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Abstract

In this paper, we consider tests for sub-mean vectors and its simultaneous confidence intervals in two-sample problems.
We give the T 2 type test statistic and the simultaneous confidence intervals by using two approximate upper percentiles
of T 2 type test statistic. One of the approximate percentiles is obtained by normal approximation for a part of the T 2 type
statistic, and the other is an approximation obtained by correcting the degrees of freedom of the F distribution. Finally, we
investigate the asymptotic behavior of the approximate upper percentiles of T 2 type statistic by Monte Carlo simulation,
and we give an example to illustrate the simultaneous confidence intervals.

Keywords: approximate degrees of freedom, F approximation, Monte Carlo simulation, simultaneous confidence inter-
val, two-sample problem, type I error

1. Introduction

Let x(i)
1 , x

(i)
2 , . . . , x

(i)
N(i) be p-dimensional random vectors from Np(µ(i),Σ), i = 1, 2. we consider the following hypothesis

H0 : µ(1)
1 = µ(2)

1 given µ(1)
2 = µ(2)

2 vs. H1 : µ(1)
1 , µ

(2)
1 given µ(1)

2 = µ(2)
2 , (1)

where

µ(i)

p×1
=

µ(i)
1

µ(i)
2

 , µ(i)
1

r×1
=


µ(i)

1

µ(i)
2
...

µ(i)
r


, µ(i)

2
s×1

=


µ(i)

r+1

µ(i)
r+2
...

µ(i)
p


, p = r + s. (2)

For the problem of sub-mean vectors, Eaton and Kariya (1983) derived tests for the independence of two normally dis-
tributed sub-mean vectors for the case that an additional random sample is available. Provost (1990) obtained explicit
expressions for the case that the maximum likelihood estimators (MLEs) of all the parameters of the multi-normal ran-
dom vector are given, and the likelihood ratio statistic for testing the independence between sub-mean vectors has been
obtained. For the one-sample problem, Rao (1949) gave Rao’s U-statistic and additional information. The null distri-
bution of Rao’s U-statistic has been introduced by Siotani et al. (1985). A test for sub-mean vectors with two-step
monotone missing data was discussed by Kawasaki and Seo (2016). A test for sub-mean vectors in two-sample problem
was introduced by Rencher (2012). For the k-sample problem, Fujikoshi et al. (2010) gave an asymptotic expansion of
the distribution of the generalized U-statistic under normality. Gupta et al. (2006) gave an asymptotic expansion of the
distribution of the generalized U-statistic under a general condition. However, the problem for sub-mean vectors in terms
of simultaneous confidence intervals does not appear to have been discussed.

The aim of this article is to provide simultaneous confidence intervals for sub-mean vectors in two-sample problems. We
consider two procedures. The first procedure is to give the T 2 type test statistic of testing two-normal sub-mean vectors
and its approximate upper percentile using normal approximation for a part of the test statistic in Section 2. The second
procedure is to obtain the asymptotic expansions of the moments of test statistic, and then the approximating the null
distribution of the T 2 type test statistic using an F distribution is also given in Section 2. In Sections 3, the approximate
simultaneous confidence intervals for all linear compounds of the difference of two-normal sub-mean vectors are outlined.
In Section 4, we investigate the asymptotic behavior of the approximate upper percentiles of the T 2 test statistic by Monte
Carlo simulation. In Section 5, we give an example to illustrate simultaneous confidence intervals. This paper is a revised
version of the Technical Report Naito et al. (2018) and includes some of the content of the paper.

1



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 9, No. 1; 2020

2. T 2 Type Test Statistic for Sub-mean Vectors

In this section, we provide Hotelling’s T 2 type test statistic for testing the hypothesis (1) and its simultaneous confidence
intervals. We partition x(i)

j into a r × 1 random vector and a s × 1 random vector, as x(i)
j = (x(i)′

1 j , x
(i)′

2 j )′, where j =

1, 2, . . . ,N(i), p = r + s. The hypothesis (1) is the same as the following hypothesis,

H′0 : µ(1)
1·2 = µ(2)

1·2 vs. H′1 : µ(1)
1·2 , µ

(2)
1·2, (3)

where

µ(i)
1·2 = µ(i)

1 − Σ12Σ−1
22µ2, µ2 = µ(1)

2 = µ(2)
2 , Σ =

(
Σ11 Σ12
Σ21 Σ22

)
. (4)

First, we derive the maximum likelihood estimators (MLEs) of µ and Σ.

