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Abstract

This study presents an investigation of an optimal slope design in the second degree Kronecker model for mixture
experiments in three dimensions. The study is restricted to weighted centroid designs, with the second degree Kronecker
model. A well-defined coefficient matrix is used to select a maximal parameter subsystem for the model since its full
parameter space is inestimable. The information matrix of the design is obtained using a linear function of the moment
matrices for the centroids and directly linked to the slope matrix. The discussion is based on Kronecker product algebra
which clearly reflects the symmetries of the simplex experimental region. Eventually the matrix means are used in
determining optimal values of the efficient developed design.

Keywords: information matrix, moment matrix, optimal design, response surface methodology, weighted centroid
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1. Introduction

This study deals with the exploration and optimization of response surface. This is a problem faced by experimenters in
many technical fields, where in general the response of interest is affected by a set of independent factors. In this
response surface methodology (RSM) problem we assume a response of interest is influenced by three factors with the
intent of optimizing this response. The response in linked to the factors through a second degree polynomial model.

In this mixture experiment the response is a function of the proportions of each ingredient. Let x represent the

3
proportion of the ith ingredient in the mixture. Then, we have two conditions, x >0,i=123 and > x =1. Evidently

i=1

the levels of the factors X; are interdependent. The experimental region for the mixture problem is a two dimensional

simplex.
2. Materials and Methods
Let 1,=(1, ..., 1) e R™ be a unity vector. The experimental conditions t=(t; t, _t,) with t;>0 of a mixture experiment

are points in the probability simplex,

T, ={t=t, t, .. t) elo, 1]m:1m't=1}.

Under experimental conditions, teT,, the response Y, is taken to be a quantitative random variable. The responses
are assumed to be uncorrelated with equal but unknown finite variance say o> < (0, <) . The design in point has finite
number of support points.

This study adopts a second degree polynomial regression function with the expected response:

E(Y) = f®)0=2 04" + (6, + 0t 1)
i=1 !,j_:l
i<j
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where Y,, is the response under experimental condition tc1 , and 6=(6,, 6,, 0,,) €R™ an unknown

parameter. (see (Draper & Pukelsheim, 1998)).

A general review of design environment is done by (Pukelsheim, 1993) while (Klein, 2004) showed that the class of
weighted centroid designs with at least two ingredients is essentially complete for the Kiefer ordering, (Draper, Heilijers,
& Pukelsheim, 2000). As a consequence, we restrict the study to weighted centroid design.

General Design Problem
The problem of finding a design with maximum information on the parameter subsystem K'¢ can be formulated as;

Maximize ¢,(C(M(7))) with zeT @)

Subjectto C, (M(7))ePD(s) 7T

where T denotes the set of all designs T,,. The side condition C,(M(z)) € PD(s)is equal to the existence of an unbiased
linear estimator for K’'@ under t, Pukelsheim (1993). In which case, the design t is called feasible for K'¢. Any
design solving problem (2) above for a fixed pe (-0, 1] is called ¢, —optimalfor K'@in T. For all pe (-oo, 1], the
existence of @, —Optimaldesign for K'@is certain, (Pukelsheim, 1993).

Moment Matrix

An experimental design 7 is a probability measure on the experimental domain with a finite number of support points.
Each support point s € supp(t) directs the experimenter to take a proportion T({t}) of all observations under
experimental condition T. The statistical properties of a design are reflected by its moment matrix:

M (7) =! f(t) f (t)'dz € NND(m?) @)

where, NND(m?) denotes the cone of nonnegative definite m?xm? matrices. The entries of M(t) are fourth moments of t,
since the regression function f (t) is purely quadratic.

Information matrix
We use unit vectors e; e, e; and set e;=¢; g €; for i<j i,j={1, 2,3} and define the coefficient matrix

mzx[m;rl]
K= (Kl; Kz) eR
where

K, = Ze" |

m '

and Ko=7 Z(e +€;)E; 4)

ij=1
i<j

Obtainable as follows:
Frome, =(100)", ¢, = (010) and e, = (o ()1) we have:

e, =6 ®e = (10ooo0000),e22_e®e_(000010000)
e, =€, ®e, = (ooo000001),e12_e®e—(010000000)
e, —e,®e,=(0 0 01 00000 . e,=e®,=0010000 0 0),

e, =6, Qe = (000000100),e23_e2®e3 ©0000100 0,
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e,=6,®e,=(0 0 0 00 0 01 0). E,=(L 0 0), E,=( 1 0) and

E,=0 0 1)

Therefore, we obtain;

1 0 O
O O O
O O O
O O O
K, =e,e '+e,,e,'+e,,e; =0 1 O
O O O
O O O
O O O
O O 1
and
0 0 o0
100
0 % o0
i 00
K, =(e, +e,)E, +(e5 +e5)E; +(e,; +€5,)E; =0 0 O
0 0 ¢
0 %o
00 3
0 0 0
Thus
1 000O0O
000100
000010
00000
K=(K, K,)=|0 1 0 0 0 0fs
000001
0000O0Z%0O
000001
001 00O

The full parameter vector g < g™ for model equation (1) is not estimable. We select a maximal sub parameter vector:

m+1
K'o — (19ii):lsism c ER[ 2 ]
o (eij + aji)’lskjsm

for all
2
6 cR" ®)
To optimize the response, we focus on the movement of the design center along the direction of the directional

o . NENG) A . . . L .
derivatives of the response function, that is, a—t‘ Since the designs that attain certain properties in Y (estimated
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response) do not enjoy the same properties for the estimated derivatives (slopes), we consider experimental designs that
are constructed with derivatives in mind, (Murty & Studden, 1972) and (Ott & Mendenhall, 1972).

