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Abstract 

This study presents an investigation of an optimal slope design in the second degree Kronecker model for mixture 

experiments in three dimensions. The study is restricted to weighted centroid designs, with the second degree Kronecker 

model. A well-defined coefficient matrix is used to select a maximal parameter subsystem for the model since its full 

parameter space is inestimable. The information matrix of the design is obtained using a linear function of the moment 

matrices for the centroids and directly linked to the slope matrix. The discussion is based on Kronecker product algebra 

which clearly reflects the symmetries of the simplex experimental region. Eventually the matrix means are used in 

determining optimal values of the efficient developed design. 

Keywords: information matrix, moment matrix, optimal design, response surface methodology, weighted centroid 

design, Kiefer ordering  

1. Introduction 

This study deals with the exploration and optimization of response surface. This is a problem faced by experimenters in 

many technical fields, where in general the response of interest is affected by a set of independent factors. In this 

response surface methodology (RSM) problem we assume a response of interest is influenced by three factors with the 

intent of optimizing this response. The response in linked to the factors through a second degree polynomial model.  

In this mixture experiment the response is a function of the proportions of each ingredient. Let ix  represent the 

proportion of the ith ingredient in the mixture. Then, we have two conditions, 3,2,1,0  ixi  and 



3

1

1
i

ix . Evidently 

the levels of the factors ix are interdependent. The experimental region for the mixture problem is a two dimensional 

simplex. 

2. Materials and Methods 

Let 1m=(1, …, 1)' m  be a unity vector. The experimental conditions t=(t1, t2, …, tm) with ti ≥0 of a mixture experiment 

are points in the probability simplex,  
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Under experimental conditions, mTt , the response tY  is taken to be a quantitative random variable. The responses 

are assumed to be uncorrelated with equal but unknown finite variance say ),0(2  . The design in point has finite 

number of support points.   

This study adopts a second degree polynomial regression function with the expected response:  
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where tY , is the response under experimental condition 
mTt , and 

2

)...,,,( 1211

m

mm    an unknown 

parameter. (see (Draper & Pukelsheim, 1998)).  

A general review of design environment is done by (Pukelsheim, 1993) while (Klein, 2004) showed that the class of 

weighted centroid designs with at least two ingredients is essentially complete for the Kiefer ordering, (Draper, Heilijers, 

& Pukelsheim, 2000). As a consequence, we restrict the study to weighted centroid design. 

General Design Problem 

The problem of finding a design with maximum information on the parameter subsystem K  can be formulated as; 

Maximize ( ( ( )))p kC M   with T                                (2) 

Subject to TsPDMCk   )())((  

where T denotes the set of all designs Tm. The side condition )())(( sPDMCk  is equal to the existence of an unbiased 

linear estimator for K  under 𝜏, Pukelsheim (1993). In which case, the design 𝜏 is called feasible for K . Any 

design solving problem (2) above for a fixed p∈ (-∞, 1] is called optimalp  for K in T. For all p∈ (-∞, 1], the 

existence of optimalp  design for K is certain, (Pukelsheim, 1993).  

Moment Matrix 

An experimental design   is a probability measure on the experimental domain with a finite number of support points. 

Each support point s supp(τ) directs the experimenter to take a proportion T({t}) of all observations under 

experimental condition T. The statistical properties of a design are reflected by its moment matrix: 

                             )()'()()( 2mNNDdtftfM  


                             (3) 

where, NND(m²) denotes the cone of nonnegative definite m²×m² matrices. The entries of M(τ) are fourth moments of τ, 

since the regression function )(tf  is purely quadratic.  

Information matrix  

We use unit vectors e1, e2, e3 and set eij=ei ej for i<j  i,j={1, 2,3} and define the coefficient matrix  
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Obtainable as follows:  

From )001(1
e ,   0102e and   1003e  we have:  

  0000000011111 eee ,   0000100001122 eee , 

  1000000003333 eee ,   0000000102112 eee , 

  0000010001221 eee ,   0000001003113 eee , 

  0010000001331 eee ,   0001000003223 eee , 
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  0100000002332 eee ,   00112E ,   01013E  and 

  10023E  

Therefore, we obtain; 
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The full parameter vector 2m for model equation (1) is not estimable. We select a maximal sub parameter vector: 
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To optimize the response, we focus on the movement of the design center along the direction of the directional 

derivatives of the response function, that is, tY

t




. Since the designs that attain certain properties in Y (estimated 
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response) do not enjoy the same properties for the estimated derivatives (slopes), we consider experimental designs that 

are constructed with derivatives in mind, (Murty & Studden, 1972) and (Ott & Mendenhall, 1972). 

