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Abstract 

The model of buffered simple structure is discussed as a method for modeling cross-loadings in confirmatory factor 

analysis. This method introduces assumptions from item sampling theory into confirmatory factor analysis. The 

independent clusters model, buffered simple structure, and Bayes estimation were compared by means of a simulation 

study based on three different population types. Population type A had zero cross-loadings, population type B had 

symmetrically distributed nonzero cross-loadings, and population type C had asymmetrically distributed nonzero 

cross-loadings. It turned out for population A that, although the independent clusters model yields the best loading 

estimate, it did not outperform Bayes estimation and buffered simple structure with respect to the factor 

inter-correlation estimate and model fit. One reason for this unexpected result could be that the specification of 

zero-cross loadings is suboptimal even when only sampling error introduces some cross-loadings. For populations B 

and C Bayes estimation and buffered simple structure clearly outperformed the independent clusters model. Overall, the 

results indicate that depending on the structure of cross-loadings in the population and depending on the focus on 

loading estimates or factor inter-correlation estimates, different modeling approaches might be appropriate. 

Keywords: bayes estimation, BSEM, confirmatory factor analysis, independent clusters model, simple structure  

1. Introduction 

Factor analysis is regularly performed, especially in order to find a measurement model for a set of variables and, more 

specifically, in the context of scale development. Simple structure has been proposed in order to facilitate the 

interpretation of the factor loadings (Thurstone, 1947). Simple structure implies that each factor is represented by some 

marker variables with large loadings and that the other variables have rather low loadings on the respective factor. A 

strong version of simple structure is the independent clusters model (ICM), which implies that there are some large, 

salient loadings and that the non-salient loadings are exactly zero. The ICM is investigated in the context of 

confirmatory factor analysis (CFA), where the non-salient loadings are fixed to zero while the loadings of the marker 

variables are freely estimated. The fit of the ICM to personality models has been questioned (McCrae, Zonderman, 

Costa, Bond, & Paunonen, 1996; Vassend & Skrondal, 1997) and consequences of possible misfit of the ICM for the 

evaluation of model fit (Raykov, 1998; Beauducel & Wittmann, 2005) as well as the usefulness of the ICM have been 

discussed (Marsh et al., 2009). 

Exploratory structural equation modeling (ESEM; Asparouhov & Muthén, 2009) may overcome some limitations of 

ICM. In ESEM exploratory factor analysis is combined with confirmatory path modeling. Therefore, ESEM does not 

propose a new or relaxed form of confirmatory factor modeling and suffers from rotational indeterminacy unless 

Target-rotation is performed or unless the exploratory factor model is used as a basis for further CFA as proposed by 

Marsh, Morin, Parker, and Kaur (2014). Although Target-rotation allows for the specification of a priori hypotheses for 

loadings, the model fit is not altered by factor rotation. Therefore, differences in model fit cannot be used in order to 

compare different loading patterns or measurement models. However, Bayesian structural equation modeling (BSEM; 

Muthén & Asparouhov, 2012) may allow to overcome the unnecessarily strict ICM, replacing parameter specifications 

of exact zeros with more realistic, approximate zeros based on informative, small-variance priors. Thus, in BSEM one 

might assume that a loading is very small, but it is not necessary to assume that it is exactly zero. The possibility to 

overcome the limitations of the ICM by means of ESEM and BSEM has also been investigated by Xiao, Liu, and Hau 

(2019). They found that ICM leads to biased loading estimates and inflated factor correlations (see also Marsh et al., 

2014) and they consider that post-hoc specifications of secondary loadings (cross-loadings) are impractical. Moreover, a 
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series of model modifications may capitalize on chance (e.g., MacCallum, Roznowski, & Necowitz, 1992). Overall, 

population loadings can more precisely be estimated by means of ESEM than by means of ICM, but ESEM depends on 

the method of factor rotation and even on the specification of parameters of the rotation method (Xiao et al., 2019; 

Asparouhov & Muthén, 2009). In consequence, ESEM might be used as an alternative to ICM in several research 

contexts, but it is not a general alternative for those, who want to investigate specific hypotheses on loading patterns or 

intended measurement models. As the present study is devoted to the consequences of hypotheses on loading patterns 

for model fit, ESEM will not be considered further here. 

Even when researchers should not use small-variance priors mechanically (MacCallum, Edwards, & Cai, 2012) and 

even when a sensitivity analysis for priors has been recommended (Depaoli & van de Schoot, 2017), it is notable that 

the use of correct zero priors with small variance instead of exact zero loadings in BSEM resulted in loading estimates 

that were close to the population loadings (Xiao et al., 2019). This is in line with previous results indicating that BSEM 

might be an interesting alternative to ICM (Muthén & Asparouhov, 2012; Reis, 2017) when hypotheses on loading 

patterns are investigated. It is certainly helpful to replace the unrealistic exact-zero hypothesis for cross-loadings by 

means of the softer small prior variance hypothesis. Since only CFA and not complete structural equation models (SEM) 

will be considered in the following, the CFA based on Bayes-specification/estimation will be denoted as BAYES. 

Although BAYES is promising from a conceptual perspective as well as according to simulation studies, it might also 

be interesting to try to overcome the limitations of the ICM within the frequentist approach to CFA. It has rarely been 

considered whether besides the small prior variance hypothesis of the BAYES approach and besides specification 

searches following ICM, a more realistic global hypothesis for the cross-loadings might also allow for an appropriate 

model specification. The investigation of this possibility could improve the range of measurement models for 

cross-loadings and could thereby help to find the appropriate model in a given theoretical and empirical setting. This 

instrumental perspective of modeling may help to resolve issues that are due to diverging conceptual interpretations of 

cross-loadings (Asparouhov, Muthén & Morin, 2015; Stromeyer, Miller, Sriramachandramurthy, & DeMartino, 2015). 

