming prob-
lem with the decision variables a = (a0, a1) ∈ R2, b = (b1, · · · bn) ∈ Rn, and y = (y1, · · · , yn) ∈ Rn:

Minimize
1
n

n∑
i=1

(Yi − yi)2 + λbT Qb (7)

Subject to A
[

a
b

]
= y

Bb ≥ 0n

cT b ≥ 0,
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Figure 1: The solid line in (a) is f∗(x) = x2 for x ∈ [0, 1] and the dots in (a) are Yi = f∗(Xi) + N(0, 0.52) for 1 ≤ i ≤ 20.
The dashed line on the left side of (b) is the convex regression estimator. The dashed line on the right side of (b) is the
penalized least squares estimator when λ = 0.0001. The dashed line in (c) is the proposed estimator, i.e., the solution to
(6), when λ = 0.0001.
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where 0n ∈ Rn is the vector of zeros in all entries, Q = (Qi j : 1 ≤ i, j ≤ n),

Qi j = Q ji = 36(β2/3 − (Xi + X j)β2/2 + XiX jβ) − 36(X3
j /3 − (Xi + X j)X2

j /2 + XiX2
j )

for i ≤ j,

A =



1 X1 0 0 0 · · · 0 0
1 X2 (X2 − X1)3

+ 0 0 · · · 0 0
1 X3 (X3 − X1)3

+ (X3 − X2)3
+ 0 · 0 0

...
...

...
...

... · · · ...
...

1 Xn (Xn − X1)3
+ (Xn − X2)3

+ (Xn − X3)3
+ · · · (Xn − Xn−1)3

+ 0


,

B = (Bi j : 1 ≤ i, j ≤ n),

Bi j =

{
6|Xi − X j|, if i ≤ j
0, otherwise,

and c = (6|β − Xi| : 1 ≤ i ≤ n).

Proof. For any f (x) = a0 + a1x +
∑n

i=1 bi(x − Xi)3
+ ∈ G, let yi = f (Xi) for 1 ≤ i ≤ n and ϕi : [α, β] → R be defined by

ϕi(x) = (x − Xi)3
+ for x ∈ [α, β] and 1 ≤ i ≤ n. Then, we have ϕ(2)

i (x) = 6(x − Xi)+ and f (2)(x) =
∑n

i=1 biϕ
(2)
i (x). Also, we

have ∫ β

α

{
f (2)(x)

}2
dx =

n∑
i=1

n∑
j=1

bib j

∫ β

α

ϕ(2)
i (x)ϕ(2)

j (x)dx.

Thus, one can easily check

1
n

n∑
i=1

(Yi − f (Xi))2 + λ

∫ β

α

{
f (2)(x)

}2
dx =

1
n

n∑
i=1

(Yi − yi)2 + λbT Qb,


y1
...

yn

 =


f (X1)
...

f (Xn)

 = A
[

a
b

]
,

f (2)(α) = 0, f (2)(β) = cT b, and 
f (2)(X1)

...
f (2)(Xn)

 = Bb.

Hence, ĝn(x) = â0 + â1x +
∑n

i=1 b̂i(x − Xi)3
+ is a solution to Problem (6) if and only if (â0, â1), (b̂1, · · · , b̂n), and

(ĝn(X1), · · · , ĝn(Xn)) is a solution to Problem (7).

It remains to show that Problem (7) is a convex quadratic programming problem and that there exists a solution to Problem
(7). We will show that

1
n

n∑
i=1

(Yi − yi)2 + λbT Qb

is convex and coersive in (a, b, y) . First, note that Q is positive definite because

bT Qb =

∫ β

α

 n∑
i=1

biϕ
(2)
i (x)

2

dx ≥ 0

for all b ∈ Rn and bT Qb = 0 if and only if b = 0n. Hence, bT Qb is convex in b and

1
n

n∑
i=1

(Yi − yi)2 + λbT Qb

is convex in (a, b, y).

On the other hand, the positive definiteness of Q implies the coersiveness of bT Qb in b. So,

1
n

n∑
i=1

(Yi − yi)2 + λbT Qb
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is coersive in (b, y). The constraints f (X1) = y1 and f (X2) = y2 imply

a0 + a1X1 = y1

a0 + a1X2 + (X2 − X1)3
+b1 = y2,

and hence,

a0 + a1X1 = y1

a1(X2 − X1) + (X2 − X1)3
+b1 = y2,

follow. Thus, a2
1 → ∞ implies b2

1 + y2
2 → ∞, and a2

0 → ∞ implies a2
1 + y2

1 → ∞. Therefore,

1
n

n∑
i=1

(Yi − yi)2 + λbT Qb

is coersive in (a, b, y).

