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Abstract

Two problems dealing with the random skewed splitting of some population into J different types are considered.

In a first discrete setup, the sizes of the sub-populations come from independent shifted-geometric with unequal charac-
teristics. Various J → ∞ asymptotics of the induced occupancies are investigated: the total population size, the number of
unfilled types, the index of consecutive filled types, the maximum number of individuals in some state and the index of the
type(s) achieving this maximum. Equivalently, this problem is amenable to the classical one of assigning indistinguishable
particles (Bosons) at J sites, in some random allocation problem.

In a second parallel setup in the continuum, we consider a large population of say J ‘stars’, the intensities of which have
independent exponential distributions with unequal inverse temperatures. Stars are being observed only if their intensities
exceed some threshold value. Depending on the choice of the inverse temperatures, we investigate the energy partitioning
among stars, the total energy emitted by the observed stars, the number of the observable stars and the energy and index
of the star emitting the most.

Keywords: sum and maximum, independent shifted-geometric/exponential distributions, discrete/continuous partition-
ing, combinatorial probability

1. Introduction

Consider the partitioning of some population the individuals of which can be of J different types or states. We assume
that the sizes of the type- j sub-populations ( j = 1, ..., J) have independent shifted-geometric distributions with unequal
success probabilities. Depending on these probabilities, we envisage various asymptotics for the occupancy distributions,
including total population size and the number of unfilled states. Other statistical quantities of interest such as: the index
of the consecutive filled states, the maximum number of particles in some state and the index of the site(s) achieving this
maximum are also investigated. One of the asymptotics we chiefly focus on is J → ∞.

A toy variant of the latter model is also investigated in the continuum which is shown to be amenable to a quite similar
treatment; it deals with a population of say J ‘stars’ the intensities of which have independent exponential distributions
with unequal inverse temperatures that can be observed or not depending on whether the intensities exceed or not some
threshold value. Of parallel interest then is the energy partitioning among stars, the total energy emitted by the observed
stars, the number of the observable stars, the energy and index of the star emitting the most. And the way all these
quantities depend on the choice of the inverse temperatures. Some examples are detailed and the limit J → ∞ is also
investigated in this context. This second aspect of the partitioning problem in the continuum seems to be new.

Let us summarize our results and sketch the organization of the manuscript: motivated by examples from physics, we have
studied specific partitioning problems, thereby contributing to general probability theory and discrete mathematics. Con-
sidering a population with J different sub-populations (or states) whose sizes G j are independent (shifted-)geometrically
distributed, in general with different parameters, we have studied various distributions of interest under several asymptotic
regimes. First, in Section 2.1, the distribution of total population size XJ =

∑J
j=1 G j, and the joint distributions of relative

population sizes G j/E (XJ) were investigated, also asymptotically, the latter e.g. for J fixed and large population size.
A condensation phenomenon was highlighted. Section 2.2 considers the number of non-empty states and constrained
occupancies problems. In Section 2.3 asymptotics where J → ∞ are discussed, with a {0 − 1}-law distinguishing if the
series of parameters converges or not. Further, the first non-empty state and site indices till consecutive records (Section
2.4) and the size and index of the most filled state (Sections 2.5 and 2.6) have been addressed. Section 2.7 gives some
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concrete examples of parameter sequences. Section 3 transfers the theory to the continuous analog with independent
(shifted-)exponential distributions with an illustrative (non-exhaustive) physical image from astronomy.

2. The Discrete Model: A Skewed Bose Occupancy Problem

Let J be some integer denoting the number of species (or types) of some population. It can also be the number of sites at
which indistinguishable particles (Bosons) will be assigned to, in some random allocation problem, (Kolchin, 1986). Let
α j ∈ (0, 1) and α j = 1 − α j, j = 1, ..., J. Consider independent geometric random variables (rv’s) G+j each with success
parameter α j and let G j = G+j − 1. We will rather deal with this shifted geometric rv G j, standing for the number of
particles assigned to site j (the number of individuals of type j, possibly 0) in some grand-canonical allocation problem.
Thus G+j = 1 + G j, which is also G j | G j ≥ 1, will stand for the number of particles assigned to site j given this site is
occupied. In such an occupancy model, the total number of particles in the system, namely XJ =

∑J
j=1 G j, is random.