Beauducel (2017) proposed to replace the hypothesis of an exact zero of each cross-loading by a hypothesis on a 

zero-mean of the cross-loadings across the variables of a factor. This hypothesis is less strict than the exact-zero 

hypothesis for each cross-loading, does not leave the specific framework of maximum-likelihood estimation, and goes 

back to the ‘buffered scales’ that have been proposed by Cattell and Tsujioka (1964) as a way to represent factors by 

means of scales. There are different ways for the specification of a zero-mean hypothesis for cross-loadings. One could 

simply specify a zero mean for all cross-loadings of a factor, without taking into account whether the variables are 

markers of different factors. This would typically lead to very few constraints on the loading matrix and could result in 

non-identified models. More complex patterns of zero-constraints for cross-loadings that are weighted by the respective 

salient loadings have therefore been proposed (Beauducel, 2017). Since the weights introduce additional assumptions 

that might not be compelling in several research settings, we propose a simplified set of constraints that is based solely 

on the zero mean for the cross-loadings of each block of marker variables of each factor. These constraints can be 

illustrated by the following example of a three-factor loading pattern A composed by 3  1 submatrices Lij of salient 

loadings and 3  1 submatrices NLij of non-salient loadings, with  
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The buffered-cross-loadings constraints on A are 
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                           (2) 

Since the constraints are based on the blocks of cross-loadings that are based on variables marking the same factor, the 

number of constraints is q(q – 1). A corresponding set of zero-constraints could be a more realistic alternative for the 

ICM and will be termed buffered-simple-structure (BSS) in the following. It should be noted that although BAYES 

represents an interesting alternative to the ICM, it needs a specification of the prior variance of a cross-loading 
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distribution (Muthén & Asparouhov, 2012). As different values might be used for the cross-loading variance in different 

studies, it might be difficult to compare the results from different studies. It might therefore be interesting to consider 

the BSS as an alternative to the ICM that will lead to the same model specification across studies.  

Moreover, the BSS could also be of interest because it introduces assumptions from item-sampling theory (Lord & 

Novick, 1968) into CFA model specification. Whereas in the ICM the expectation of the cross-loadings for the 

population of individuals is zero, in the BSS the expectation of cross-loadings for the population of individuals and for 

the population of measurements of the same factor is zero, i.e., E(NLij) = 0. Thus, the cross-loadings are considered as 

resulting from item-sampling error. Although items are often not sampled at random, the problem of CFA modeling is 

that items are typically not constructed in a systematic way which might allow to predict the size of cross-loadings. As 

long as item construction is rather unsystematic, no hypothesis on the cross-loadings of the items can be stated. Under 

these circumstances it could be reasonable to consider items with substantial loadings on the same factor as members of 

the same population of items. In any case, it is possible to conceive an item population from which the items loading on 

the same factor have randomly been drawn (Lord & Novick, 1968). Instead of assuming that all cross-loadings are zero, 

it might therefore reasonable to assume that the cross-loadings of the items loading on the same factor spread randomly 

around zero. Thus, the BSS should be of interest, whenever the assumptions of item-sampling hold. If there are strong 

reasons to expect that the assumptions of item-sampling theory do not hold, other models like BAYES or ICM might be 

preferred. 

Although previous simulation studies already provided important results on the ICM, ESEM, and BAYES (Xiao et al., 

2019), the BSS has previously not been systematically compared to BAYES. Moreover, previous simulation studies on 

the BSS were based on a more complicated procedure using salient loading weights and on only three common factors 

(Beauducel, 2017). The aim of the present simulation study was therefore to compare the quality of the three model 

specifications (ICM, BAYES, and BSS) for three different population types. As a further extension to the simulation of 

Xiao et al. (2019) we provided a population model based on uncorrelated factors. Even when uncorrelated factor models 

are probably more rarely computed than correlated factor models, the differences between CFAs based on the ICM, 

BSS, and BAYES should also be investigated for this type of population models. Accordingly, we compared models 

specified according to the ICM, BSS, and BAYES for predefined population models with uncorrelated factors and with 

correlated factors corresponding to the ICM as well as for population models with a clear simple structure but with 

substantial cross-loadings. It is thereby investigated how well a predefined model comprising a set of factors can be 

identified by means of model specifications according to the ICM, BSS, and BAYES, when substantial cross-loadings 

occur in the population. 

2. Method 

The specified models were evaluated in terms of fit to the data, i.e., whether the reproduced observed correlation 

matrices are similar to the population observed correlation matrices. This aspect was represented by the standardized 

root mean squared residual (SRMR). The quality of the models was also evaluated in terms of the root mean squared 

difference between the loadings estimated for the specified models and the predefined loadings (RMSD(L)) as well as 

the root mean squared difference between the estimated factor inter-correlations and the predefined factor 

inter-correlations (RMSD(nd)). The simulations were carried out at both population and sample level. At the sample 

level, the RMSD(L) and the RMSD(nd) were calculated for each sample in comparison with the predefined population 

values. Three types of population models were used in each case (see Table 1), where model type A (Pop A) denotes a 

predefined ICM, model type B (Pop B) corresponds to a predefined BSS, and model type C (Pop C) has a disturbed 

simple structure in which the secondary loadings per block and factor do not add up to zero.  
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Table 1. Construction of population models 

 Pop A  Pop B  Pop C 

Item F1 F2 F3  F1 F2 F3  F1 F2 F3 

x1 l1 – –  l1 nl nl  l1 nl – 

x2 l2 – –  l2 nl nl  l2 – nl 

x3 l1 – –  l1 nl nl  l1 – – 

x4 l2 – –  l2 nl nl  l2 – – 

x5 l1 – –  l1 nl nl  l1 – – 

x6 l2 – –  l2 nl nl  l2 – – 

x7 – l1 –  nl l1 nl  nl l1 – 

x8 – l2 –  nl l2 nl  – l2 nl 

x9 – l1 –  nl l1 nl  – l1 – 

x10 – l2 –  nl l2 nl  – l2 – 

x11 – l1 –  nl l1 nl  – l1 – 

x12 – l2 –  nl l2 nl  – l2 – 

x13 – – l1  nl nl l1  nl – l1 

x14 – – l2  nl nl l2  – nl l2 

x15 – – l1  nl nl l1  – – l1 

x16 – – l2  nl nl l2  – – l2 

x17 – – l1  nl nl l1  – – l1 

x18 – – l2  nl nl l2  – – l2 

Note. l1, l2  salient loadings, nl  non-salient loadings. 