In practice, it is often of interest to investigate the slope of the response surface at a point t, not only over the axial
directions, but also over any specified direction. We develop the concept of robust slope over all directions. Define D, a
matrix arising from the differentiation of f(t)'¢ with respect to each of the m independent factors, (see (Sung, Hyang,
& Rabindra, 2009)). That is;

’

D_[af'(t)’af'(t)’ ﬁ'(t)J, where, f(t)=t®t (6)

a o a,

An important matrix for the design with three ingredients is the adjusted 3x6 slope matrix H,=DK..
The amount of information a design contains on K* @ is captured by the information matrix:

Ci(M(t))=min{LM(t)L’ |_e m[m; 1}"‘2 :LK= I[mzﬂj} (7

I m+1) (m+1) . . . . : . .
where [“”1] denotes the ) X ) identity matrix and L is the left inverse of K derived from the linear
2

relation, L = (K'K)_l K'. The information matrices for K0 takes the form:

C, = LM (1)L’ eNND((m;l)J ®)

Thus the information matrices for K’0 are linear transformations of the moment matrices.
We then consider optimizing the information matrices for K’0 of the form:

C =H,C,H,eNNND(m) 9)
Optimality Criteria

We will compute optimal design for the polynomial fit model using matrix mean ¢p which is an information function
(Pukelsheim, 1993). For an information matrix C,(M(t)) € PD(m) the kiefers ¢p -criteria are defined by:

A (€) if p=—oo

4,(C) = det) | if p=o (10)

[(mlﬂtracecp} if  pe[-c1\{0}

2

where A in(C) refers to the smallest eigenvalue of C. By definition ¢p (C) is a scalar measure which is a function of

the eigenvalues of C for all p € [-90;1]. (Pukelsheim, 1993) .
Consequently a design with maximum information on the parameter subsystem K'6 solves the problem;

Maximize @,(Cy(M(1))) witht€ T
Subject to C,(M(1)) € PD(m) (11)
Suppose 77(cx) satisfies the side condition C,(M(t)) € PD(m) and write Ci=Ci(M(77;) ) for j=(1, 2, 3). For all pe (-
00:1], n(a) solves problem (11) if and only if;

traced.C.CPH! =traceH,C"H; forall jed(x) 12)
o °|<traceH,CPH, otherwise
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(T. K. , 2004).

3. Construction of the design

3
We consider the weighted centroid design 7(c) =D a;n; = oy, +a,m, + a5, with three elementary centroids
j=1

(captured from the support points):

1 0 0 1/2\(1/2)(0 1/3
m =110 |1} |0 ,m,=4|2/2||0 ||1/2]|; and 7, =4|1/3
o) (o) 1 o Jlw2)le 1/3

These designs discovered by ( (Scheffe', 1958) and (H., 1963)), are exchangeable and invariant under permutations, (T.
K., 2002). Weighted centroid designs are exchangeable.

The moment matrices for 77, and 77, are:

/3 0 0 0O O 0O 0 o0 O

0o 0 0 o0 O o0 o0 o0 O

o 0 0 o o0 o0 o0 o0 O

o 0 0 o0 O o0 o0 o0 O
M(@#)={0 0O 0 0 13 0 0 0 O

o 0 0 o0 0O o0 o0 o0 O

o 0 0 o o0 o o0 o0 O

o 0 0 o0 0O o0 o0 o0 O

0 0 0 0 0 0 0 0 1/3

and

1/24 1/48 1/48 1/48 1/48 0 1/48 0 1/48
1/48 1/48 0 1/48 1/48 O 0 0 0
1/48 0 1/48 O 0 0 1/48 0 1/48

1/48 1/48 0 1/48 1/48 O 0 0 0
M(n,)=|1/48 1/48 0 1/48 1/24 1/48 0 1/48 1/48|.
0 0 0 0 1/48 1/48 0 1/48 1/48
1/48 0 1/48 O 0 0 1/48 0 1/48
0 0 0 0 1/48 1/48 0 1/48 1/48
1/48 0 1/48 0 1/48 1/48 1/48 1/48 1/24
Defining matrix L = (K'’K)™K’ where K is the earlier defined (equation 4) coefficient matrix,