And the model allows for unoccupied states. A related partitioning model with this opportunity was recently developed
in (Huillet, 2018). The unskewed case where α j = α, j = 1, ..., J, with the G j’s independent and identically distributed
(iid) is a simpler issue that will also be briefly dealt with in passing. The simpler sum

∑J
j=1 G+j was considered in (Sen &

Balakrishnan, 1999) in a reliability problem.

2.1 Skewed Occupancy Distributions

For any power series ϕ (z) =
∑

i≥1 ϕizi, we shall denote
[
zi
]
ϕ (z) = ϕi, the zi−coefficient of ϕ (z).

The joint probability generating function (pgf) of the G j’s is:

E

 J∏
j=1

zG j

j

 = J∏
j=1

1 − α j

1 − α jz j
, z j ∈ [0, 1] ,

so that for any non-negative integers i1, ..., iJ , the species occupancy distribution reads

P (G1 = i1, ...,GJ = iJ) =[
zi1

1 ...z
iJ
J

]∏J
j=1 E

(
zG j

j

)
=

∏J
j=1

(
1 − α j

)∏J
j=1 α

i j

j .
(1)

• A special asymptotic regime:

Let g j := E
(
G j

)
= α j/

(
1 − α j

)
(:= means equals by definition) and xJ := E (XJ) =

∑J
j=1 g j, the mean number of particles

in the system. Suppose α j = δ j/
(
ε + δ j

)
for some sequence δ j > 0 and ε > 0 small, in such a way that α j → 1− as ε→ 0

for all j = 1, ..., J. Then both g j = ε
−1δ j and xJ = ε

−1 ∑J
j=1 δ j → ∞ as ε → 0 while g j/xJ = δ j/

∑J
j=1 δ j is well-defined

and independent of ε. For this particular choice of α j, when ε approaches 0 (xJ → ∞), for all fixed J, we have

E

 J∏
j=1

zG j/xJ

j

 =

J∏
j=1

1 − α j

1 − α jz
1/xJ
j

∼
J∏

j=1

1 − α j

1 − α j − α j

xJ
log z j

=

J∏
j=1

(
1 −

g j

xJ
log z j

)−1

∼
J∏

j=1

(
1 +

g j

xJ
log z j

)

∼
J∏

j=1

e(g j/xJ) log z j =

J∏
j=1

zg j/xJ

j .

In the above, ∼ means that the ratio of the quantities appearing to the left and right of this symbol tends to 1 as xJ → ∞,
to the dominant order.

proposition 1. Under the above conditions on the g j’s,

x−1
J (G1, ...,GJ)

P→
xJ→∞

(g1/xJ , ..., gJ/xJ) . (2)

The pgf of XJ itself is

ϕJ (z) := E
(
zXJ

)
=

J∏
j=1

1 − α j

1 − α jz
, z ∈ [0, 1] .
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As such, the rv XJ also interprets as the number of successes before the J−th failure in an inhomogeneous Bernoulli
process, with probabilities 1 − αi of successes on each trial (as an extended version of the negative binomial pgf).

When dealing with the joint distribution of
(
XJ ,G j; j = 1, ..., J

)
, we have

E

zXJ

J∏
j=1

zG j

j

 =

J∏
j=1

1 − α j

1 − α jzz j

E

 J∏
j=1

zG j

j | XJ = i

 =
1

P (XJ = i)

[
zi
] J∏

j=1

1 − α j

1 − α jzz j

=

[
zi
]∏J

j=1

(
1 − α jzz j

)−1

[
zi]∏J

j=1

(
1 − α jz

)−1 .