We use the following transformed parameters (η(i),Ψ),

η(i) =

η(i)
1

η2

 =

µ(i)
1 − Σ12Σ−1

22µ2

µ2

 , Ψ =

Ψ11 Ψ12

Ψ21 Ψ22

 =

 Σ11·2 Σ12Σ−1
22

Σ−1
22 Σ21 Σ22

 , (5)

where Σ11·2 = Σ11 − Σ12Σ−1
22 Σ21, i = 1, 2. We note that (η(i),Ψ) is in one-to-one correspondence with (µ(i),Σ). Using the

transformed parameters (η(i),Ψ), the likelihood function is given by

L(η(1), η(2),Ψ) =(2π)−
N p
2 |Ψ11|

− N
2 |Ψ22|

− N
2 (6)

×

2∏
i=1

exp

−1
2

N(i)∑
j=1

(x(i)
1 j − Ψ12x(i)

2 j − η
(i)
1 )′Ψ−1

11 (x(i)
1 j − Ψ12x(i)

2 j − η
(i)
1 )


 (7)

×

2∏
i=1

exp

−1
2

N(i)∑
j=1

(x(i)
2 j − η2)′Ψ−1

22 (x(i)
2 j − η2)


 ,N = N(1) + N(2). (8)

Then, we will derive the MLEs as follows:

η̂(i)
1 = x(i)

1 − Ψ̂12x(i)
2 , i = 1, 2, η̂2 = x2, Ψ̂11 =

1
N

V11·2, Ψ̂12 = V12V−1
22 Ψ̂22, (9)

Ψ̂22 =
1
N

{
V22 +

2∑
j=1

(x( j)
2 − x2)(x( j)

2 − x2)′
}
, (10)

where

x(i)
=

1
N(i)

N(i)∑
j=1

x(i)
j =

x(i)
1

x(i)
2

 , x2 =
1
N

2∑
i=1

N(i)x(i)
2 , (11)

V (i) =

N(i)∑
j=1

(x(i)
j − x(i))(x(i)

j − x(i))′ =

V (i)
11 V (i)

12

V (i)
21 V (i)

22

 , (12)

V =

2∑
i=1

V (i) =

V11 V12

V21 V22

 , V11·2 = V11 − V12V−1
22 V21. (13)

Therefore, using the relation that (η(1), η(2),Ψ) is in one-to-one correspondence with (µ(1),µ(2),Σ), the MLEs of µ(1),µ(2),
and Σ are given by

µ̂(i)
=

̂µ(i)
1

µ̂2

 =

x(i)
1 − Σ̂12Σ̂−1

22 (x(i)
2 − x2)

x2

 , i = 1, 2, (14)

Σ̂ =

Σ̂11 Σ̂12

Σ̂21 Σ̂22

 =


1
N

V11·2 + Σ̂12Σ̂−1
22 Σ̂21 V12V−1

22 Σ̂22

Σ̂22V−1
22 V21

1
N

V22 +

2∑
i=1

(x(i)
2 − x2)(x(i)

2 − x2)′

 , (15)
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2.1 T 2 Type Test Statistic and Approximation Upper Percentile

For sub-mean vectors, we construct a test statistic based on Hotelling’s T 2 statistic structure:

T 2 = (̂µ(1)
1·2 − µ̂

(2)
1·2)′

{
Ĉov

(̂
µ(1)

1·2 − µ̂
(2)
1·2

)}−1 (̂µ(1)
1·2 − µ̂

(2)
1·2), (16)

where

Ĉov
(̂
µ(1)

1·2 − µ̂
(2)
1·2

)
=

N(N − 3)
N(1)N(2)(N − 2)(N − s − 3)

V11·2, (17)

µ̂(i)
1·2 and Ĉov

(̂
µ(1)

1·2 − µ̂
(2)
1·2

)
are the estimators of µ(i)

1·2 and Cov
(̂
µ(1)

1·2 − µ̂
(2)
1·2

)
, respectively. We call this test statistic the

Hotelling’s T 2 type statistic. We note that under H′0 in (3), T 2 is asymptotically distributed as a χ2 distribution with r
degrees of freedom. However, when the sample is not large, the χ2 distribution is not a good approximation of the upper
percentile of T 2.