1 0 0 0 0 0O 0 0 O
o 0 0 0 1 0 0 0 0
C_kKyko| 0 0 0 0 0 0 0 0 1
0 32 0 32 0 0 0 0 O
0 0 32 0 0 0 32 0 0
0 0 0 0 0 32 0 3/2 0

The information matrices for the designs 77, and 77, are obtained as follows:
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1/3 0

0 1/3

~ - | o o
C=CMm)=LM@IL" = & o
0 0

0 0

and

C.=CM@) =LMMmNL = 0 16 o

1/24 1/48 1/48
1/48 1/24 1/48 1/16
1/48 1/48 1/24 0 1/16 1/16

0 0 0 0
0 0 0 0
/3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1/16 1/16 O

3/16

1/16 0 1/16 0 3/16 O
0 1/16 1/16 O

0 1/16

0 0

0 3/16

Using equations (13) and (14), we obtain the information matrix for the design 77(«) from;

C (M(17())) = ,C(M (1)) +,C(M (17,)) , s

8oy +a, 2 L 7Y
24 48 48 16
o Bayta, 2 @
48 24 48 16
73 2 Bara,
- - 48 48 24
C, =C(M@#(x))) = a a, 3a,
16 16 16
Z2 0 %2 0
16 16
0 G2 P2 0
16 16
This matrix has a regular inverse,
3 4 o -1
al al al
0 3 0 -t 0
2] o
0 O 3 0 -1
a1 a, a,
COME@N’ =y 1 " egay 1
o o 3oy, 3,
-1 0 -1 1 2(8a, + ;)
a, a, 3o, 3oy,
o 1 1
a o 3o, 3o,

The slope matrix D as defined by equation (6) is obtained as

2 t, t, t, 0 0t
D={0 t 0t 2t, t, O
0 0t 0 0 t,t

A corresponding adjusted slope matrix H, = DK is thus given by;
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0 0
t, 0
t, 2t

% 9
16
o %
16
a, a,
16 16
0 0
3o, 0
16
0 3a,
16
0
-1
a,
-1
a,
1
3,
1
3o,
2(8a, + y)
3o,

(13)

(14)

(15)
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t, 2t, 0
Ho=| 0 2t, 0 2t 0 2t
0 0 2t, 0 2t 2t

N
w(rn

wln wlN
iy

To get the D-optimal design we employ the relation, that 77(ex) is ¢, —optimal for K'@ inT ifand only if;

..., |=traceH,C"H; for j=12
trace H,C,C""H, _
<traceC” otherwise
From which, the unique D-optimal design for K'@ is derived using the equation (putting p=0)
trace H,C,C™"H =traceH ,C°H, =traceH,H; for j=1,2 (16)

The following results can be easily demonstrated using condition (16):

e Forj=1
1 12t12 _%(tltZ +t1t3) _%tiz _%tlz
H,C,CH, = o —4¢? 12t7 - 4(tt, +t,t,) — 4t , with
' - %tsz - %tez 12t32 - % (t’.l.t3 + tzts)

trace H,C,C "H; = 3i 2+ +12) -8 0t + i, + )| = _;96 i
(04

1 (2]
47 + 2 (1 +17) itt, ity
H,H{ = itt, 47 + 4 (1 +12) itt, , with
gt’.l.t3 gtzts 4'[32 + g(tl2 + t22 )

traceH,H, =%4(t1z +t) +t5) :%

. Ty S 49 638 248
The condition, traceH,C,C"Hg =traceH,H, implies that e, 27 giving oy == o
o Forj=2;
2+t +tt, +tt, t2+tt, 2 +tt,
H,C,C'H/ = 9 2 +tt, 2+t +tt, + Lt t2 +tt,
2 t? +tt, t2 +t,t, t2 +t2 + it + Lt
1, 8 142
with traceH ,C,CH = g(tf 2t b+ )= S
2 2

. - N 142 638 . . 71
Ty 4 = =——
The equation, traceH,C,C"H; =traceH;H, implies that Zla, 27 9VINg @=5

Therefore the unique D-optimal design for K'@ is
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(™) = ag, + oy, = o8y 1L
171 2'12 319 1 319 2"

The information matrix:

4at] +4b(t; +t2 +2tt, + 2tt) Ab(t? +17 + 2t ) Ab(t? +17 + 2t t,)

H,CH; = 4b(t? +1 +2tt,) dat] +4b(t? +17 + 2tt, + 2tt,) Ab(t2 +1t2 +2t,t,)
Ab(t? +12 + 2tt,) 4b(t? +12 +2t,t,) dat] +4b(t} +1t2 + 2t t, + 2t,t))

Where a=w, b=%2 ¢ - 29 and tt. _13

24 48 18 136
The maximum of the D-criterion is v(4) = (1j3 =0.5514-

5.964

4. Conclusion

The design presented is highly efficient and can be employed as a design for a finite sample size. Of importance is to
relate the weights to the number of support points for each centroid. However, the experimenter is cautioned to ensure
high accuracy levels in the measurement of ingredient levels.
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