The conception of the Bayes model pursued here, in which no secondary loading is fixed, is therefore compatible with 

all three model types, the buffered model is compatible with type A and type B, and the ICM only corresponds to model 

type A. It was therefore expected that the Bayesian method would have the best overall properties in terms of data fit 

(reproduced observed correlation matrices) and estimation of model parameters (loadings and factor inter-correlations). 

The ICM, on the other hand, should have the worst overall characteristics, since it corresponds to only one of the three 

model types. The three population types (see Table 1) were realized by means of combinations of two salient loading 

sizes (l1, l2) and one non-salient loading size (nl). The population types were analyzed for orthogonal population models 

with all non-diagonal elements of the factor inter-correlation matrix being zero (nd = .0) and for oblique population 

models with nd = .4. For each model type, 32 populations were investigated, resulting for model type A from the 

combination of q ( 3; 5)  p/q  ( 6; 12)  {l1, l2, nl=0} ( .8,.8,0; .8,.4,0; .6,.6,0; .6,.3,0)  nd ( 0; .4), for model 

type B by q ( 3; 5)  p/q  ( 6; 12)  {l1, l2, nl} ( .8,.8,.2; .8,.4,.2; .6,.6,.15; .6,.3,.15)  nd ( 0; .4), and for model 

type C by q ( 3; 5)  p/q  ( 6; 12)  {l1, l2, nl} ( .8,.8,.35; .8,.4,.35; .6,.6,.25; .6,.3,.25)  nd ( 0; .4), where q 

denotes the number of factors, p/q the number of variables with salient loadings per factor, l1 and l2 the salient loadings 

and nl the non-salient loadings, and nd the uniform correlation of the factors. Note that nl denotes the absolute value of 

the non-salient loading and is used in models B and C with alternating signs (see Table 1). For the conditions with p/q  

12 variables the loading blocks of the smaller models with p/q  6 were doubled. This resulted in 96 conditions at 

population level.  

For the simulation at sample level, 1,000 samples of size n = 200 and n = 600 were drawn from these populations for 

each condition, resulting in 192 test conditions. Uniform pseudo-random numbers were generated with the Mersenne 

Twister integrated in SPSS 23 (IBM Corp., 2015), which were converted into multivariate normal distributed variables 

according to Box and Muller (1958). All factor analyses were performed in Mplus 7.4 (Muthén & Muthén, 1998-2015) 

using maximum likelihood estimation for ICM and BSS and using Bayes estimation for BAYES, the default values for 

the number of iterations and convergence criteria. For BAYES, the mean of the priors of the cross-loadings was zero 

and as in Xiao et al. (2019) the variance of the normal distributed cross-loading priors was small, i.e., N(0,0.01). The 

factor variance were fixed to one and the factor inter-correlations were always freely estimated, i.e. also in the 

populations with nd = 0. The Supplementary Material, Appendix A contains exemplary scripts for the conditions 

shown in Table 1. An example sample data file for the condition q = 3, p/q=6, l1=.6, l2=.3, nl=.15, nd= 0, running with 

the scripts is given in the Supplementary Material (sample.csv). 

While the ML estimator used for the ICM and the buffered model almost always converged, the Bayesian algorithm 

experienced convergence problems, especially with five-factor models. If no convergence has been achieved at 

population level, the (preliminary) result output by Mplus is reported. The detailed tables in the Supplementary Material, 

Appendix B show these provisional solutions in brackets. Similarly, the results are bracketed at sample level (c.f. 

Supplementary Material, Appendix C), when the convergence criterion was not met in more than five percent of the 
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samples. The summary statistics in Appendix B and Appendix C are shown separately for all conditions and for only 

those conditions in which the Bayesian method has (sufficiently often) converged; this means that BAYES has 

converged in at least 95 % of the samples. As no significant differences in the comparisons between the models resulted 

from these separate analyses, all conditions (including the preliminary Bayesian data) are always listed in the following 

results report. 

3. Results 

Univariate analyses of variance were calculated in order to assess the effect sizes of the five independent variables 

(Population type, Loading size, p, p/q, nd) on the dependent variables (SRMR, RMSD(L), and RMSD(nd)) at the 

population level. Of course, the cells of these analyses contain only one value at population level, so that the error 

variances are zero and only the effect size measures are of interest. Appendix B (Table B1) lists all the measures of 

explained variance (²) as well as the total sums of squares. These analyses show that the variability of the criterion 

measures was mainly affected by the type of population and the amount of the loadings. Furthermore, the total sums of 

squares indicate that the variability of the results of ICM was highest overall and that of BSS lowest. The results of the 

population simulation averaged across q, p/q as well as nd and broken down by type of population and loading size, are 

shown in Table 2. The detailed results for q, p/q, and nd can be found in the Appendix (Table B2 for Pop A, Table B3 

for Pop B, Table B4 for Pop C). 

Table 2. Summary of population simulation 

    ICM    BAYES    BSS  

 l1, l2  SRMR RMSD(L) RMSD(nd)  SRMR RMSD(L) RMSD(nd)  SRMR RMSD(L) RMSD(nd) 

Pop A .8,.8  .000 .000 .000  .005 .013 .024  .000 .000 .000 

 .8,.4  .000 .000 .000  .003 .011 .024  .000 .000 .000 

 .6,.6  .000 .000 .000  .002 .007 .016  .000 .000 .000 

 .6,.3  .000 .000 .000  .002 .008 .025  .000 .000 .000 

 Total  .000 .000 .000  .003 .010 .022  .000 .000 .000 

              

Pop B .8,.8  .165 .171 .003  .006 .063 .160  .000 .000 .000 

 .8,.4  .123 .179 .255  .006 .091 .242  .000 .000 .000 

 .6,.6  .093 .128 .003  .003 .072 .204  .000 .000 .000 

 .6,.3  .068 .135 .224  .002 .061 .225  .000 .000 .000 

 Total  .112 .154 .121  .004 .072 .208  .000 .000 .000 

              

Pop C .8,.8  .138 .130 .128  .006 .059 .058  .000 .052 .008 

 .8,.4  .099 .130 .104  .005 .060 .061  .000 .055 .014 

 .6,.6  .064 .093 .044  .002 .038 .017  .000 .037 .007 

 .6,.3  .050 .094 .063  .002 .038 .052  .000 .039 .013 

 Total  .088 .112 .085  .004 .049 .047  .000 .046 .011 

Total   .067 .088 .069  .004 .043 .092  .000 .015 .004 

Note. For construction of populations see Table 1, nd  factor inter-correlation, ICM  independent clusters model, 

BAYES = Bayes estimator, BSS  buffered simple structure, SRMR  standardized root mean square residual, RMSD(L) 

 root mean square deviation between the predefined and estimated loading matrix, RMSD(nd)  RMSD between the 

predefined and estimated factor inter-correlation matrix; underlined are the best results per criterion; the cells give mean 

values of 8 test conditions each. 

