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Abstract

The Black-Litterman model combines investors’ personal views with historical data and gives optimal portfolio weights.
In this paper we will introduce the original Black-Litterman model (Section 1), we will modify the model such that it fits
in a Bayesian framework by considering the investors’ personal views to be a direct prior on the means of the returns and
by including a typical Inverse Wishart prior on the covariance matrix of the returns (Section 2). We will also consider an
idea of Leonard & Hsu [1992] for a prior on the logarithm of the covariance matrix (Section 3). Sensitivity analysis for
the level of confidence that investors have in their own personal views was performed and performance of the models was
assessed on a test data set consisting of returns over the month of January 2018.
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statistics

1. Black-Litterman Asset Allocation Model

The Black-Litterman asset allocation model, developed by Fischer Black and Robert Litterman in the early 90’s while
working for Goldman Sachs, has been widely used for decades and it is presented in more detail in the paper by He &
Litterman [2002]. Suppose that m assets in the market are considered. The returns of those assets r = (r1, r2, . . . , rm)T

follow a multivariate normal distribution with mean µ and covariance matrix Σ. That is

r ∼ Nm(µ,Σ) (1)

Black and Litterman proposed the following CAPM (Capital Asset Pricing Model) prior for the mean of the return:

µ ∼ Nm(π, τΣ) (2)

where π is the equilibrium risk parameter, which can be expressed as

π = δΣweq

where the parameter δ is the investor’s risk aversion parameter, weq is the vector of m equilibrium weights, and the
parameter τ in equation (2) indicates the uncertainty of the CAPM prior.

In addition to the CAPM prior, they also take investor’s views into consideration. Suppose that the investor has k views.
His or her views can be expressed in the following equation:

Pµ ∼ Nk(q,Ω) (3)

where the matrix P is a k × m matrix, q is a k × 1 vector, and Ω is a k × k matrix, usually diagonal. Each row in
P and q represents a personal view. To illustrate all terms in equation (3), we consider an example with four assets:
Apple Inc (AAPL), Amazon.com Inc (AMZN), Alphabet Inc Class C (GOOG), and Microsoft Corporation (MSFT). Let
µ = (µ1, µ2, µ3, µ4)T represent the mean returns for AAPL, AMZN, GOOG, and MSFT, respectively. Suppose that the
investor believes that AAPL will outperform AMZN by 2% and that GOOG will have returns that amount to 5%. In that
case,

P =

[
1 −1 0 0
0 0 1 0

]
, q =

[
0.02
0.05

]
* Use was made of computational facilities purchased with funds from the National Science Foundation (CNS-1725797) and administered by

the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and
Engineering Center (MRSEC; NSF DMR 1720256) at UC Santa Barbara.
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The covariance matrix Ω is usually a diagonal matrix. The diagonal elements represent the uncertainty of each view. A
small value reflects a high confidence in the view and vice versa.

He & Litterman [2002] reported that, by combining the prior information in equations (2) and (3), the mean return follows
a normal distribution

µ ∼ N(µ̄, M̄−1) (4)

where
µ̄ = [(τΣ)−1 + PTΩ−1P]−1[(τΣ)−1π + PTΩ−1q]

and
M̄−1 = [(τΣ)−1 + PTΩ−1P]−1

The combined prior in equation (4) compromises the proposed CAPM prior in (2) and the investor’s views in (3). The
combined mean µ̄ is a weighted average of the CAPM prior mean π and the mean q of the investor’s views, with the
weights, (τΣ)−1 and PTΩP, respectively. The combined prior mean µ̄ is closer to the CAPM prior mean π when the
uncertainty parameter τ is small, or equivalently, when we are more certain about the CAPM prior.

The unconditional distribution of r is therefore
r ∼ N(µ̄, Σ̄) (5)

which is obtained by combining equations (1) and (4) and then integrating the vector µ out, where Σ̄ = Σ+ M̄−1. Based on
the unconditional mean µ̄ and covariance matrix Σ̄ in equation (5), the optimal portfolio can be determined by using the
standard mean-variance optimization method to maximize wT µ̄ − δ

2 wT Σ̄w with respect to the weights w for an investor
with the risk aversion parameter δ. He & Litterman [2002] reported that the optimal portfolio weights w∗ can be expressed
as

w∗ =
1

1 + τ
(weq + PT w) (6)

where
w =

τ

δ
Ω−1q −

1
1 + τ

A−1PΣweq −
1

δ(1 + τ)
A−1PΣPTΩ−1q

and
A =

1
τ
Ω +

1
1 + τ

PΣPT .

Black-Litterman suggested to replace the covariance matrix Σ by a matrix estimated from historical data, then treated Σ
as a known covariance matrix in their model. The optimal portifolio weights w∗ can be obtained by plugging in all known
parameters, the CAPM prior mean π, the uncertainty parameter τ, personal views parameters P, q, Ω, and the covariance
matrix Σ. The model they proposed was a probability model. The optimal portfolio weights were easily obtained by
plugging in all parameters. No data were collected, only the covariance matrix was obtained using historical data. In this
paper, we will propose instead a statistical approach, indeed, a complete Bayesian statistical approach, which takes into
consideration investor’s views. We will focus our attention on 2 cases:

(1) when historical data is available

(2) when historical data is not available

2. A Bayesian Approach, When Historical Data Is Available

2.1 Prior and Posterior Distributions

Let r1, r2, . . . , rn be n independent returns, where each ri represents the returns of m assets and follows the distribution
specified in equation (1), that is,

ri ∼ Nm(µ,Σ), for i = 1, 2, . . . , n (7)