Let

u = x(1)
1 − x(2)

1 − V12V−1
22 (x(1)

2 − x(2)
2 ), c =

N(N − 3)
N(1)N(2)(N − s − 3)

. (18)

We can then rewrite T 2 as

T 2 = (N − 2)c−1u′V−1
11·2u = z′W−1 z = z′ z

z′W−1 z
z′ z

, (19)

where z = c−
1
2 Σ
− 1

2
11·2u, W = Σ

− 1
2

11·2S 11·2Σ
− 1

2
11·2,

S =
1

N − 2
V =

(
S 11 S 12
S 21 S 22

)
, S 11·2 = S 11 − S 12S −1

22 S 21. (20)

We note that u is distributed on Nr(µ
(1)
1 − µ

(2)
1 , cΣ11·2) when N(1),N(2) → ∞. Therefore, the distribution of z′ z is a χ2

distribution with r degrees of freedom. We note that under H′0, (N − p − s − 1)T 2/{(N − 2)r} is approximately distributed
as a F distribution with r and N − p − s − 1 degrees of freedom. Using this result, the approximate upper 100α percentile
of the T 2 statistic is given by

t2
app(α) =

(N − 2)r
N − p − s − 1

Fr,N−p−s−1(α), (21)

where Fr,N−p−s−1(α) is the upper 100α percentiles of the F distribution with r and N − p − s − 1 degrees of freedom. The
details of result follow from Naito et al. (2018).

2.2 Approximate Degrees of Freedom

In this session, we consider the approximate distribution of T 2. By approximating the distribution of z′ z and z′ z/z′W−1 z
as

z′ z ≈ χ2
ξ ,

z′ z
z′W−1 z

≈
χ2
ν

φ
, (22)

we have

T 2 ≈
φξ

ν
Fξ,ν, (23)

where ξ, ν, and φ are unknown constants. It follows from (22) that

E[z′ z] ≈ ξ, E[
z′ z

z′W−1 z
] ≈

ν

φ
, E[

(
z′ z

z′W−1 z

)2

] ≈
ν(ν + 2)
φ2 . (24)

We consider the asymptotic expansion of the first and second order moment of T 2 in a situation when

γi =
N(i)

N
→ positive constants (25)
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as N(i)’s tend to infinity. Therefore, without loss of generality, we assume that µ(i) = 0,Σ = Ip, hereafter. In our derivations,
we consider the asymptotic expansions of z′ z and z′ z/z′W−1 z in terms ofx(i)

1

x(i)
2

 =
1
√

N(i)

z(i)
1

z(i)
2

 , S = Ip +
1

√
N − 2

U =

I11 + 1
√

N−2
U11

1
√

N−2
U12

1
√

N−2
U21 I22 + 1

√
N−2

U22

 . (26)

Then, x(i)
1 − V12V−1

22 x(i)
2 and z can be expanded as

x(i)
1 − V12V−1

22 x(i)
2 =

1
√

Nγi

(
z(i)

1 −
1
√

N
U12 z(i)

2 +
1
N

U12U22 z(i)
2

)
+ Op(N−2), (27)

z = (
√
γ2 z(1)

1 −
√
γ1 z(2)

1 ) −
1
√

N
(
√
γ2U12 z(1)

2 −
√
γ1U12 z(2)

2 ) +
1
N

(
√
γ2U12U22 z(1)

2 −
√
γ1U12U22 z(2)

2 ) + Op(N−3/2), (28)

respectively. We have

z′ z =(
√
γ2 z(1)

1 −
√
γ1 z(2)

1 )′(
√
γ2 z(1)

1 −
√
γ1 z(2)

1 ) −
2
√

N
(
√
γ2 z(1)

1 −
√
γ1 z(2)

1 )′(
√
γ2U12 z(1)

2 −
√
γ1U12 z(2)

2 ) (29)