As expected, ICM always had a perfect fit only for the corresponding population type A, but among the two other 

population types B and C, it showed the worst fit measures compared to BAYES and BSS. Also in line with 

expectations, BSS consistently showed perfect fit in both population type A and population type B. With regard to the 

model fit of BAYES, however, two findings were remarkable: Firstly, BAYES did not show a perfect fit for any 

population type, and secondly, BAYES also showed an overall worse fit than BSS for population type C. It is also 

noticeable that BAYES was not suitable for determining the predefined factor inter-correlation in population type B. 

Overall, in the population simulation BSS was one of the best model specification in order to recover the observed 

correlations (SRMR), factor loadings and factor inter-correlations across population types. 

In the sample simulation, univariate variance analyses were also initially calculated to assess the effects of the 

manipulated variables (see Table C1). Across the various criteria and estimation methods, the variables population type, 

loading size, and sample size were essential for the variability of the data. Therefore, Figures 1 to 3 show all simulation 

results as a function of these independent variables.  
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For population type A the ICM had the best properties for estimating the underlying loading matrices (Figure 2). The 

factor inter-correlations were similarly well estimated under population type A by all three methods (Figure 3). And 

BSS showed the best reproduction of the observed correlation matrices (Figure 1). Under population type B, BSS 

consistently had the best fit values for all criteria. What is noteworthy here is the advantage that BSS has over BAYES. 

Especially with regard to the estimation of the factor inter-correlation (Figure 3), BSS proved to be superior to BAYES. 

But even under population type C, which corresponds most closely to the model specifications of BAYES, BSS is at 

least on a par with BAYES with regard to all criteria. Under type C, BSS achieved the best fit in terms of SRMR 

(Figure 1) and RMSD(nd) (Figure 3) and a similarly good fit in terms of RMSD(L) as BAYES (Figure 2). 

 

Figure 1. Mean SRMR ( 2SD) depending on population type, loading amount and sample size 

 

Figure 2. Mean RMSD(L) ( 2SD) depending on population type, loading amount and sample size 
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Figure 3. Mean RMSD(nd) ( 2SD) depending on population type, loading amount and sample size 

Table 3 summarizes the results of the sample simulation across all conditions except population type. It clearly shows 

the problems of the ICM with population type B and C and it shows the substantial improvement that is possible with 

BAYES and BSS. Moreover, BAYES and BSS were similarly appropriate for population type A. Thus, BAYES and 

BSS allow for a similarly appropriate modeling of rather different populations, whether they contain cross-loadings or 

not. More detailed results for the samples can be found in the Supplementary Material. 

Table 3. Summary of sample simulation 

   ICM    BAYES    BSS  

  SRMR RMSD(L) RMSD(nd)  SRMR RMSD(L) RMSD(nd)  SRMR RMSD(L) RMSD(nd) 

Pop A  .042 .020 .060  .042 .039 .060  .028 .050 .062 

Pop B  .122 .157 .176  .046 .079 .197  .024 .046 .060 

Pop C  .099 .114 .115  .033 .063 .067  .026 .067 .062 

Total  .088 .097 .117  .040 .061 .108  .026 .054 .061 

Note. For construction of populations see Table 1, nd  factor inter-correlation, ICM  independent clusters model, 

BAYES = Bayes estimator, BSS  buffered simple structure, SRMR  standardized root mean square residual, RMSD(L) 

 root mean square deviation between the predefined and estimated loading matrix, RMSD(nd)  RMSD between the 

predefined and estimated factor inter-correlation matrix; underlined are the best results per criterion; the cells give mean 

values of 64 test conditions each. 

4. Discussion 

In order to overcome the limitations of the ICM, different methods of CFA model specification/estimation were 

compared in a simulation study. BAYES estimation/specification was investigated because it has been shown that this 

method is especially promising in order to overcome the limitations of the ICM (Xiao et al., 2019). Since BAYES needs 

an a priori specification of the variance of the cross-loadings, it may introduce some variability in prior specification 

that might hamper the comparison of models. Buffered simple structure (BSS) was therefore considered as a possibility 

to provide a single testable hypothesis for each factor that might compete with the ICM hypothesis. The ICM, BAYES, 

and BSS were compared in a population model corresponding to the ICM (Pop A), in a population model corresponding 

to a buffered simple structure (Pop B), and in a population with a disturbed simple structure with a few substantial 

cross-loadings per factor that do not add up to zero (Pop C). It was expected that the ICM model specification yields the 

best model fit and parameter estimation for Pop A, that BSS model specification yields the best model fit and parameter 
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estimation for Pop B, and that BAYES yields the best model fit and parameter estimation for Pop C because ICM and 

BSS lead to misspecified models for Pop C whereas BAYES with substantial cross-loading variance priors does not 

contain an explicit model misspecification for Pop C.  

As expected, the ICM reached a perfect model fit and a perfect recovery of the predefined model parameters only for 

Pop A at the population level. A perfect model fit and a perfect recovery of predefined population model parameters was 

also found for BSS with Pop A and with Pop B. The model fit and recovery of population model parameters was not 

perfect but very good for BAYES with Pop A and Pop C. For Pop B a suboptimal recovery of the population factor 

inter-correlations was found for BAYES.  