We consider commonly used priors for µ and Σ:
µ ∼ Nm(π,∆) (8)

and Σ follows an Inverse Wishart distribution with ν degrees of freedom and a location parameter Σ0, that is,

Σ ∼ W−1(ν,Σ0) (9)

Smaller values of the degrees of freedom parameter ν imply an increasingly more diffuse distribution and larger values
for the degrees of freedom parameter ν yield a more highly concentrated distribution about the location matrix parameter
Σ0. Please note, the prior for µ in equation (8) is similar to equation (2) used for the Black-Litterman approach, but with
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the more general covariance matrix ∆ replacing the more restricted τΣ. Suppose that historical data is available, then we
can determine the prior parameters in equations (8) and (9) using historical data.

We further suppose that investor’s views specified in equation (3) are also available:

Pµ ∼ Nk(q,Ω) (10)

and we would like to include that as part of our prior information. It is obvious that the two proposed priors on µ from
equations (8) and (10) would suggest inconsistent information in practice. We would like to retain the information as
much as possible, whether the information is from investor’s views or historical data. However, we believe that in practice
investor’s views are more valuable than the more objective prior information based on historical data because this gives
investors more power if they also use other models in order to create their inputs for the views.

Let us take a look at the matrix P in detail. Suppose that the investor has k views. Those k views are expressed in equation
(10). Each row in P represents a view about the m assets. Those views can be classified as relative views (the rows that sum
up to 0) and absolute views (only one 1 in a row). The k views should be linearly independent. If they are not all linearly
independent, then some views would be either redundant or inconsistent. As a result, at most k = m linearly independent
views can be expressed. In the case when k = m, the matrix P in equation (10) is invertible and only investor’s views will
be used and the prior information in equation (8) will be automatically ignored. In the case when the number of views k is
less than the number of assets m, we will use all information based on investor’s views, and additional information based
on historical data as much as possible. We now consider an augmented matrix P∗ based on the matrix P in equation (10),
such that the augmented matrix P∗ is invertible.

In here, we will present a method in which we can add rows to P such that the resulting square matrix P∗ is invertible.
The main idea is based on the way in which one would row reduce a matrix to the echelon form. It is well known that a
matrix is invertible if and only if its row reduced echelon form is the identity matrix. This gives us the idea of taking our
matrix P and adding rows to it in order to make it invertible:

• For each column in P that has only 0’s, we have to create a new row that will have only one 1 in the respective
column and 0’s in all the others.

• If a row has more than 1 nonzero entry, for each such entry except the entries in the pivot columns, we have to
create a row in which we have a 1.

For example, if we consider the illustrative matrix P used in section 1, the above procedure gives us:

P =

[
1 −1 0 0
0 0 1 0

]
→

1 −1 0 0
0 0 1 0
0 0 0 1

→

1 −1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 = P∗ =

[
P
P2

]

The augmented matrix P∗ consists of two parts, the original personal views matrix P and a newly created (m − k) × m
matrix P2 to make the augmented matrix P∗ invertible.

We now transform the data through P∗: r∗i = P∗ri for i = 1, 2, . . . , n. Then r∗1, r
∗
2, . . . , r

∗
n are independent and

r∗i ∼ Nm(µ∗,Σ∗), for i = 1, 2, . . . n (11)

where µ∗ = P∗µ and Σ∗ = P∗ΣP∗T . We further consider the priors in equations (8) and (9), but on µ∗ and Σ∗,

µ∗ ∼ Nm(π∗,∆∗) (12)

and
Σ∗ ∼ W−1

(
ν∗,Σ∗0

)
(13)

Suppose that historical data is available, we can objectively specify those prior parameters in equations (12) and (13)
in practice, as follows: we calculate the sample covariance matrix using the whole historical data and that covariance
matrix will be used as the location parameter matrix Σ∗0 and the number of historical returns will be used as the degrees
of freedom parameter ν∗. We then split the historical data into many groups of size n. The sample mean vectors are
calculated for each group. Then the average of those sample mean vectors will be used as π∗ and the sample covariance
matrix based on those sample mean vectors will be used as ∆∗. Note that, in equation (12),

µ∗ = P∗µ =

[
P
P2

]
µ =

[
Pµ
P2µ

]
∼ N(π∗,∆∗)
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where

π∗ =

[
π∗1
π∗2

]
and ∆∗ =

[
∆∗11 ∆∗12
∆∗21 ∆∗22

]
are partitioned accordingly, π∗1 is a k × 1 vector and ∆∗11 is a k × k matrix. We now impose the investor’s views specified
in (10)

Pµ ∼ Nk(q,Ω)

by replacing π∗1 and ∆∗11 by q and Ω, respectively. Therefore,

µ∗ ∼ Nm(π∗,∆∗), (14)

where

π∗ =

[
q
π∗2

]
and ∆∗ =

[
Ω ∆∗12
∆∗21 ∆∗22

]
(15)

We now successfully combined two sources of prior information, q and Ω according to investor’s views, and π∗2,∆
∗
12,

∆∗21and ∆∗22, objectively specified according to historical data.