In practice, it is often of interest to investigate the slope of the response surface at a point t , not only over the axial 

directions, but also over any specified direction. We develop the concept of robust slope over all directions. Define D, a 

matrix arising from the differentiation of ( )f t   with respect to each of the m independent factors, (see (Sung, Hyang, 

& Rabindra, 2009)). That is; 
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An important matrix for the design with three ingredients is the adjusted 63  slope matrix 0H DK .   

The amount of information a design contains on K’  is captured by the information matrix: 

                Ck(M(τ))=min{LM(τ)L’  L
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 identity matrix and L is the left inverse of K derived from the linear 

relation, KKKL  1)( . The information matrices for K’θ takes the form: 
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Thus the information matrices for K’θ are linear transformations of the moment matrices. 

We then consider optimizing the information matrices for K’θ of the form: 

                  )(000 mNNNDHCHC                                     (9) 

Optimality Criteria 

We will compute optimal design for the polynomial fit model using matrix mean p  which is an information function 

(Pukelsheim, 1993). For an information matrix Ck(M(τ))  PD(m) the kiefers p -criteria are defined by: 

                           












































 








 

}0{\]1;[

0)det(

)(

)(

2

1

1

min

2

1

1

piftraceC

pifC

pifC

C
p

p

m

p

m



                           (10) 

where  min(C) refers to the smallest eigenvalue of C. By definition p (C) is a scalar measure which is a function of 

the eigenvalues of C for all p[- ;1]. (Pukelsheim, 1993) .  

Consequently a design with maximum information on the parameter subsystem 'K  solves the problem; 

Maximize p (Ck(M(τ))) with τТ 

Subject to Ck(M(τ))  PD(m)                                 (11) 

Suppose )( satisfies the side condition Ck(M(τ))  PD(m) and write Cj=Ck(M( j ) ) for j=(1, 2, 3). For all p (-

 ;1], )(  solves problem (11) if and only if; 
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(T. K. , 2004). 

3. Construction of the design 

We consider the weighted centroid design 332211

3

1

)(  
j

jj  with three elementary centroids 

(captured from the support points):  
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These designs discovered by ( (Scheffe', 1958) and (H., 1963)), are exchangeable and invariant under permutations, (T. 

K. , 2002). Weighted centroid designs are exchangeable.  

The moment matrices for 
1  and 

2  are: 
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Defining matrix KKKL  1)(
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 where K is the earlier defined (equation 4) coefficient matrix,  
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The information matrices for the designs 
1  and 

2  are obtained as follows: 
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Using equations (13) and (14), we obtain the information matrix for the design )(  from; 
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This matrix has a regular inverse, 
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The slope matrix D as defined by equation (6) is obtained as  
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A corresponding adjusted slope matrix 0H DK  is thus given by;  
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To get the D-optimal design we employ the relation, that )(  is optimalp   for K   in T if and only if;  
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From which, the unique D-optimal design for K   is derived using the equation (putting p=0)  
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The following results can be easily demonstrated using condition (16):  

 For j=1 

























)(12

)(12

)(12

3

1

32313
42

3

2

33
42

33
4

2

23
4

32213
42

2

2

23
4

2

13
42

13
4

31213
42

1

1

0

1

10

ttttttt

ttttttt

ttttttt

HCCH


, with 

 
1

3231213
82

3

2

2

2

1

1

0

1

10
27

496
)()(12

3

1


 tttttttttHCCHtrace  and  

























)(4

)(4

)(4

2

2

2

19
42

3329
4

319
4

329
42

3

2

19
42

2219
4

319
4

219
42

3

2

29
42

1

00

ttttttt

ttttttt

ttttttt

HH , with 

27

638
)(

9

44 2

3

2

2

2

100  tttHtraceH  

The condition, 
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 For j=2; 
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Therefore the unique D-optimal design for K   is  
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The information matrix: 
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The maximum of the D-criterion is 5514.0
964.5
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4. Conclusion  

The design presented is highly efficient and can be employed as a design for a finite sample size. Of importance is to 

relate the weights to the number of support points for each centroid. However, the experimenter is cautioned to ensure 

high accuracy levels in the measurement of ingredient levels. 
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