It turned out at the sample level that, although the ICM yields the best loading estimate for Pop A, it did not outperform 

BAYES and BSS with respect to the factor inter-correlation estimate and model fit. One reason for this unexpected 

result could be that the specification of zero-cross loadings is suboptimal even when only sampling error introduces 

some cross-loadings. As expected, BSS yields the best loading estimate, factor inter-correlation estimate and model fit 

for Pop B. For Pop C BAYES and BSS clearly outperformed the ICM, which was also expected. However, it was not 

expected that BAYES and BSS yielded similar model fit and had similar overall quality of the model parameter 

estimates for Pop C. Whereas BAYES yielded slightly superior loading estimates, BSS yielded slightly superior factor 

inter-correlation estimates for Pop C. Thus, when there is a small number of cross-loadings that do not cancel out and 

when the focus is on the estimation of the loadings rather than on the estimation of the factor inter-correlations, BAYES 

should be preferred. Overall, the results indicate that depending on the structure of cross-loadings in the population, 

different modeling approaches might be appropriate. Therefore, we give no general recommendation against or in favor 

of the ICM, BAYES and BSS, but the recommendation to explicitly relate the hypotheses on the cross-loadings to 

model specification. If cross-loadings are solely due to sampling error, the ICM would be appropriate, if they are due to 

some unknown systematic effect, BAYES would be appropriate, and if the cross-loadings can be regarded as being the 

result of an item-universe with symmetrically distributed positive and negative cross-loadings, the BSS would be 

appropriate. In other words, the more a set of items might be regarded as a random sample of items drawn from a 

population of items measuring the same factor, the more the BSS should be an appropriate model specification. 

Especially, when method effects are controlled by means of method factors within the multitrait-multimethod approach 

(Campbell & Fiske, 1959; Marsh & Bailey, 1991), the residual variances of the items might be considered as being 

drawn at random from a population of item variances representing the respective factor, so that the expectation of the 

cross-loadings of the residual items in such models could be zero. This idea, as well as the general relationship of BSS 

to item-sampling theory (Lord & Novick, 1968) might be further explored in simulation studies. 

As in all simulation studies, the limitations of the search space should be acknowledged. First of all, only three and five 

factor models were investigated although models with a larger number of factors would be of interest. The present study 

shares this limitation with Xiao et al. (2019) where also a maximum of five factors was investigated. As the 

computation time for BAYES for five factor models was already substantial, a simulation that goes beyond five factors 

would need an extremely long computation time. Another limitation is that only a few fixed population loading sizes 

were investigated. A larger variability of population loadings might reveal further differences between the ICM, BSS, 

and BAYES. Finally, it should also be acknowledged that only a single, small prior variance was investigated for the 

cross-loadings. Perhaps, the choice of a very small prior, followed by a sequence of increasing priors (Asparouhov et al., 

2015) might have improved further the results for BAYES and might have reduced the number of convergence 

problems.  

To sum up, the present simulation study replicates previous results (Xiao et al., 2019) in that it demonstrates again that 

BAYES could be recommended instead of the ICM when some unexpected cross-loadings might occur. The simulation 

study also demonstrates that BSS can be an alternative to the ICM. BSS could be of interest because it allows to 

overcome limitations of the ICM within the conventional frequentist estimation approach. Whereas BAYES may lead to 

different specifications of priors for different analyses, BSS is based on the same global hypothesis for each analysis. 

Nevertheless, it would in principal be possible to combine ICM assumptions for some factors with BSS assumptions for 

other factors within one and the same CFA model. It might, in principle, also be possible to combine BSS with Bayes 

estimation by means of specifying priors for the loading variability across each block of non-salient loadings. It would 

be interesting to develop such modeling options, so that the advantages and disadvantages of these modeling approaches 

could be investigated in future research. 
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Appendix A  

A1. Mplus script for ICM 

TITLE: ICM; 

DATA: 

FILE IS sample.csv; 

VARIABLE: 

NAMES ARE x1-x18; 

USEVARIABLES ARE x1-x18; 

ANALYSIS:  

TYPE = GENERAL; 

ESTIMATOR = ML; 

MODEL = NOMEANSTRUCTURE; 

INFORMATION = EXPECTED; 

MODEL: 

F1 by x1* x2-x6*; 

F2 by x7* x8-x12*; 

F3 by x13* x14-x18*; 

F1@1; F2@1; F3@1; 

OUTPUT:  

STANDARDIZED (STDYX); 

SAVEDATA:  

RESULTS ARE ICM_results.dat; 

 

A2. Mplus script for BAYES 

TITLE: BAYES; 

DATA: 

FILE IS sample.csv; 

VARIABLE: 

NAMES ARE x1-x18; 

USEVARIABLES ARE x1-x18; 

ANALYSIS:  

ESTIMATOR = BAYES;  

MODEL: 

F1 by x1* x2-x18 (f1p1-f1p18); 
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F2 by x1* x2-x18 (f2p1-f2p18); 

F3 by x1* x2-x18 (f3p1-f3p18); 

F1@1; F2@1; F3@1; 

MODEL PRIORS: 

f1p7-f1p18~N(0,0.01); 

f2p1-f2p6~N(0,0.01); 

f2p13-f2p18~N(0,0.01); 

f3p1-f3p12~N(0,0.01); 

OUTPUT: 

STANDARDIZED (STDYX); 

TECH8; 

SAVEDATA:  

RESULTS ARE BAY_results.dat; 

 

A3. Mplus script for BSS 

TITLE: BUFFERED SIMPLE STRUCTURE; 

DATA: 

FILE IS sample.csv; 

VARIABLE: 

NAMES ARE x1-x18; 

USEVARIABLES ARE x1-x18; 

ANALYSIS: 

MODEL = NOMEANSTRUCTURE; 

INFORMATION = EXPECTED; 

TYPE = GENERAL; 

ESTIMATOR = ML; 

MODEL: 

F1 by x1* x2-x6*; 

F2 by x7* x8-x12*; 

F3 by x13* x14-x18*; 

F1 by x7*0 (nf1_7); 

F1 by x8*0 (nf1_8); 

F1 by x9*0 (nf1_9); 

F1 by x10*0 (nf1_10); 

F1 by x11*0 (nf1_11); 

F1 by x12*0 (nf1_12); 

F1 by x13*0 (nf1_13); 

F1 by x14*0 (nf1_14); 

F1 by x15*0 (nf1_15); 

F1 by x16*0 (nf1_16); 

F1 by x17*0 (nf1_17); 

F1 by x18*0 (nf1_18); 