The sampling distribution of r∗1, r
∗
2, . . . , r

∗
n in equation (11) gives the following density:

L(µ∗,Σ∗|r∗1, r
∗
2, . . . , r

∗
n) ∝ |Σ∗|−

n
2 exp

−1
2

n∑
i=1

(r∗i − µ
∗)TΣ∗

−1(r∗i − µ
∗)

 (16)

Also, we had independent prior distributions on µ∗ and Σ∗ in equations (12) and (13), respectively:

π(µ∗|π∗,∆∗) ∝ |∆∗|−
1
2 exp

{
−

1
2

(µ∗ − π∗)T∆∗
−1(µ∗ − π∗)

}
(17)

and

π(Σ∗|ν,Σ0) ∝ |Σ∗|−
1
2 (ν+m+1) exp

{
−

1
2

Tr
(
Σ0Σ

∗−1
)}

(18)

The joint posterior density of µ∗ and Σ∗ given r∗1, r
∗
2, . . . , r

∗
n is proportional to the product of equations (16), (17), and (18)

and can be represented as

π(µ∗,Σ∗|r∗1, r
∗
2, . . . , r

∗
n) ∝ |Σ∗|−

1
2 (ν+n+m+1) exp

{
−

1
2

Tr
(
Σ0Σ

∗−1
)}

× exp

−1
2

n∑
i=1

(r∗i − µ
∗)TΣ∗

−1(r∗i − µ
∗)


× |∆∗|

− 1
2 exp

{
−

1
2

(µ∗ − π∗)T∆∗
−1(µ∗ − π∗)

} (19)

We rearrange the second exponent, then combine the two quadratic functions of µ∗ in the last two exponents in equation
(19). The joint density becomes

π(µ∗,Σ∗|r∗1, r
∗
2, . . . , r

∗
n) ∝ exp

{
−

1
2

(µ∗ − µ̄∗)T (nΣ∗−1
+ ∆∗

−1)(µ∗ − µ̄∗)
}

× exp
{
−

1
2

(r̄∗ − π∗)T H(r̄∗ − π∗) + (n − 1)S
}

× |Σ∗|
− 1

2 (ν+n+m+1) exp
{
−

1
2

Tr
(
Σ0Σ

∗−1
)}

(20)

Where

S =
1

n − 1

n∑
i=1

(r∗i − r̄∗)TΣ∗
−1(r∗ − r̄∗), r̄∗ =

1
n

n∑
i=1

r∗i ,

µ̄∗ =
(
nΣ∗−1

+ ∆∗
−1

)−1 (
nΣ∗−1r̄∗ + ∆∗

−1π∗
)

(21)

4



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 9, No. 4; 2020

and

H =

(
1
n
Σ∗ + ∆∗

)−1

We can implement a Gibbs Sampler/Markov Chain Monte Carlo (MCMC) procedure to compute the posterior means for
µ∗ and Σ∗. To facilitate the procedure, all conditional posterior distributions, µ∗ given Σ∗ and Σ∗ given µ∗ are needed.
Following equation (20), the conditional posterior distribution of µ∗, given Σ∗ can be represented as

π(µ∗|r∗1, r2, . . . , r∗n,Σ
∗) ∝ exp

{
−

1
2

(µ∗ − µ̄∗)T (nΣ∗−1
+ ∆∗

−1)(µ∗ − µ̄∗)
}

(22)

That is, conditional on Σ∗, the vector µ∗ follows a normal distribution with posterior mean µ̄∗ specified in equation (21)
and posterior variance (nΣ∗−1 + ∆∗−1)−1. Following equation (19), the conditional posterior distribution of Σ∗ given µ∗ is

π(Σ∗|r∗1, r
∗
2, . . . , r

∗
n,µ

∗) ∝ |Σ∗|−
1
2 (ν+n+m+1)

× exp

−1
2

Tr

Σ0 +

n∑
i=1

(r∗i − µ
∗)(r∗i − µ

∗)T

Σ∗−1


 (23)

That is, conditional on µ∗, the matrix Σ∗ follows an Inverse Wishart with degree of freedom parameter, ν∗ = ν + n and
location matrix parameter Σ∗0 = Σ0+

∑n
i=1(r∗i −µ

∗)(r∗i −µ
∗)T . The posterior means can be calculated according to Algorithm

1.

Algorithm 1 Gibbs Sampler

1: Σ∗(t+1)
|r∗1, r

∗
2, . . . , r

∗
n,µ

∗(t) ∼ W−1
(
ν + n,Σ∗0

)
, where

Σ∗0 = Σ0 +

n∑
i=1

(r∗i − µ
∗(t))(r∗i − µ

∗(t))T

2: µ∗(t+1)|r∗1, . . . , r
∗
n,Σ

∗(t+1)
∼ Nm

(
µ̄∗(t+1), Σ̄

∗(t+1)), where

µ∗(t+1)
=

(
nΣ∗(t+1)−1

+ ∆∗
−1

)−1 (
nΣ∗(t+1)−1

r̄∗ + ∆∗
−1π∗

)
Σ
∗(t+1)

=

(
nΣ∗(t+1)−1

+ ∆∗
−1

)−1

Once the posterior means E
(
µ∗|r∗1, r

∗
2, ..., r

∗
n

)
and E

(
Σ∗|r∗1, r

∗
2, ..., r

∗
n

)
for µ∗ = P∗µ and Σ∗ = P∗ΣP∗T are calculated, we

can transform back to the means for µ and Σ

µ̃ = E(µ|r1, r2, . . . , rn) = P∗−1E(µ∗|r1, r2, . . . , rn)

and
Σ̃ = E(Σ|r1, r2, . . . , rn) = (P∗−1)E(Σ∗|r∗1, r

∗
2, . . . , r

∗
n)(P∗−1)T

The optimal portfolio can then be determined by using the standard mean-variance optimization method: maximize
wT µ̃ − δ