Since 1
n
∑n

i=1 (Yi − yi)2 +λbT Qb is coersive and continuous in (a, b, y), and the feasible region of Problem (7) is non-empty
(a = (0, 0), b = 0n, y = 0n is a feasible solution) and closed, the solution to Problem (7) always exists (see, for example,
Proposition 7.3.1 and Theorem 7.3.7 in pp 216 and 217 of Kurdila and Zabarankin (2005)), which completes the proof of
Proposition 1. 2

3. Numerical Results

In this section, we examine the numerical performance of the proposed estimator in three settings: i) f∗ : [0, 1] → R is
given by f∗(x) = x2 for x ∈ [0, 1], ii) f∗(x) is the price of a European call option when the strike price is x ∈ [0, 1], and iii)
f∗(x) is the steady-state mean waiting time of a customer in a single server queue when the service rate is x ∈ [1.2, 1.7].
In each of these settings, we compute the proposed estimator along with three competing estimators, i.e., the convex
regression estimator, the penalized least squares estimator f̂n, and an estimator ĥn that combines convex regression and
penalized least squares regression in a two-step procedure. To compute ĥn, we take the penalized least squares estimator
f̂n, which is a smooth estimator of f∗, and compute its convex regression estimator by solving (2) with the Yi’s replaced
by the f̂n(Xi)’s. The proposed estimator, the convex regression estimator, and the penalized least squares estimator are
computed by solving (7), (2), and (3). When solving the quadratic programming formulations (7) and (2), we use CVX
(Grant and Boyd (2014)), a software package designed to solve convex programs. When solving (3) and (7), we choose λ
using the cross validation method. In particular, to find λ in (3), we define f [k]

λ by the minimizer of

1
n

n∑
i=1,i,k

(Yi − f (Xi))2 + λ

∫ β

α

{
f (2)(x)

}2
dx

over f ∈ F . The cross validation function V(λ) is defined by

V(λ) =
1
n

n∑
k=1

(
Yk − f [k]

λ (Xk)
)2
,

and λ∗ is chosen as the minimizer of V(λ) over λ ∈
{
10−6, 10−4, 10−2, 1, 102, 104, 106

}
; see p. 47 of Wabha (1990) for

details. λ = λ∗ is used in (3) when computing the penalized least squares estimator. The smoothing parameter λ in (7) for
the proposed estimator is chosen in a similar fashion.

Numerical results in Sections 3.1, 3.2, and 3.3 indicate that the proposed estimator converges to the true function f∗ as
n→ ∞ and that the proposed estimator displays superior performance compared to other competing estimators.

We conducted all simulations using a 64-bit computer with an Intel(R) Core(TM) i7-6700K CPU at 4 GHz and a RAM of
32 GB, and programmed all simulations in MATLAB R2018a.

3.1 Stylized Model

We consider the case where f∗ : [0, 1] → R is defined by f∗(x) = x2 for x ∈ [0, 1], Xi = i/n − 1/(2n) for 1 ≤ i ≤ n, and
Yi = f∗(Xi) + εi for 1 ≤ i ≤ n, where the εi’s are iid normal random variables with a mean of 0 and a standard deviation of
0.15.

We generated ((Xi,Yi) : 1 ≤ i ≤ n), and computed the proposed estimator, the convex regression estimator, the penalized
least squares estimator, and ĥn. To measure the accuracy of the proposed estimator, we computed the empirical integrated
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mean square error (EIMSE) between the true function f∗ and the proposed estimator ĝn as follows:

1
n

n∑
i=1

(ĝn(Xi) − f∗(Xi))2 .

The EIMSE values for other competing estimators are computed in a similar fashion. We repeated this procedure 100
times independently, generating 100 copies of the EIMSE value for each of the estimators. Using these 100 copies, we
then computed the 95% confidence interval of the EIMSE value. The 95% confidence intervals are reported in Table 1 for
a variety of n values. The proposed estimator produces lower EIMSE values than other competing estimators.

Table 1. The 95% confidence intervals of the EIMSE values when f∗(x) = x2 for x ∈ [0, 1]

95% confidence interval of the EIMSE value for

Penalized least squares
n Proposed estimator Convex regression Penalized least squares + Convex regression

10 0.0060 ± 0.0010 0.0088 ± 0.0013 0.0069 ± 0.0011 0.0066 ± 0.0011
20 0.0034 ± 0.0004 0.0047 ± 0.0005 0.0038 ± 0.0005 0.0036 ± 0.0004
30 0.0022 ± 0.0003 0.0032 ± 0.0004 0.0025 ± 0.0003 0.0023 ± 0.0003
40 0.0020 ± 0.0003 0.0030 ± 0.0003 0.0022 ± 0.0003 0.0021 ± 0.0003
50 0.0014 ± 0.0002 0.0024 ± 0.0003 0.0016 ± 0.0003 0.0015 ± 0.0003
60 0.0012 ± 0.0002 0.0022 ± 0.0003 0.0013 ± 0.0002 0.0013 ± 0.0002