F2 by x1*0 (nf2_1); 

F2 by x2*0 (nf2_2); 

F2 by x3*0 (nf2_3); 

F2 by x4*0 (nf2_4); 

F2 by x5*0 (nf2_5); 

F2 by x6*0 (nf2_6); 
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F2 by x13*0 (nf2_13); 

F2 by x14*0 (nf2_14); 

F2 by x15*0 (nf2_15); 

F2 by x16*0 (nf2_16); 

F2 by x17*0 (nf2_17); 

F2 by x18*0 (nf2_18); 

F3 by x1*0 (nf3_1); 

F3 by x2*0 (nf3_2); 

F3 by x3*0 (nf3_3); 

F3 by x4*0 (nf3_4); 

F3 by x5*0 (nf3_5); 

F3 by x6*0 (nf3_6); 

F3 by x7*0 (nf3_7); 

F3 by x8*0 (nf3_8); 

F3 by x9*0 (nf3_9); 

F3 by x10*0 (nf3_10); 

F3 by x11*0 (nf3_11); 

F3 by x12*0 (nf3_12); 

F1@1; F2@1; F3@1; 

MODEL CONSTRAINT: 

0 = nf1_7 + nf1_8 + nf1_9 + nf1_10 + nf1_11 + nf1_12; 

0 = nf1_13 + nf1_14 + nf1_15 + nf1_16 + nf1_17 + nf1_18; 

0 = nf2_1 + nf2_2 + nf2_3 + nf2_4 + nf2_5 + nf2_6; 

0 = nf2_13 + nf2_14 + nf2_15 + nf2_16 + nf2_17 + nf2_18; 

0 = nf3_1 + nf3_2 + nf3_3 + nf3_4 + nf3_5 + nf3_6; 

0 = nf3_7 + nf3_8 + nf3_9 + nf3_10 + nf3_11 + nf3_12; 

OUTPUT: 

STANDARDIZED (STDYX); 

SAVEDATA:  

RESULTS ARE BUF_results.dat; 
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Appendix B  

Table B1. Explained variances (²) from univariate variance analyses (n  96 populations) 

    ICM    BAYES    BSS  

Variable df  SRMR RMSD(L) RMSD()  SRMR RMSD(L) RMSD()  SRMR RMSD(L) RMSD() 

Total sum of squares 95  0.333 0.434 0.935  0.000 0.135 0.967  0.000 0.047 0.003 

pop 2  .67 .93 .26  .06 .46 .67  .06 .95 .77 

load 3  .16 .04 .17  .33 .03 .02  .17 .01 .03 

phi 1  .02 .00 .00  .00 .00 .00  .09 .00 .00 

q 1  .01 .00 .00  .17 .06 .05  .03 .00 .04 

p/q 1  .00 .00 .00  .01 .00 .01  .06 .00 .00 

pop * load 6  .08 .02 .34  .04 .03 .03  .00 .03 .06 

pop * phi 2  .05 .00 .11  .01 .01 .00  .03 .00 .00 

pop * q 2  .00 .00 .00  .03 .09 .06  .00 .00 .09 

pop * p/q 2  .00 .00 .00  .01 .01 .01  .00 .00 .00 

load * phi 3  .00 .00 .05  .04 .01 .01  .00 .00 .00 

load * q 3  .00 .00 .00  .03 .01 .00  .00 .00 .00 

load * p/q 3  .00 .00 .00  .01 .01 .01  .13 .00 .00 

phi * q 1  .00 .00 .00  .01 .01 .00  .02 .00 .00 

phi * p/q 1  .00 .00 .00  .01 .01 .00  .03 .00 .00 

q * p/q 1  .00 .00 .00  .03 .00 .00  .02 .00 .00 

pop * load * phi 6  .01 .00 .04  .03 .02 .01  .00 .00 .00 

pop * load * q 6  .00 .00 .00  .01 .02 .02  .00 .00 .01 

pop * load * p/q 6  .00 .00 .00  .02 .02 .02  .00 .00 .00 

pop * phi * q 2  .00 .00 .00  .02 .01 .01  .00 .00 .00 

pop * phi * p/q 2  .00 .00 .00  .00 .01 .00  .06 .00 .00 

pop * q * p/q 2  .00 .00 .00  .00 .01 .01  .00 .00 .00 

load * phi * q 3  .00 .00 .00  .00 .01 .00  .00 .00 .00 

load * phi * p/q 3  .00 .00 .00  .01 .01 .00  .09 .00 .00 

load * q * p/q 3  .00 .00 .00  .03 .01 .01  .00 .00 .00 

phi * q * p/q 1  .00 .00 .00  .00 .00 .00  .00 .00 .00 

pop * load * phi * q 6  .00 .00 .00  .01 .02 .01  .00 .00 .00 

pop * load * phi * p/q 6  .00 .00 .00  .02 .03 .01  .09 .00 .00 

pop * load * q * p/q 6  .00 .00 .00  .03 .02 .01  .13 .00 .00 

pop * phi * q * p/q 2  .00 .00 .00  .01 .01 .00  .00 .00 .00 

load * phi * q * p/q 3  .00 .00 .00  .00 .01 .01  .00 .00 .00 

pop * load * phi * q * 

p/q 

6  

.00 .00 .00  .02 .03 .02  .00 .00 .00 

Note. pop  population type, load  loadings, nd   factor inter-correlation, q  number of factors, p/q  number of 

variables with salient loadings per factor, n  sample size, ICM  independent clusters model, BAYES = Bayes 

estimator, BSS  buffered simple structure, SRMR  standardized root mean square residual, RMSD(L)  root mean 

square deviation between the predefined and estimated loading matrix, RMSD(nd)  RMSD between the predefined 

and estimated factor inter-correlation matrix; values greater than .1 in bold. 
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Table B2. Results of population simulation for population type A  

        ICM    BAYES    BSS  

 q p/q l1 l2 nl  SRMR RMSD(L) RMSD()  SRMR RMSD(L) RMSD()  SRMR RMSD(L) RMSD() 

.0 3 6 .8 .8 .00  .000 .000 .000  .004 .007 .015  .000 .000 .000 

   .8 .4 .00  .000 .000 .000  .003 .009 .023  .000 .000 .000 

   .6 .6 .00  .000 .000 .000  .003 .007 .021  .000 .000 .000 

   .6 .3 .00  .000 .000 .000  .002 .010 .035  .000 .000 .000 

                  