2 wT Σ̃w with respect to the weights w for an investor with the risk aversion parameter δ. The resulting optimal
portfolio weights w∗ can be expressed as

w∗ =
1
δ
Σ̃
−1
µ̃

2.2 Implementation

The simulations in this section were done a couple of years ago, which is the reason why the data ends in 2017, as
we will soon see. At that time, downloading closing prices was easily done using the quantmod package in R. For
illustration purposes, 4 stocks were considered: Apple(AAPL), Amazon(AMZN), Alphabet Inc Class C.(GOOG) and
Microsoft(MSFT). Closing prices for those 4 stocks from January 2nd 2015 to May 1st 2017 were considered and the
returns were computed. This data is split into two parts: one representing the current data (the last n returns r1, r2, . . . , rn,
here n = 21) and the rest representing historical data used to determine the prior parameters in the model. We chose
n = 21 because we are thinking of modeling the returns that happen within a period of approximately a month and 21
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is the average number of trading days in a month. For this example, suppose that the investor believes that AAPL will
outperom AMZN by 2% and that GOOG will outperform MSFT by 5%. The investor’s views are presented as

Pµ ∼ N(q,Ω)

where

P =

[
1 −1 0 0
0 0 1 −1

]
,q =

[
0.02
0.05

]
,Ω =

[
0.0001 0

0 0.0001

]
where the columns in P represent the four stocks AAPL, AMZN, GOOG, MSFT, respectively. The following augmented
matrix P∗ was created according to the procedure suggested in section 2.1.

P∗ =


1 −1 0 0
0 0 1 −1
0 1 0 0
0 0 0 1


We split the historical data into groups, where each group contains 21 returns. The mean vectors were calculated for each
group. Then the average and the covariance matrix of those mean vectors were used to determine the entries in the vector
π∗ and covariance matrix ∆∗, in addition to the already supplied q and Ω according to investor’s views, in equation (15).

π∗ =


0.02
0.05

0.0011579
0.0007917



∆∗ =


ω1 0 −1.072 × 10−5 −2.665 × 10−7

0 ω2 1.980 × 10−6 −5.312 × 10−6

−1.072 × 10−5 1.980 × 10−6 1.487 × 10−5 3.732 × 10−6

−2.665 × 10−7 −5.312 × 10−6 3.732 × 10−6 9.331 × 10−6


Where ω1 = ω2 = 0.0001. Our prior parameters are all fully supplied and Algorithm 1 was implemented.

A burning period of 103 was chosen and the number of iterations for the Gibbs Sampler is 104. After the Gibbs Sampler
is completed, one would only have to take the mean of the simulated µ∗(t), call it µ̃∗, and the average of the simulated Σ(t),
call it Σ̃∗. The specific values obtained from the Gibbs Sampler for those examples are:

µ̃∗ =


0.0001361794
0.0017267513
0.0011532351
0.0009999096



Σ̃
∗

=


8.867 × 10−5 −1.423 × 10−5 −7.09 × 10−5 −2.234 × 10−6

−1.423 × 10−5 9.588 × 10−5 1.517 × 10−5 −1.385 × 10−5

−7.09 × 10−5 1.517 × 10−5 9.562 × 10−5 2.4 × 10−5

−2.234 × 10−6 −1.385 × 10−5 2.400 × 10−5 4.488 × 10−5


However, one has to remember that those were transformed using P∗, hence now we would have to transform them
back into the original space: µ̃ = P∗−1µ̃∗, Σ̃ = P∗−1Σ̃

∗P∗−T . As shown before, the weights are computed according to
w∗ = 1

δ
Σ̃
−1
µ̃, where δ = 2.5, as chosen in the original Black-Litterman model. Also there has been extensive research

when it comes to choosing δ (please see Janecek [2004]). For trading stocks, a risk aversion coefficient between 2 and 3
is reasonable. More specifically, the weights in this example are:

w∗ =


0.46667044
−0.03372112
0.46770841
−0.03190002


The weights are normalized so that the sum of the absolute values of their entries is 1. Also, please note that a negative
weight is possible and it corresponds in finance to short selling. Short selling 1 share of Google is done by borrowing 1
share of Google from the market manager, selling it on the market instantly, but with the promise of buying it back and
giving it back to the market manager at some future date.
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2.3 Sensitivity Analysis

In the analysis presented in this section, we will use the same data-set and investor personal views inputs (P and q). In
practice, it is of great interest to see how sensitive the models are to changes in the confidence levels that the investor
inputs (Ω). Our intuition about the world says that:

• The more confident the investor is in the inputted views, the closer the model should follow them

• The less confident the investor is in the inputted views, the closer the model should follow history

Our intuition of the world should be reflected in the model assumptions and also in the results. The following remark
shows that they are indeed:
Remark 1. Since Pµ ∼ N(q,Ω), we have that limΩ→O2

Pµ = q a.s.

Therefore, as the diagonal entries ofΩ get smaller and smaller (diag (Ω) contains standard deviations squared), we expect
to get closer and closer to q.