+
1
N
{(
√
γ2 z(1)

1 −
√
γ1 z(2)

1 )′(
√
γ2U12U22 z(1)

2 −
√
γ1U12U22 z(2)

1 ) (30)

+ (
√
γ2U12 z(1)

2 −
√
γ1U12 z(2)

2 )′(
√
γ2U12 z(1)

2 −
√
γ1U12 z(2)

2 ) (31)

+ (
√
γ2U12U22 z(1)

2 −
√
γ1U12U22 z(2)

1 )′(
√
γ2 z(1)

1 −
√
γ1 z(2)

1 )} + Op(N−3/2). (32)

Further, since

W−1 = I11 −
1
√

N
U11 +

1
N

(U2
11 + U12U21) + Op(N−3/2), (33)

z′ z
z′W−1 z

= 1 +
1
√

N

z′U11 z
z′ z

−
1
N

 z′U2
11 z

z′ z
+

z′U12U21 z
z′ z

+

 z′U2
11 z

z′ z

2 Op(N−3/2), (34)

(
z′ z

z′W−1 z

)2

= 1 +
2
√

N

z′U11 z
z′ z

−
1
N

2z′U2
11 z

z′ z
+

2z′U12U21 z
z′ z

+

 z′U2
11 z

z′ z

2 Op(N−3/2). (35)

By calculating the expectations of z′ z and z′ z
z′W−1 z , we obtain

E[z′ z] = r +
1
N

rs + O(N−3/2), E[
z′ z

z′W−1 z
] = 1 −

1
N

(p + 3) + O(N−3/2), (36)

E[
(

z′ z
z′W−1 z

)2

] = 1 −
2
N

(p + 2) + O(N−3/2). (37)

By equating (24), (36) and (37) to the N−1 terms, the coefficients ξ, ν, and φ are determined as

ξ = r +
1
N

rs, ν =
2(N − p − 3)2

2N − (p + 3)2 , φ =
2N(N − p − 3)
2N − (p + 3)2 . (38)

Using this results, for N > (p + 3)2/2, the approximate upper 100α percentile of the T 2 statistic is given by

t2
d f (α) =

ξφ

ν
Fξ,ν(α). (39)

3. Simultaneous Confidence Intervals

In this section, we consider the simultaneous confidence intervals for any and all linear compounds of the sub-mean. Using
the upper percentiles of T 2 from Section 2.1, for any nonnull vector a = (a1, a2, · · · , ar)′, the simultaneous confidence
intervals for a′(µ(1)

1·2 − µ
(2)
1·2) are given by

a′u −
√

c
N − 2

M ≤ a′(µ(1)
1·2 − µ

(2)
1·2) ≤ a′u +

√
c

N − 2
M, ∀a ∈ Rr − {0}, (40)
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where M = (t2(α)a′V11·2a)
1
2 , and t2(α) is the upper 100α percentiles of the T 2 test statistic. However, it is not easy to

obtain t2(α).

Therefore, as the first method, using the approximate upper 100α percentiles of the T 2 test statistic, t2
app(α) by (21), the

approximate simultaneous confidence intervals for a′(µ(1)
1·2 − µ

(2)
1·2) can obtained by

a′u −
√

c
N − 2

Mapp ≤ a′(µ(1)
1·2 − µ

(2)
1·2) ≤ a′u +

√
c

N − 2
Mapp, ∀a ∈ Rr − {0}, (41)

where Mapp = (t2
app(α)a′V11·2a)

1
2 .

As a second method, using the approximate upper 100α percentiles of the T 2 test statistic, t2
df(α) by (39), the approximate

simultaneous confidence intervals for a′(µ(1)
1·2 − µ

(2)
1·2) can obtained by

a′u −
√

c
N − 2

Mdf ≤ a′(µ(1)
1·2 − µ

(2)
1·2) ≤ a′u +

√
c

N − 2
Mdf, ∀a ∈ Rr − {0}, (42)

where Mdf = (t2
df(α)a′V11·2a)

1
2 .

4. Simulation Studies

In this section, we perform a Monte Carlo simulation (with 106 runs) in order to evaluate the asymptotic behavior of the
F approximations and the accuracy of the approximate upper 100α percentiles of the T 2 statistic.