  12 .8 .8 .00  .000 .000 .000  .003 .008 .012  .000 .000 .000 

   .8 .4 .00  .000 .000 .000  .002 .008 .017  .000 .000 .000 

   .6 .6 .00  .000 .000 .000  .001 .012 .019  .000 .000 .000 

   .6 .3 .00  .000 .000 .000  .001 .012 .024  .000 .000 .000 

                  

 5 6 .8 .8 .00  .000 .000 .000  .004 .007 .015  .000 .000 .000 

   .8 .4 .00  .000 .000 .000  .004 .007 .019  .000 .000 .000 

   .6 .6 .00  .000 .000 .000  .004 .005 .014  .000 .000 .000 

   .6 .3 .00  .000 .000 .000  .003 .006 .023  .000 .000 .000 

                  

  12 .8 .8 .00  .000 .000 .000  (.008) (.030) (.059)  .000 .000 .000 

   .8 .4 .00  .000 .000 .000  .002 .003 .010  .000 .000 .000 

   .6 .6 .00  .000 .000 .000  .002 .006 .011  .000 .000 .000 

   .6 .3 .00  .000 .000 .000  .002 .005 .017  .000 .000 .000 

                  

.4 3 6 .8 .8 .00  .000 .000 .000  .004 .008 .016  .000 .000 .000 

   .8 .4 .00  .000 .000 .000  .003 .008 .013  .000 .000 .000 

   .6 .6 .00  .000 .000 .000  .003 .006 .017  .000 .000 .000 

   .6 .3 .00  .000 .000 .000  .002 .008 .026  .000 .000 .000 

                  

  12 .8 .8 .00  .000 .000 .000  .003 .009 .009  .000 .000 .000 

   .8 .4 .00  .000 .000 .000  .001 .009 .017  .000 .000 .000 

   .6 .6 .00  .000 .000 .000  .001 .007 .015  .000 .000 .000 

   .6 .3 .00  .000 .000 .000  .001 .008 .025  .000 .000 .000 

                  

 5 6 .8 .8 .00  .000 .000 .000  .004 .008 .020  .000 .000 .000 

   .8 .4 .00  .000 .000 .000  .003 .008 .025  .000 .000 .000 

   .6 .6 .00  .000 .000 .000  .002 .007 .024  .000 .000 .000 

   .6 .3 .00  .000 .000 .000  .002 .007 .034  .000 .000 .000 

                  

  12 .8 .8 .00  .000 .000 .000  (.007) (.031) (.049)  .000 .000 .000 

   .8 .4 .00  .000 .000 .000  (.006) (.033) (.067)  .000 .000 .000 

   .6 .6 .00  .000 .000 .000  .002 .004 .010  .000 .000 .000 

   .6 .3 .00  .000 .000 .000  .002 .004 .017  .000 .000 .000 

                  

Total  .000 .000 .000  (.003) (.010) (.022)  .000 .000 .000 

Subtotal  .000 .000 .000  .002 .007 .019  .000 .000 .000 

Note. For construction of population type A see Table 1, nd  factor inter-correlation, q  number of factors, p/q  

number of variables with salient loadings per factor, l1, l2  salient loadings, nl  non-salient loadings, ICM  

independent clusters model, BAYES = Bayes estimator, BSS  buffered simple structure, SRMR  standardized root 

mean square residual, RMSD(L)  root mean square deviation between the predefined and estimated loading matrix, 

RMSD()  RMSD between the predefined and estimated factor inter-correlation matrix; in brackets are results for 

which the convergence criterion was not fulfilled, underlined are the best results per criterion. 
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Table B3. Results of population simulation for population type B 

        ICM    BAYES    BSS  

 q p/q l1 l2 nl  SRMR RMSD(L) RMSD(nd)  SRMR RMSD(L) RMSD(nd)  SRMR RMSD(L) RMSD(nd) 

.0 3 6 .8 .8 .20  .187 .163 .000  .004 .038 .102  .000 .000 .000 

   .8 .4 .20  .137 .172 .324  .004 .060 .183  .000 .000 .000 

   .6 .6 .15  .105 .123 .000  .003 .031 .107  .000 .000 .000 

   .6 .3 .15  .075 .130 .285  .002 .050 .186  .000 .000 .000 

                  

  12 .8 .8 .20  .190 .163 .000  .001 .036 .097  .000 .000 .000 

   .8 .4 .20  .141 .171 .322  .002 .065 .193  .000 .000 .000 

   .6 .6 .15  .107 .122 .000  .002 .026 .095  .000 .000 .000 

   .6 .3 .15  .078 .128 .276  .001 .043 .173  .000 .000 .000 

                  

 5 6 .8 .8 .20  .223 .179 .000  (.008) (.097) (.230)  .000 .000 .000 

   .8 .4 .20  .158 .196 .316  (.008) (.114) (.300)  .000 .000 .000 

   .6 .6 .15  .126 .134 .000  (.007) (.281) (.594)  .000 .000 .000 

   .6 .3 .15  .088 .150 .299  .003 .076 .272  .000 .000 .000 

                  

  12 .8 .8 .20  .226 .179 .000  (.008) (.081) (.194)  .000 .000 .000 

   .8 .4 .20  .163 .194 .315  (.007) (.109) (.261)  .000 .000 .000 

   .6 .6 .15  .127 .134 .000  (.007) (.059) (.189)  .000 .000 .000 

   .6 .3 .15  .091 .147 .293  (.006) (.081) (.259)  .000 .000 .000 

                  

.4 3 6 .8 .8 .20  .112 .163 .006  .004 .043 .129  .000 .000 .000 

   .8 .4 .20  .086 .166 .190  .003 .067 .185  .000 .000 .000 

   .6 .6 .15  .063 .123 .006  .002 .032 .131  .000 .000 .000 

   .6 .3 .15  .047 .125 .158  .002 .051 .193  .000 .000 .000 

                  