This remark suggests also the way in which we will conduct sensitivity analysis. For both models an exhaustive method
was implemented that would compute for each pair of diagonal entries inΩ a posterior mean µ̃∗. This is transformed back
to the original space of returns: µ̃ = P∗−1µ̃∗. Once this is obtained, the distance |Pµ̃−q| can be calculated for both models.
The following graphs have as 2 of the axes the 2 diagonal entries inΩ and the third axis represents the Euclidean distance
||P

(
P∗−1µ̃∗

)
− q||2:

Figure 1. Results of Ω for the extension model Figure 2. Results of Ω for original model

Both Figure 1 and Figure 2 confirm our intuition on how the models should work in the real world. As ω1 (confidence in
the first view labeled as o1 in the figure) and ω2 (confidence in the second view labeled as o2 in the figure) decrease, the
distance gets closer and closer to 0. As o1 and o2 increase, the distance seems to plateau to a certain value (the history).

3. A Bayesian Approach, When Historical Data is Unavailable

3.1 Introduction

A very interesting idea for a different prior on the covariance matrix is presented by Leonard & Hsu [1992] and by Albert
et al. [2000]. Again, suppose that r1, r2, . . . , rn are the n independent returns, where each ri follows a normal distribution
specified in equation (7).

ri ∼ Nm(µ,Σ), for i = 1, 2, . . . , n

The likelihood function for µ and Σ is

L(µ,Σ|r1, r2, . . . , rn) = (2π)−
nm
2 |Σ|−

n
2 exp

−1
2

n∑
i=1

(ri − µ)TΣ−1(ri − µ)
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Let A = log(Σ) = (ai j)i, j={1,2,...,m} and S = 1
n
∑n

i=1(ri − µ)(ri − µ)T , the likelihood of µ and A can be represented as

L(µ,A|r1, r2, . . . , rn) = (2π)−
nm
2 exp

{
−

n
2

Tr
(
A + Se−A

)}
(24)

Here we define the operator Vec∗(.) that stacks in a vector the entries of a matrix parallel to the main diagonal. For
example,

α = Vec∗(A) =
[
a11 a22 ... ann| a12 a23 ... an−1n|...|a1n

]T

Leonard & Hsu [1992] approximated the likelihood of µ and A in equation (24) using Bellman’s iterative solution (please
see Bellman [1997]) to the linear Volterra integral equation, and reported the corresponding approximated likelihood
function for α = Vec∗(A) = Vec∗(log(Σ)) and µ:

L∗(µ,α|r1, r2, . . . , rn) = (2πe)−
nm
2 |S|−

n
2 exp

{
−

1
2

(α − λ)T Q(α − λ)
}
. (25)

Here, λ = Vec∗ (log(S)) and the (d × d) symmetric almost surely positive definite matrix Q is the likelihood information
matrix of α and is a function of the eigenvalues and normalized eigenvectors of S, where d = 1

2 m(m + 1). In particular,

Q =
n
2

m∑
i=1

fiifT
ii + n

m∑
i=1

m∑
j=1

ξi jfi jfT
i j (26)

where ξi j =
(di−d j)2

did j[log(di)−log(d j)]2 , di and d j are the ith and jth eigenvalues of S for i, j = {1, . . . ,m} and the vectors fi j satisfy

the condition αT fi j = eT
i Ae j, ei and e j are the normalized eigenvectors of S that correspond to the ith eigenvalue di and the

jth eigenvalue d j.

We notice that the approximate likelihood function (25) has a multivariate Normal form with respect to α. Specifically,
the approximate likelihood function for α is a d = 1

2 m(m + 1) dimensional multivariate Normal distribution with mean
vector equal to λ and covariance matrix equal to Q−1. This functional form of the approximate likelihood function in
equation (25) will be the driving mechanism in the Bayesian analysis for α.

3.2 The Model

In the case when the historical information is not available and we do not have substantial prior information about the
convariance Σ, we consider a vague prior for

α = Vec∗(log(Σ)) = (α1, α2, . . . , αm, αm+1, . . . , αd)T ,where d =
1
2

m(m + 1)

The prior is specified in two stages:

• In the first stage, given θ1, σ
2
1, θ2, and σ2

2, the diagonal elements of A = log(Σ), α1, α2, . . . , αm which correspond
to the variance components of the covariance matrix Σ and each component αi follows an independent normal
distribution with a common mean θ1 and a common variance σ2

1. The off-diagonal elements of A = log(Σ),
αm+1, αm+2, . . . , αq, which correspond to the covariance components of the covariance matrix Σ, each follow an
independent normal distribution with a common mean θ2 and a common variance σ2

2 and those diagonal elements
and off-diagonal elements are independent to each other.

• In the second stage, we assume independent diffuse priors for θ1, θ2 and for σ2
1, σ

2
2, respectively. In addition to our

priors for α, we include our investors views for consideration.