Tables 1 and 2 present the simulated upper 100α percentile of the T 2 test statistic, t2(α), the approximate upper 100α
percentile of the T 2 test statistic, t2

app(α) and t2
df(α) for the two-sample problem;

(p, r, s) = (4, 1, 3), (4, 2, 2), (4, 3, 1), (8, 2, 6), (8, 4, 4), (8, 6, 2);α = 0.05, 0.01; (43)

and for the following two cases of (N(1),N(2)):

(N(1), N(2)) =

(`, `), ` = 20, 40, 100, 200, 400
(`, 2`), ` = 20, 40, 100, 200

. (44)

Tables 1 and 2 present the type I errors for the upper 100α percentile of the χ2 distribution with r degrees of freedom and
the approximate upper 100α percentile of the T 2 test statistic given by

α1 = Pr(T 2 > χ2
r (α)), α2 = Pr(T 2 > t2

app(α)), α3 = Pr(T 2 > t2
df(α)), (45)

respectively. It may be noted from Tables 1 and 2 that the simulated values approach closer to the upper percentile of the χ2

distribution when both of the sample sizes N(1) and N(2) become large. In addition, it can be seen from both tables that the
proposed approximation values are good for all cases even when the sample size is small. The results for the type I error
of the proposed approximation value are closer than those of the χ2 value for all cases. Since t2

df has restrictions on sample
size and dimensions, there are combinations in which values cannot be obtained. However, it is a better approximation
than t2

app, especially when the r dimension corresponding to hypothesis “given” is small. Also, comparing α2 and α3, it can
be seen that in the case of 0.01, α3 is a better approximation even when the sample size is small. On the other hand, it can
be seen that t2

app is a stable good approximation. t2
app can be used in more cases than t2

df because it has less sample size and
dimensionality constraints. However, it should be noted that t2

app is a result obtained using the assumption that u from (18)
is normally distributed.

5. Numerical Example

In this section, we discuss an example to illustrate the results. In this example, we utilize the data in the iris plant taken
from Fisher (1936). The data consists of four different measurements, x1: petal width, x2: petal length: , x3: sepal width,
and x4: sepal length, for three irises, however, we use two irises, virginica and versicolor. The population mean vectors
are µ(i) = (µ(i)′

1 ,µ(i)′

2 )′ = (µ(i)
1 , µ

(i)
2 , µ

(i)
3 , µ

(i)
4 )′, where µ(i)

1 : mean of petal length, µ(i)
2 : mean of sepal length, µ(i)

3 : mean of
petal width, µ(i)

4 : mean of sepal width, µ(i)
1 = (µ(i)

1 , µ
(i)
2 , µ

(i)
3 )′, and µ(i)

2 = µ(i)
4 . We assume that these data are distributed

normality, and µ2 = µ(1)
2 = µ(2)

2 . Therefore, we have the data of N(1) = N(2) = 50, p = 4, r = 3, s = 1. The hypothesis (3)
is considered on this example. We computed T 2 = 320.20. For this example case, the simulated upper 100α percentiles
pf T 2 type statistic is t2(0.05) = 8.37, the null hypothesis is rejected. When we use t2

app(0.05) = 8.45 and t2
df(0.05) = 8.72,

the null hypothesis is also rejected. Table 3 gives 95% simultaneous confidence intervals using three different upper
percentiles. t2

app(0.05) is very similar results to the true values that are given by the simulated upper percentiles of T 2,
t2(0.05). t2

df(0.05) is almost similar, and the result is the same as the other two. Therefore, our approaches are able to give
very good approximation to the true results in this example.
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Table 1. t2(α), t2
app(α) and t2