  12 .8 .8 .20  .114 .163 .003  .003 .039 .105  .000 .000 .000 

   .8 .4 .20  .088 .166 .189  (.008) (.092) (.266)  .000 .000 .000 

   .6 .6 .15  .064 .122 .003  .002 .028 .104  .000 .000 .000 

   .6 .3 .15  .048 .124 .155  .001 .044 .162  .000 .000 .000 

                  

 5 6 .8 .8 .20  .134 .179 .012  (.007) (.093) (.231)  .000 .000 .000 

   .8 .4 .20  .104 .185 .191  (.007) (.112) (.305)  .000 .000 .000 

   .6 .6 .15  .075 .134 .013  .003 .059 .214  .000 .000 .000 

   .6 .3 .15  .058 .139 .166  .002 .074 .282  .000 .000 .000 

                  

  12 .8 .8 .20  .136 .179 .006  (.009) (.077) (.194)  .000 .000 .000 

   .8 .4 .20  .106 .185 .190  (.007) (.105) (.245)  .000 .000 .000 

   .6 .6 .15  .076 .134 .006  .001 .057 .199  .000 .000 .000 

   .6 .3 .15  .059 .138 .163  .001 .071 .275  .000 .000 .000 

                  

Total  .112 .154 .121  (.004) (.072) (.208)  .000 .000 .000 

Subtotal  .096 .143 .119  .002 .049 .169  .000 .000 .000 

Note. For construction of population type B see Table 1, nd  factor inter-correlation, q  number of factors, p/q  

number of variables with salient loadings per factor, l1, l2  salient loadings, nl  non-salient loadings, ICM  

independent clusters model, BAYES = Bayes estimator, BSS  buffered simple structure, SRMR  standardized root 

mean square residual, RMSD(L)  root mean square deviation between the predefined and estimated loading matrix, 

RMSD(nd)  RMSD between the predefined and estimated factor inter-correlation matrix; in brackets are results for 

which the convergence criterion was not fulfilled, underlined are the best results per criterion. 
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Table B4. Results of population simulation for population type C 

        ICM    BAYES    BSS  

 q p/q l1 l2 nl  SRMR RMSD(L) RMSD(nd)  SRMR RMSD(L) RMSD(nd)  SRMR RMSD(L) RMSD(nd) 

.0 3 6 .8 .8 .35  .118 .117 .006  (.005) (.061) (.053)  .000 .049 .005 
   .8 .4 .35  .094 .117 .068  (.006) (.066) (.068)  .000 .053 .009 
   .6 .6 .25  .063 .083 .005  .003 .038 .019  .000 .035 .005 
   .6 .3 .25  .050 .083 .052  .003 .037 .055  .000 .037 .009 
                  
  12 .8 .8 .35  .120 .117 .006  .001 .051 .015  .000 .049 .005 
   .8 .4 .35  .096 .117 .079  .001 .051 .026  .000 .053 .009 
   .6 .6 .25  .064 .083 .005  .002 .037 .020  .000 .035 .005 
   .6 .3 .25  .051 .083 .053  .001 .031 .011  .000 .037 .008 
                  
 5 6 .8 .8 .35  .133 .128 .012  .004 .056 .013  .000 .054 .012 
   .8 .4 .35  .107 .128 .073  (.006) (.061) (.080)  .000 .059 .020 
   .6 .6 .25  .071 .091 .011  .003 .039 .013  .000 .039 .011 
   .6 .3 .25  .057 .091 .056  (.006) (.047) (.145)  .000 .042 .019 
                  
  12 .8 .8 .35  .135 .128 .013  (.007) (.065) (.054)  .000 .054 .012 
   .8 .4 .35  .109 .128 .075  (.007) (.066) (.066)  .000 .059 .020 
   .6 .6 .25  .072 .091 .011  .002 .041 .016  .000 .039 .011 
   .6 .3 .25  .058 .091 .055  .002 .041 .031  .000 .042 .019 
                  

.4 3 6 .8 .8 .35  .143 .133 .258  (.007) (.047) (.080)  .000 .049 .006 
   .8 .4 .35  .086 .135 .154  (.006) (.063) (.069)  .000 .052 .010 
   .6 .6 .25  .054 .096 .072  .002 .036 .022  .000 .035 .005 
   .6 .3 .25  .041 .098 .065  .001 .036 .055  .000 .037 .009 
                  
  12 .8 .8 .35  .151 .135 .284  (.008) (.075) (.097)  .000 .049 .006 
   .8 .4 .35  .089 .129 .135  .002 .051 .035  .000 .052 .010 
   .6 .6 .25  .057 .093 .062  .002 .037 .021  .000 .035 .005 
   .6 .3 .25  .044 .094 .055  .002 .032 .013  .000 .037 .009 
                  
 5 6 .8 .8 .35  .151 .143 .215  (.007) (.064) (.088)  .000 .054 .010 
   .8 .4 .35  .103 .144 .134  (.006) (.061) (.089)  .000 .058 .018 
   .6 .6 .25  .063 .105 .097  .003 .040 .013  .000 .039 .009 
   .6 .3 .25  .047 .107 .092  .002 .039 .052  .000 .041 .017 
                  
  12 .8 .8 .35  .152 .144 .228  (.008) (.055) (.062)  .000 .054 .010 
   .8 .4 .35  .103 .141 .119  (.006) (.058) (.055)  .000 .058 .018 
   .6 .6 .25  .067 .102 .086  .002 .039 .010  .000 .039 .009 
   .6 .3 .25  .052 .103 .080  .002 .040 .050  .000 .041 .017 
                  

Total  .088 .112 .085  (.004) (.049) (.047)  .000 .046 .011 
Subtotal  .068 .100 .054  .002 .041 .026  .000 .041 .010 

Note. For construction of population type C see Table 1, nd  factor inter-correlation, q  number of factors, p/q  

number of variables with salient loadings per factor, l1, l2  salient loadings, nl  non-salient loadings, ICM  

independent clusters model, BAYES = Bayes estimator, BSS  buffered simple structure, SRMR  standardized root 

mean square residual, RMSD(L)  root mean square deviation between the predefined and estimated loading matrix, 

RMSD(nd)  RMSD between the predefined and estimated factor inter-correlation matrix; in brackets are results for 

which the convergence criterion was not fulfilled, underlined are the best results per criterion. 
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