We summarize our model when the historical information is not available as follows:

r1, r2, . . . , rn|µ,Σ
iid.
∼ N(µ,Σ) (27)

Pµ ∼ N(q,Ω) (28)

α|θ,∆ ∼ N(Jθ,∆) (29)

π(θ) ∝ 1

π(σ2
1, σ

2
2) ∝ 1

8
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where

J =



1 0
: :
1 0
0 1
: :
0 1


, ∆ =

[
σ2

1Im 0
0 σ2

2Id−m

]
, θ =

[
θ1
θ2

]

The parameters θ1 and θ2 can be integrated out from the joint density of α and θ given σ2
1 and σ2

2:

π(α|σ2
1, σ

2
2) ∝

∫
θ
π (α|θ,∆) π(θ)dθ

∝

∫
θ
|∆|−

1
2 exp

{
−

1
2

(α − Jθ)T∆−1(α − Jθ)
}

dθ

=|∆|−
1
2 |JT∆−1J|−

1
2 exp

{
−

1
2
αT Gα

}
, (30)

where
G =

(
Id − J(JT∆−1J)−1JT∆−1

)T
∆−1

(
Id − J(JT∆−1J)−1JT∆−1

)
(31)

Combining the approximated likelihood in equation (25), the prior for the covariance matrix in equation (30) and the
investors views in equation (28), we obtain that the approximate joint distribution is:

π∗(α,µ, σ2
1, σ

2
2, r1, ..., rn) ∝ |∆|−

1
2 |JT∆−1J|−

1
2 exp

{
−

1
2
αT Gα

}
× |S|−

m
2 exp

{
−

1
2

(α − λ)T Q(α − λ)
}

× |Ω|−
1
2 exp

{
−

1
2

(Pµ − q)TΩ−1(Pµ − q)
}

(32)

The approximated conditional posterior density of α given σ2
1, σ2

2 and µ is:

π∗(α|r1, ..., rn, σ
2
1, σ

2
2,µ) ∝ exp

{
−

1
2

(
αT Gα + (α − λ)T Q(α − λ)

)}

By completing the square, we can combine the two quadratics in α from the exponential and we obtain the posterior:

π∗
(
α|r1, r2, ..., rn, σ

2
1, σ

2
2,µ

)
∝ exp

{
−

1
2

(α − α∗)T (Q + G) (α − α∗)
}
, (33)

where α∗ = (Q+G)−1Qλ. That is, α is approximately normally distributed with mean α∗ and covariance matrix (Q+G)−1,
where Q and G are specified in equations (26) and (31), respectively.

Moving our attention to the posterior of σ2
1 and σ2

2, we have to pay attention and collect the terms that depend on ∆ and
G, since the latter also depends on ∆:

π(σ2
1, σ

2
2|α,µ, r1, ..., rn) ∝ |∆|−

1
2 |JT∆−1J|−

1
2 exp

{
−

1
2
αT Gα

}
Written in scalar form, this distribution is:

π(σ2
1, σ

2
2|α,µ, r1, ..., rn) ∝

(
σ2

1

)− 1
2 (m−1)

exp

− 1
2σ2

1

m∑
i=1

(αi − αv)2


×

(
σ2

2

)− 1
2 (d−m−1)

exp

− 1
2σ2

2

d∑
i=m+1

(αi − αc)2


9
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That is, given α and µ, the quantities σ2
1 and σ2

2 are a posteriori independent. Furthermore, σ2
1 has an Inverse Gamma

distribution with shape 1
2 (m − 3) and scale 1

2
∑m

i=1(αi − αv)2. Similarly, σ2
2 has an Inverse Gamma distribution with shape

1
2 (d − m − 3) and scale 1

2
∑d

i=m+1(αi − αc)2, where αv = 1
m

∑m
i=1 αi and αc = 1

d−m
∑d

i=m+1 αi.

The conditional posterior of µ given α, σ2
1, σ

2
2 is proportional to the product of the likelihood function of µ and Σ in

equation (27) and the prior density that represents the investor’s views in equation (28):

π
(
µ|α, σ2

1, σ
2
2, r1, ..., rn

)
∝ exp

−1
2

n∑
i=1

(ri − µ)TΣ−1(ri − µ)


× exp

{
−

1
2

(Pµ − q)TΩ−1(Pµ − q)
}
∝ exp

{
−

n
2

(r − µ)TΣ−1(r − µ)
}

× exp
{
−

1
2

(Pµ − q)TΩ−1(Pµ − q)
}

∝ exp
{
−

n
2

(
µTΣ−1µ − 2rT

Σ−1µ + rT
Σ−1r

)}
× exp

{
−

1
2

(
µT PTΩ−1Pµ − 2qTΩ−1Pµ + qTΩ−1q

)}

π
(
µ|α, σ2

1, σ
2
2, r1, ..., rn

)
∝ exp

{
−

1
2

(
µ − µpost

)T
Σpost

(
µ − µpost

)}
,where

Σpost =
(
nΣ−1 + PTΩ−1P

)−1

µpost = Σpost

(
nΣ−1r + PTΩ−1q

)
That is the exact conditional posterior distribution of µ given α, σ2

1 and σ2
1 is an m dimensional normal distribution with

mean µpost and covariance matrix Σpost.