3.2 Call Option

We consider the case where f∗(x) is the price of a European call option with the strike price x ∈ (0, 1) when the current
price of the underlying stock is 0.5, the risk-free annual interest rate is 0.05, the stock price volatility is 0.3, and the time
to maturity of the option is 1 year. We set Xi = i/n − 1/(2n) for 1 ≤ i ≤ n. For each i ∈ {1, · · · , n}, we assumed that the
strike price of the option is Xi, generated a sample path (S t : 0 ≤ t ≤ 1) of a geometric Brownian motion up to time 1
with a drift of 0.05 and a volatility of 0.3, and computed the price of the option Yi by computing exp(−r) max(0, S 1 − Xi),
where S 1 is the value of the geometric Brownian motion we generated at time 1.

Using ((Xi,Yi) : 1 ≤ i ≤ n), we computed the proposed estimator, the convex regression estimator, the penalized least
squares estimator, ĥn, and their EIMSE values. The 95% confidence intervals of these EIMSE values, based on 100 iid
replications, are reported in Table 2 for a variety of n values. The proposed estimator produces lower EIMSE values than
other competing estimators.

Table 2. The 95% confidence intervals of the EIMSE values when f∗(x) is the price of a European call option with the
strike price x ∈ (0, 1)

95% confidence interval of the EIMSE value for

Penalized least squares
n Proposed estimator Convex regression Penalized least squares + Convex regression

10 0.0034 ± 0.0008 0.0044 ± 0.0009 0.0039 ± 0.0008 0.0038 ± 0.0008
20 0.0018 ± 0.0004 0.0027 ± 0.0006 0.0020 ± 0.0004 0.0019 ± 0.0004
30 0.0015 ± 0.0003 0.0021 ± 0.0004 0.0018 ± 0.0003 0.0016 ± 0.0003
40 0.0010 ± 0.0002 0.0017 ± 0.0004 0.0011 ± 0.0002 0.0011 ± 0.0002
50 0.0008 ± 0.0001 0.0013 ± 0.0002 0.0009 ± 0.0001 0.0008 ± 0.0001
60 0.0007 ± 0.0001 0.0011 ± 0.0002 0.0008 ± 0.0001 0.0007 ± 0.0001

3.3 M/M/1 Queue

We consider the case where f∗(x) is the steady-state mean waiting time of a customer in a single server first come/first
serve queue with infinite capacity buffer, unit arrival rate, and a service rate of x ∈ [1.2, 1.7] when the service times are iid
exponential random variables, and the interarrival times are iid exponential random variables. We set Xi = 1.2 + i/(2n) −
1/(4n) for 1 ≤ i ≤ n. For each i ∈ {1, · · · , n}, we computed the average of the waiting times of the first 500 customers
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arriving at the queue when the service rate is Xi and the queue is initialized empty and idle. We repeated this procedure
10 times independently, generated 10 averages, and set Yi equal to the average of the 10 averages.

Using ((Xi,Yi) : 1 ≤ i ≤ n), we computed the proposed estimator, the convex regression estimator, the penalized least
squares estimator, ĥn, and their EIMSE values. The 95% confidence intervals of these EIMSE values, based on 200 iid
replications, are reported in Table 3 for a variety of n values. The proposed estimator produces lower EIMSE values than
other competing estimators.

Table 3. The 95% confidence intervals of the EIMSE values when f∗(x) is the steady-state mean waiting time of a
customer in an M/M/1 queue

95% confidence interval of the EIMSE value for

Penalized least squares
n Proposed estimator Convex regression Penalized least squares + Convex regression

10 0.0350 ± 0.0052 0.0472 ± 0.0111 0.0405 ± 0.0054 0.0387 ± 0.0054
20 0.0220 ± 0.0028 0.0286 ± 0.0044 0.0250 ± 0.0030 0.0234 ± 0.0029
30 0.0190 ± 0.0022 0.0253 ± 0.0028 0.0215 ± 0.0023 0.0200 ± 0.0023
40 0.0160 ± 0.0016 0.0226 ± 0.0032 0.0180 ± 0.0017 0.0169 ± 0.0016
50 0.0148 ± 0.0014 0.0199 ± 0.0018 0.0162 ± 0.0015 0.0153 ± 0.0014
60 0.0134 ± 0.0013 0.0168 ± 0.0015 0.0147 ± 0.0014 0.0138 ± 0.0013

4. Conclusions

In this paper, we proposed a new method for estimating a smooth and convex regression function. The proposed estimator
can be easily computed by solving a convex quadratic programming problem and shows superior numerical performance
compared to existing estimators. Possible future research topics include establishing the consistency of the proposed
estimator as n→ ∞ and incorporating other shape restrictions, such as monotonicity, into the proposed estimator.
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