As a result, for any non-negative integers i1, ..., iJ , summing to i, with

ZJ,i :=
[
zi
] J∏

j=1

(
1 − α jz

)−1
=

∑
∑J

j=1 i j=i
i j≥0, j=1,...,J

J∏
j=1

α
i j

j ,

an ordinary Bell polynomial (Comtet, 1970),

P (G1 = i1, ...,GJ = iJ | XJ = i) =
J∏

j=1

α
i j

j /ZJ,i (3)

also gives the canonical occupancy distribution given the total number of particles is i. Note that defining s j := α j/
∑J

j=1 α j,
j = 1, ..., J, summing to 1, with

ZJ,i = ZJ,i/

 J∑
j=1

α j


i

P (G1 = i1, ...,GJ = iJ | XJ = i) =
J∏

j=1

si j

j /ZJ,i,

interpreting as a i−Bose sampling procedure of the unit interval [0, 1] split into J parts of unequal sizes s j.

• A condensation phenomenon:

Suppose α1 > α2 ≥ ... ≥ αJ . Let us show that, when the number of types J is held fixed, the particles tend to concentrate
on the ground state (which is the unique type with largest α j, here chosen without loss of generality (w.l.o.g) as α1), when
the number of particles i increases. We denote (G1, ...,GJ | XJ = i) =:

(
G j (i) ; j = 1, ..., J

)
proposition 2. With J kept fixed, as the number of particles i grows, we have the convergence in distribution

(G2 (i) , ...,GJ (i))
d→

i→∞
(G2, ...,GJ) (4)

where the G js are independent rv’s which are geometrically distributed with success parameters 1 − α j/α1, j = 2, ..., J.
Consequently,

(G1 (i) /i, ...,GJ (i) /i)
d→

i↑∞
(1, 0, ..., 0) . (5)

Proof: Let [J] := {1, ..., J}. Developing the product partition function ZJ,i into a sum of J rational fractions, extracting its
coefficient of zi, we easily get (after obvious identification of the coefficients)

ZJ,i =

J∑
j=1

W jα
i
j where W j :=

∏
k∈[J]\{ j}

(
1 − αk

α j

)−1

.
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Isolate the ground state term and factorize α1. Then

ZJ,i = α
i
1

W1 +

J∑
j=2

W jai
j


where a j := α j/α1 < 1, j = 2, ..., J.With i1 + ...+ iJ = i, we want to estimate the joint law of the occupancies G j (i) which
is

P
(
G j (i) = i j; j = 1, ..., J

)
=

1
ZJ,i

J∏
j=1

α
i j

j .

Since i1 = i − (i2 + ... + iJ), using the expression of ZJ,i, for all i j, j = 2, ..., J, obeying
∑J

j=2 i j < i, the joint occupancy
distribution of all states but the ground state reads

P
(
G j (i) = i j; j = 2, ..., J

)
=

∏J
j=2 ai j

j

W1

(
1 +

∑J
j=2

W j

W1
ai

j

)
=

∏J
j=2 ai j

j

(
1 − a j

)
1 +

∑J
j=2

W j

W1
ai

j

, while using W1 =

J∏
k=2

(
1 − a j

)−1
.

The term
∑J

j=2
W j

W1
ai

j goes to 0 exponentially fast with i getting large and, since aJ < ... < a3 < a2 < 1, it has the dominant
term ε (i) := ai

2W2/W1 < 0. As i→ ∞, we therefore expect

P
(
G j (i) = i j; j = 2, ..., J

)
∼ (1 − ε (i))

J∏
j=2

{
ai j

j

(
1 − a j

)}
. (6)

When i gets large therefore, a good approximation of the joint occupancies of all ordered states but the ground state is
the one of geometrically distributed finite random variables with normalized success probabilities 1 − a j. In other words,
the probabilities of G j (i) /i; j = 2, ..., J all concentrate to 0 and therefore all the probability mass goes to the ground
state ( j = 1). This is the content of the statement displayed in Eq. (5). This fact is reminiscent of the Bose-Einstein
condensation. 2

Coming back to XJ , whenever the α js are all distinct, the decomposition of ϕJ (z) into simple fractions also gives it as a
weighted sum of the elementary geometrics with negative or positive weights w j summing to 1:

ϕJ (z) =
J∑

j=1

w j
α j

1 − α jz
, w j =

∏
k∈[J]\{ j}

αkα j

α j − αk
,

not a probability mixture. If the α js are sorted in descending order, the w j alternate in sign starting with w1 > 0.