df(α) when p = 4

Sample Size α = 0.05 α = 0.01

N(1) N(2) t2(α) t2
app(α) t2

df(α) α1 α2 α3 t2(α) t2
app(α) t2

df(α) α1 α2 α3

(r, s) = (1, 3), χ2
1(0.05) = 3.84, χ2

1(0.01) = 6.64

20 20 4.48 4.93 5.05 0.068 0.040 0.038 8.06 8.91 8.79 0.018 0.007 0.008

40 40 4.13 4.31 4.42 0.058 0.045 0.043 7.27 7.58 6.64 0.014 0.009 0.008

100 100 3.94 4.01 4.07 0.053 0.048 0.047 7.15 7.37 7.05 0.013 0.009 0.009

200 200 3.89 3.92 3.95 0.052 0.049 0.049 6.84 6.98 6.84 0.011 0.009 0.010

400 400 3.88 3.88 3.90 0.051 0.050 0.050 6.76 6.80 6.74 0.011 0.010 0.010

20 40 4.23 4.49 4.63 0.062 0.044 0.041 7.55 7.97 8.07 0.015 0.008 0.008

40 80 4.04 4.14 4.22 0.056 0.047 0.045 7.05 7.23 7.34 0.012 0.009 0.008

100 200 3.92 3.95 3.99 0.052 0.049 0.048 6.80 6.86 6.91 0.011 0.010 0.009

200 400 3.88 3.90 3.92 0.051 0.050 0.049 6.71 6.75 6.77 0.010 0.010 0.010

(r, s) = (2, 2), χ2
2(0.05) = 5.99, χ2

2(0.01) = 9.21

20 20 7.10 7.57 7.83 0.077 0.042 0.038 11.45 12.23 12.23 0.022 0.008 0.008

40 40 6.50 6.67 6.89 0.062 0.046 0.042 10.20 10.49 10.73 0.015 0.009 0.008

100 100 6.19 6.24 6.34 0.055 0.049 0.047 9.60 9.68 9.80 0.012 0.010 0.009

200 200 6.07 6.11 6.16 0.052 0.049 0.048 9.38 9.44 9.50 0.011 0.010 0.010

400 400 6.03 6.05 5.99 0.051 0.049 0.049 9.30 9.32 9.21 0.010 0.010 0.010

20 40 6.68 6.94 5.50 0.067 0.045 0.040 10.63 11.01 11.25 0.018 0.009 0.008

40 80 6.32 6.43 5.99 0.058 0.048 0.044 9.86 10.02 9.21 0.013 0.009 0.008

100 200 6.12 6.16 5.99 0.053 0.049 0.048 9.46 9.52 9.21 0.011 0.010 0.010

200 400 6.05 6.07 6.11 0.051 0.049 0.049 9.32 9.36 9.41 0.011 0.010 0.010

(r, s) = (3, 1), χ2
3(0.05) = 7.82, χ2

3(0.01) = 11.35

20 20 9.37 9.67 10.12 0.085 0.045 0.039 14.38 14.81 15.02 0.026 0.009 0.008

40 40 8.53 8.63 8.95 0.066 0.048 0.042 12.68 12.83 13.22 0.017 0.009 0.008

100 100 8.09 8.12 8.26 0.056 0.049 0.046 11.84 11.89 12.08 0.012 0.010 0.009

200 200 7.94 7.96 7.82 0.053 0.049 0.048 11.59 11.61 11.35 0.011 0.010 0.009

400 400 7.87 7.89 7.92 0.051 0.050 0.049 11.43 11.48 11.53 0.010 0.010 0.010

20 40 8.77 8.94 7.82 0.071 0.047 0.040 13.14 13.43 11.35 0.019 0.009 0.008

40 80 8.27 8.36 8.56 0.060 0.049 0.045 12.18 12.29 12.58 0.014 0.010 0.008

100 200 7.99 8.01 7.82 0.054 0.050 0.047 11.66 11.70 11.35 0.012 0.010 0.009

200 400 7.91 7.91 7.96 0.052 0.050 0.049 11.54 11.52 11.59 0.011 0.010 0.010
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Table 2. t2(α), t2
app(α) and t2