3.3 Implementation

Now that we have derived our posteriors, we are ready to implement them using a Gibbs Sampler. A Metropolis-Hastings
algorithm will be needed for sampling α, for which we require the exact posterior distribution as well as an approximated
posterior distribution from which a random sample can be taken. We consider the approximate posterior for α, given
σ2

1, σ
2
2 and µ in equation (33):

π∗
(
α|r1, r2, ..., rn, σ

2
1, σ

2
2,µ

)
∝ exp

{
−

1
2

(α − α∗)T (Q + G) (α − α∗)
}
,

The exact posterior density is proportional to the product of the likelihood function specified in equation (24) and the prior
in equation (30):

π(α|r1, ..., rn, σ
2
1, σ

2
2,µ) ∝ exp

{
−

n
2

Tr
(
A + Se−A

)
−

1
2
αT Gα

}

The Metropolis-Hastings step at tth iteration in the Gibbs Sampler would involve simulating a candidate value from the
approximate posterior distribution: α̃ ∝ N(α∗, (Q + G)−1) and we would accept it with probability min(ρ, 1), where

ρ =
π
(
α̃|r1, ..., rn, σ

2
1

(t)
, σ2

2
(t)
,µ(t)

)
π
(
α(t)|r1, ..., rn, σ

2
1

(t)
, σ2

2
(t)
,µ(t)

) · π∗
(
α(t)|r1, ..., rn, σ

2
1

(t)
, σ2

2
(t)
,µ(t)

)
π∗

(
α̃|r1, ..., rn, σ

2
1

(t)
, σ2

2
(t)
,µ(t)

)
The great advantage of the Leonard-Hsu prior is that we can actually sample a covariance matrix starting from just 2
initial values: σ2

1 and σ2
2. Those 2 values give us ∆ and G (using equation (31)) and together with Q, which actually just

depends on the sample covariance matrix, we can start the Gibbs-Sampler with the Metropolis-Hastings step for sampling
α. Therefore, we arrive at the following Gibbs Sampler:

10
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Algorithm 2 Gibbs Sampler log(Σ)

1: α(t+1) =

α̃ ∼ N
((

Q(t) + G(t)
)−1

Q(t)λ(t),
(
Q(t) + G(t)

)−1
)

w.p. min(ρ, 1)

α(t)otherwise

2: Since α = Vec∗(log(Σ))⇒

compute Σ(t+1) = exp
{
Vec∗−1

(
α(t+1)

)}
keep Σ(t)

3:


σ2

1
(t+1)
∼ IG

(
m−3

2 , 1
2
∑m

i=1

(
αi

(t+1) − αv
(t+1)

)2
)

σ2
2

(t+1)
∼ IG

(
d−m−3

2 , 1
2
∑d

i=m+1

(
αi

(t+1) − αc
(t+1)

)2
) ⇒

⇒ ∆(t+1) =

σ2
1

(t+1)In 0
0 σ2

2
(t+1)Id−n


4: Let Σµ =

(
nΣ(t+1)−1

+ PTΩ−1P
)−1

, µ(t+1) ∼ N
(
Σµ

(
nΣ(t+1)−1r + PTΩ−1q

)
,Σµ

)
5: Compute S(t+1) =

∑n
i=1

(
ri−µ(t+1))(ri−µ(t+1))T

n , λ(t+1) = Vec∗
(
log

(
S(t+1)

))
, d j

(t+1) and e j
(t+1) the eigenvalue and normalized eigenvector of S(t+1) respectively.

6: Compute f(t+1)
i j by identifying the coefficients of the entries of the log

(
Σ(t+1)

)
matrix from the equation Vec∗

(
log

(
Σ(t+1)

))T
fi j

(t+1) = ei
(t+1)T log

(
Σ(t+1)

)
e j

(t+1)

7: Compute ξ(t+1)
i j =

(di
(t+1)−d j

(t+1))2

di (t+1)d j (t+1)
(
log

[
di (t+1)

)
−log(d j (t+1))

]2
8: Compute Q(t+1) = n

2
∑m

i=1 fii
(t+1)fii

(t+1)T
+ n

∑m
i=1

∑m
j=1 ξi j

(t+1)fi j
(t+1)fi j

(t+1)T

9: Compute

G(t+1) =

(
Id − J(JT∆(t+1)−1J)−1JT∆(t+1)−1

)T
∆(t+1)−1

×

(
Id − J(JT∆(t+1)−1J)−1JT∆(t+1)−1

)

3.4 Results

Just like before, we would like to conduct sensitivity analysis for the confidence in the investor views (the diagonal
elements of the Ω matrix denoted by ωi). We would expect the model to behave in a similar manner as before:

• The more confident the investor is in the inputted views, the closer the model should follow them

• The less confident the investor is in the inputted views, the closer the model should follow history

We choose the same 4 stocks (AAPL, AMZN, GOOG, MSFT), but since this work was done slightly more recently,
the daily returns from January 2nd 2014 to December 29th 2017 were considered. The data can be obtained using the
quantmod package in R. We will use the following inputs (again the columns are in order AAPL, AMZN, GOOG, MSFT
and the rows represent the views):

q =

[
0.02
0.05

]
,P =

[
−1 1 0 0
0 0 1 −1

]

This approach is more computationally expensive than just having an Inverse Wishart prior on Σ. Therefore, the sensitivity
analysis was ran in parallel on multiple cores (each core running the Gibbs Sampler for 1 pair (ω1, ω2)) and the range
itself was split into 4 ranges:

(1) ω1 ∈
{
10−6, 4 · 10−6, 7 · 10−6, 10−5

}
and ω2 ∈

{
10−6, 4 · 10−6, 7 · 10−6, 10−5

}
(2) ω1 ∈

{
10−5, 4 · 10−5, 7 · 10−5, 10−4

}
and ω2 ∈

{
10−5, 4 · 10−5, 7 · 10−5, 10−4

}
(3) ω1 ∈

{
10−6, 4 · 10−6, 7 · 10−6, 10−5

}
and ω2 ∈

{
10−5, 4 · 10−5, 7 · 10−5, 10−4

}
(4) ω1 ∈

{
10−5, 4 · 10−5, 7 · 10−5, 10−4

}
and ω2 ∈

{
10−6, 4 · 10−6, 7 · 10−6, 10−5

}
The burn period was set to 103 and the iterations to 104. Albeit those seem relatively small, convergence is actually
achieved very fast when ωi are small.