While expanding directly the product giving ϕJ (z), we get the odd explicit expression

P (XJ = i) =
[
zi
]
ϕJ (z) = ZJ,i ·

J∏
j=1

(
1 − α j

)
.

The process (XJ; J ≥ 0), with X0 = 0, has the structure of a process with independent and non-stationary increments so
that

P (XJ = i) =
i∑

j=0

P (XJ−1 = j) P (GJ = i − j) .

Hopefully however, by recurrence it holds:

proposition 3. The probability mass function (pmf) P (XJ = i) can be obtained by the recurrence

P (XJ = i) = αJP (XJ = i − 1) + (1 − αJ) P (XJ−1 = i) , i, J ≥ 1 (7)

with boundary conditions: P (XJ = 0) =
∏J

j=1

(
1 − α j

)
for all J ≥ 1 and P (X0 = i) = 0 for all i ≥ 1.
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This can be useful to recursively generate such probabilities on a lap-top because to produce P (XJ = i) only P (XJ = i − 1)
and P (XJ−1 = i) are needed from previous computations and not the whole sequence P (XJ−1 = j), j = 0, ..., i.

Let [J]i := Γ (J + i) /Γ (J) and [ J
i ] := [J]i

i! := (J+i−1)!
(J−1)!i! . If α j = α for all j (the iid case), P (XJ = i) = (1 − α)J αi[ J

i ] (the
negative binomial probability mass function) obeys the recurrence P (XJ = i) = αP (XJ = i − 1) + (1 − α) P (XJ−1 = i) , as
a result of [ J

i ] = [ J
i−1 ] + [ J−1

i ].

Note that, as a result of P (XJ = i) = ZJ,i ·
∏J

j=1

(
1 − α j

)
, ZJ,iitself obeys the recurrence ZJ,i = αJZJ,i−1 + ZJ−1,i, i, J ≥ 1,

with boundary conditions ZJ,0 = 1 for all J ≥ 1 and Z0,i = 0 for all i ≥ 1.

2.2 Number of Filled States and Constrained Occupancies

Let B j = 1
(
G j > 0

)
indicate whether site j is filled or free of particles (species j has or not at least one representative in the

population). It is a Bernoulli
(
α j

)
rv, so with P

(
B j = 1

)
= α j.The total number of filled sites in the system is PJ =

∑J
j=1 B j,

with pgf

φJ (z0) := E
(
zPJ

0

)
=

J∏
j=1

(
1 − α j (1 − z0)

)
.

With g j = E
(
G j

)
= α j/

(
1 − α j

)
> 0, for all p ∈ {0, ..., J}, we have the odd Fermi-Dirac like expressions

P (PJ = p) =
[
zp

0

]
φJ (z0) =

J∏
j=1

(
1 − α j

)
·

∑
1≤ j1<...< jp≤J

p∏
q=1

g jq

=

J∏
j=1

(
1 − α j

)
·

∑
∑J

j=1 i j=p
i j∈{0,1}, j=1,...,J

J∏
j=1

gi j

j .

proposition 4. The probabilities P (PJ = p), p = 0, ..., J, can be generated by using the recurrence

P (PJ = p) = αJP (PJ−1 = p − 1) + (1 − αJ) P (PJ−1 = p) , J ≥ p ≥ 1, (8)

with boundary conditions: P (PJ = 0) =
∏J

j=1

(
1 − α j

)
for all J ≥ 1 and P (P0 = p) = δp,0, p ≥ 0.