df(α) when p = 8

Sample Size α = 0.05 α = 0.01

N(1) N(2) t2(α) t2
app(α) t2

df(α) α1 α2 α3 t2(α) t2
app(α) t2

df(α) α1 α2 α3

(r, s) = (2, 6), χ2
2(0.05) = 5.99, χ2

2(0.01) = 9.21

20 20 8.13 10.29 - 0.103 0.025 - 13.36 16.93 - 0.035 0.004 -

40 40 6.87 7.53 7.37 0.072 0.038 0.041 10.82 11.87 11.29 0.019 0.007 0.009

100 100 6.31 6.52 6.54 0.058 0.045 0.045 9.75 10.11 10.07 0.013 0.009 0.009

200 200 6.13 6.24 6.26 0.054 0.047 0.048 9.49 9.64 9.64 0.011 0.009 0.009

400 400 6.06 6.11 6.13 0.052 0.049 0.049 9.35 9.42 9.43 0.011 0.010 0.010

20 40 7.24 8.26 - 0.082 0.034 - 11.55 13.17 - 0.024 0.006 -

40 80 6.53 6.93 6.91 0.064 0.042 0.042 10.17 10.82 10.64 0.015 0.008 0.008

100 200 6.19 6.33 6.36 0.055 0.047 0.047 9.60 9.79 9.79 0.012 0.009 0.009

200 400 6.08 6.16 6.17 0.052 0.048 0.048 9.38 9.49 9.50 0.011 0.009 0.009

(r, s) = (4, 4), χ2
4(0.05) = 9.49, χ2

4(0.01) = 13.28

20 20 13.16 15.36 - 0.129 0.028 - 19.69 23.11 - 0.048 0.005 -

40 40 11.00 11.68 11.55 0.082 0.040 0.042 15.80 16.82 16.20 0.023 0.007 0.009

100 100 10.02 10.25 10.33 0.061 0.046 0.045 14.15 14.49 14.53 0.014 0.009 0.009

200 200 9.75 9.85 9.91 0.550 0.048 0.047 13.74 13.85 13.90 0.012 0.010 0.009

400 400 9.61 9.67 9.70 0.052 0.049 0.048 13.52 13.56 13.59 0.011 0.010 0.009

20 40 11.62 12.68 - 0.096 0.036 - 16.92 18.50 - 0.030 0.006 -

40 80 10.43 10.84 10.89 0.067 0.043 0.043 14.89 15.44 15.32 0.018 0.008 0.009

100 200 9.84 9.98 8.23 0.057 0.047 0.046 13.91 14.06 14.11 0.013 0.009 0.009

200 400 9.65 9.73 9.77 0.530 0.048 0.048 13.56 13.66 13.70 0.011 0.010 0.009

(r, s) = (6, 2), χ2
6(0.05) = 12.59, χ2

6(0.01) = 16.81

20 20 17.79 19.12 - 0.152 0.038 - 25.49 27.51 - 0.062 0.007 -

40 40 14.71 15.15 15.12 0.091 0.044 0.044 20.27 20.86 20.32 0.027 0.008 0.010

100 100 13.35 13.50 13.65 0.064 0.048 0.046 17.98 18.22 18.35 0.015 0.009 0.009

200 200 12.95 13.03 13.12 0.057 0.049 0.047 17.38 17.49 17.59 0.011 0.010 0.009

400 400 12.80 12.80 12.94 0.054 0.050 0.048 17.07 17.14 17.33 0.010 0.010 0.010

20 40 15.59 16.27 - 0.109 0.042 - 21.74 22.69 - 0.036 0.008 -

40 80 13.93 14.18 14.33 0.076 0.046 0.044 18.95 19.30 19.31 0.020 0.009 0.009

100 200 13.10 13.18 13.30 0.059 0.049 0.047 17.57 17.72 17.85 0.013 0.009 0.009

200 400 12.80 12.80 12.86 0.054 0.050 0.049 17.20 17.26 17.20 0.012 0.010 0.010
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Table 3. 95% Simultaneous confidence intervals

a (1, 0, 0)′ (0, 1, 0)′ (0, 0, 1)′

a′(µ(1)
1·2 − µ

(2)
1·2) µ(1)

1 − µ
(2)
1 µ(1)

2 − µ
(2)
2 µ(1)

3 − µ
(2)
3

mean 0.700 1.292 0.144
t2(0.05) (0.469, 0.727) (0.648, 0.991) (−0.261, 0.241)
t2

app(0.05) (0.469, 0.726) (0.648, 0.991) (−0.262, 0.243)
t2

df(0.05) (0.467, 0.730) (0.645, 0.994) (−0.266, 0.247)
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