If we look at Figure 3, we notice that in this version of the model, the distance converges to 0 very fast as o1 (ω1 in the
model) and o2 (ω2 in the model) go to 0. Also, we notice that as o1 and o2 get bigger, it converges very fast to a stabilizing
distance. This is consistent with our intuition since if we are very confident in our views, the model should put a lot more
importance on them, while if we are not confident at all in our views, the model should just take into consideration the
history. Indeed, if we use only the history, the unbiased estimator for µ is the sample mean of the returns (r) and therefore
the distance becomes |Pr − q| = 0.05388875.
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Figure 3. Distances for log(Σ) prior

3.5 Portfolio Performance in January 2018

We will proceed by looking at the performance over the month of January 2018 of a portfolio obtained using this model
trained on the same daily returns between January 2nd 2014 and December 29th 2017. For those types of analyses, an
initial investment of $100 000 was considered, without any commissions, capital buffers for short selling, etc. Just as
we did before, in order to obtain the portfolio, we would estimate using Gibbs Sampling the posterior mean (µ̂) and the
posterior covariance (Σ̂). The portfolio weights which maximize posterior portfolio mean while minimizing posterior
variance (risk) are w = 1

2.5 Σ̂
−1
µ̂. Using those weights we compute the profits or looses that we would obtain over the

month of January 2018 (daily returns between January 2nd 2018 and January 30th 2018) with an initial investment of
$100 000. Here, one could use a different investment horizon also.

The same P, q, grid for ωi, burn period, iteration period were used as before. Figure 4 is a 3D plot of the sensitivity of
the profits to changes in investor’s confidence. We observe a profit that is approximately between $10 000 and $58 000.
In order to interpret this curve, we would have to know what actually happened in the month of January 2018 using the

views inputted. More specifically, over the month of January 2018, PrJan2018 =

[
0.23996743
0.01366718

]
. Albeit the 1st view inputted

is a 10th of what happened in reality (AMZN outperformed AAPL by almost 24% in January 2018), the profits curve still
gives a higher importance on this view than on the 2nd view. Indeed, profits increase drastically as we decrease ω1 and
keep ω2 constant.

A 24% gain on AAPL in a month is an extreme scenario, let us consider a different stock instead of AMZN. We will replace
AMZN with FB (Facebook) and we will keep all the inputs the same as before, except that we will input 3 different values

for q. In Figure 5 we will present the results for profits when the investor considers q =

[
0.02
0.05

]
(a random guess), in

Figure 6 the ”well informed” investor (exactly what happened during the month of January 2018) q =

[
0.06212815
0.01366718

]
and

in Figure 7 the ”poorly informed” investor (exactly the opposite of what happened during the month of January 2018)

q =

[
−0.06212815
−0.01366718

]
:

• Since PrJan2018 =

[
0.06212815
0.01366718

]
, the view in which q =

[
0.02
0.05

]
has returns that are much closer to what happened
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Figure 4. Profits with AMZN in and q = [0.02, 0.05]T

Figure 5. Profits FB instead of
AMZN and q = [0.02, 0.05]T

Figure 6. Profits FB instead of
AMZN and view exactly like

reality

Figure 7. Profits FB instead of
AMZN and view opposite of

reality

in reality than when we considered AMZN instead of FB (first view in reality was 24% with AMZN in). This is
reflected in Figure 5, where we notice that now the second view has a greater influence on the profits curve than
what we have seen in Figure 4.

• If we compare Figures 6 and 7, we notice that they seem to be a reflection of each other with respect to a plane
parallel to the ”o1 vs o2” plane. This would make sense since the only difference between the two is that in Figure

6 we have q =

[
0.06212815
0.01366718

]
(exactly reality) and in Figure 7 we have q = −

[
0.06212815
0.01366718

]
(opposite of reality).

4. Conclusion

We have seen that our model follows our intuition: the more confident the investor is in their views, the closer the model
will follow them and the less confident the investor is in their views, the more the model will follow history. Moreover, in
the version containing the Leonard-Hsu prior, the profit curve when the investor is lucky and inputs views exactly as they
will happen (please see Figure 6) is a mirror image of the one when they input the opposite as what will happen (please
see Figure 7).

In our next paper we will introduce another full Bayesian version of Black-Litterman, but this time for large data-sets.
The motivation to move to a large number of variables is driven by the fact that the investor might want to use the data for
the whole market (S &P500), despite the fact that they might have very few views (for example, 2 as we presented in this
paper). Our next version will introduce a Bayesian factor model in order to reduce the dimension. This is done because
the matrix Q, defined in equation (26), is of size d × d =

m(m+1)
2 ×

m(m+1)
2 and is randomly generated at each iteration in a

Gibbs Sampler. Therefore, if one considers the whole S &P500, the size of this matrix in terms of memory would be of
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around 106GB. Hence, after applying factor models, we will introduce a prior on the covariance matrix of the common
factors instead of introducing a prior directly on the covariance matrix of the returns. The dimension of the covariance
matrix of the common factors is q × q (q=number of factors), which is much smaller than m × m (m=number of stocks),
the dimension of the covariance matrix of the returns.
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