This translates the fact that (PJ; J ≥ 0), with P0
d∼ δ0, has the structure of a time-inhomogeneous Markov chain with

one-step transition matrix from step j − 1 to j, j ≥ 1, say P j−1, j =
[
P j−1, j (p, q)

]
, p, q ≥ 0, given by:

P j−1, j (p, p) = 1 − α j, P j−1 (p, p + 1) = α j and P j−1 (p, q) = 0 if q , {p, p + 1} .
Note that if α j = α for all j (the iid case), P (PJ = p) =

(
J
p

)
αp (1 − α)J−p (the binomial distribution), known to satisfy

the recurrence P (PJ = p) = αP (PJ−1 = p − 1) + (1 − α) P (PJ−1 = p) as a result of
(

J
p

)
=

(
J−1
p−1

)
+

(
J−1

p

)
, (Pascal’s triangle

identity for binomial coefficients).

We note that

E (PJ) =
J∑

j=1

α j and σ2 (PJ) =
J∑

j=1

α j

(
1 − α j

)
= E (PJ) −

J∑
j=1

α2
j .

while

E (XJ) =
J∑

j=1

g j =

J∑
j=1

α j

1 − α j
and σ2 (XJ) =

J∑
j=1

α j(
1 − α j

)2 = E (XJ) +
J∑

j=1

g2
j .

We also have

E
(
zB j

0 zB jG j
)
= 1 − α j + α jz0E

(
zG+j

)
= 1 − α j + α jz0

z
(
1 − α j

)
1 − α jz

so that

E

zPJ
0

J∏
j=1

zB jG j

j

 =

J∏
j=1

1 − α j + α jz0

z j

(
1 − α j

)
1 − α jz j


=

J∏
j=1

(
1 − α j

) J∏
j=1

(
1 + α jz0

z j

1 − α jz j

)
.
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Plugging z j = z, j = 1, ..., J, observing XJ =
∑J

j=1 B jG j, we get

proposition 5.

E
(
zPJ

0 zXJ
)
=

J∏
j=1

1 − α j + α jz0

z
(
1 − α j

)
1 − α jz

 = J∏
j=1

(
1 − α j

) J∏
j=1

1 − α jz (1 − z0)
1 − α jz

(9)

gives the joint pgf of (PJ , XJ).

For all fixed sequence 1 ≤ j1 < ... < jp ≤ J of sites and all effective occupancies i1, ..., ip ≥ 1 of these sites,

P
(
G j1 = i1, ...,G jp = ip; PJ = p

)
=

[
zi1

j1
...zip

jp

] p∏
q=1

E
(
z

G+jq
jq

)
=

J∏
j=1

(
1 − α j

) p∏
q=1

α
iq−1
jq
.

Remark: Considering the joint probability

P (XJ = i; PJ = p) =
[
zp

0zi
]

E
(
zPJ

0 zXJ
)
,

we get the conditional probabilities

P (XJ = i | PJ = p) =

[
zp

0zi
]

E
(
zPJ

0 zXJ
)[

zp
0

]
E

(
zPJ

0

)
P (PJ = p | XJ = i) =

[
zp

0zi
]

E
(
zPJ

0 zXJ
)[

zi] E
(
zXJ

) .

2.3 Letting the Number of Types J → ∞
We now run into the infinitely many species (types, sites) problem: J → ∞.

proposition 6. As J → ∞, consider X :=
∑∞

j=1 G j. The rv X is either∞ with probability 1 or it is < ∞ with probability 1.

Proof: (Hewitt-Savage {0, 1} −law) Indeed, suppose X = ∞ (X < ∞) with probability 1 − p (p). Then the same holds true
with XOdd =

∑∞
j=0 G2 j+1 and XEven =

∑∞
j=1 G2 j. But then

p = P (X < ∞) = P
(
XOdd < ∞

)
P

(
XEven < ∞

)
= p2

which is only possible if p ∈ {0, 1}. 2
We now have

P (X = 0) =
∏
j≥1

(
1 − α j

)
which is > 0, together with P (X = i) for all i ≥ 1, if and only if (iff):

∑
j≥1 α j < ∞, because then

P (X = i) = P (X = 0)
[
zi
]∏

j≥1

(
1 − α jz

)−1
> 0.

proposition 7. Iff
∑

j≥1 α j < ∞, X < ∞ with probability 1, otherwise X = ∞ with probability 1.

As J → ∞, consider now P =
∑∞

j=1 B j. This rv is either∞ with probability 1 or it is < ∞ with probability 1. We have

P (P = 0) =
∏
j≥1

(
1 − α j

)
which is > 0, together with P (P = p) for all p ≥ 1, iff

∑
j≥1 α j < ∞, because then

P (P = p) = P (P = 0)
[
zp

0

]∏
j≥1

(
1 +

α j

1 − α j
z0

)
> 0.

Thus,
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proposition 8. Concomitantly with X, iff
∑

j≥1 α j < ∞, P < ∞ with probability 1, otherwise P = ∞ with probability 1.

Two cases arise:

• The case
∑

j≥1 α j < ∞, where both X, P < ∞ with probability 1.

This occurs when α j → 0 faster than j−1 with the sequence of partial sums
∑J

j=1 α j being bounded.

What can be said about the shape of the distribution of P and X?

- Concerning the rv P:
φ (z0) := E

(
zP

0

)
=

∏
j≥1

(
1 − α j (1 − z0)

)
whose convergence radius sup (z0 > 0 : φ (z0) < ∞) = +∞ (φ (z0) is an entire function). The rv P has all its moments
finite. The mean and variance are already known. For instance, the third central moment is

E
[
(P − EP)3

]
=

∑
j≥1

α j

(
1 − α j

)2 −
∑
j≥1

α2
j

(
1 − α j

)
< ∞.

Having only real zeros located at 1 − 1/α j < 0, φ (z0) is not the pgf of an infinitely divisible rv P (cf. Proposition I.2.8 of
(Steutel & van Harn, 2004)). The coefficients P (X = i) form an infinite Pòlya sequence, (Pitman, 1997).

- Concerning the rv X: its pgf

ϕ (z) = E
(
zX

)
=

∏
j≥1

1 − α j

1 − α jz
, z ∈ [0, 1] .

has convergence radius zc = min j≥1

(
1/α j

)
> 1, showing that zk

cP (X = k)→Constant as k → ∞.

proposition 9. If X < ∞, the rv X is self-decomposable, in particular infinitely divisible (compound Poisson).

Proof: Indeed,

R (z) := log ϕ (z)′ =
∑
j≥1

α j

1 − α jz
=

∑
k≥0

zk

∑
j≥1

αk+1
j


with canonical sequence

rk :=
[
zk
]

R (z) =
∑
j≥1

αk+1
j > 0

obeying rk − rk−1 = −
(
1 − α j

)∑
j≥1 α

k
j < 0, k ≥ 1.We conclude (see Theorem V.4.13 of (Steutel & van Harn, 2004))

R (z) = r0
1 − h (z)

1 − z
and ϕ (z) = e−r0

∫ 1
z

1−h(z′)
1−z′ dz′

where h (z) = r−1
0

∑
k≥1 zk (rk−1 − rk) is an absolutely monotone pgf obeying h (0) = 0. 2

Remark: If α j → 0, there exists j0 such that α j < 1/2 (else 1/
(
1 − α j

)
< 2) for all j > j0. Therefore, for any k,

∑
j≥1

α j < ∞ ⇒
∑
j≥1

α j(
1 − α j

)k <

j0∑
j=1

α j(
1 − α j

)k + 2k
∑
j> j0

α j < ∞,

showing that if X < ∞ then X has all its moments finite. And similarly for P.

Examples: This includes the case α j = e−β jα , α, β > 0 with α j decreasing to 0 faster than j−1. The nature of
∑

j≥1
α j

1−α j
is

the one of I =
∫ ∞

1
e−βx

α

1−e−βxα dx with (ζ (σ) =
∑

k≥1 k−σ)

I < ζ (1/α) Γ (1 + 1/α) β−1/α < ∞ if α < 1.
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The case α j = α
j, α ∈ (0, 1) and also α j = j−α log−β ( j + 1), α > 1, β ∈ R or α = 1, β > 1 are also included.

• The case
∑

j≥1 α j = ∞, where both X, P = ∞ with probability 1.

The question here is: is there a way to scale (PJ , XJ) so as to obtain proper weak limits as J → ∞? In such a situation,
E (PJ)→∞ as J → ∞.

- Concerning the rv P: If both E (PJ) and σ2 (PJ) tend to∞ as J → ∞, then σ (PJ) /E (PJ) < 1/σ (PJ)→ 0 and

PJ − E (PJ)
σ (PJ)

d→ N (0, 1) as J → ∞.

Examples:

This occurs if α j → 0 slower than j−1, for example α j ∼ j−α (α ∈ (0, 1)) or α j ∼ j−1 log−β j (β ≤ 1). But also if α j = α
(the iid case) with E (PJ) = αJ and σ2 (PJ) = Jα (1 − α).

The condition σ (PJ) /E (PJ)→ 0 is also met if α j → 1.

For example, if α j = 1 − α j (α ∈ (0, 1)), E (PJ) →∞ as J → ∞ while σ2 (PJ) =
∑J

j=1 α
j
(
1 − α j

)
→ α/

(
1 − α2

)
. In this

case also, σ (PJ) /E (PJ) → 0. If α j ∼ 1 − λ j−1, E (PJ) →∞ as J → ∞ while σ2 (PJ) → λ∑ j≥1 j−1
(
1 − λ j−1

)
= ∞ with

σ (PJ) /E (PJ)→ 0.

Choosing α j ∼ 1− λ j−α with α > 1, E (PJ)→ ∞ while σ2 (PJ)→ λ∑ j≥1 j−α (1 − λ j−α) < ∞, still with σ (PJ) /E (PJ)→
0.

- Concerning the rv X: Under the condition
∑

j≥1 α j = ∞, both E (XJ) and σ2 (XJ) tend to∞ as J → ∞.

If µ j > 0 with
∑J

j=1 µ j = 1, by Jensen inequality, for all x j > 0 J∑
j=1

µ jg j


2

<

J∑
j=1

µ jx2
j .

Choosing µ j = α j/E (PJ) and x j = 1/
(
1 − α j

)
yields σ (XJ) /E (XJ) > 1/E (PJ)1/2 with E (PJ) → ∞. On the other hand,

from the relation between l2 and l1 norms

σ2 (XJ) =
J∑

j=1

α j(
1 − α j

)2 =

J∑
j=1

α j

1 − α j

(
1 +

α j

1 − α j

)
< E (XJ) (1 + E (XJ)) ,

showing that σ (XJ) /E (XJ) < (1 + 1/E (XJ))1/2 with E (XJ)→ ∞.

If σ (XJ) /E (XJ)→ 0 and
max j=1,...,J σ

2
(
G j

)
σ2 (XJ)

→ 0 as J → ∞,

then Lindeberg criterion is fulfilled, (Billingsley, 2012), and one expects

XJ − E (XJ)
σ (XJ)

d→ N (0, 1) as J → ∞. (10)

Both the B j’s and the G j’s are independent in L2. By Kolmogorov strong law:

If
∑

j≥1 j−2σ2
(
B j

)
=

∑
j≥1 j−2α j

(
1 − α j

)
< ∞, then

lim
J→∞

1
J

(PJ − E (PJ)) = 0 almost surely.

If
∑

j≥1 j−2σ2
(
G j

)
=

∑
j≥1 j−2α j

(
1 − α j

)−2
< ∞, then

lim
J→∞

1
J

(XJ − E (XJ)) = 0 almost surely.
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2.4 Firstly Occupied Site Index and Site Indices Till Consecutive Records

Let JJ = inf
(

j ∈ [J] : B j = 1
)

be the index of the first filled site when the number of sites is J, finite. With the empty
product being 1, we have

P (JJ > j) =
j∏

k=1

(1 − αk) , j = 0, ..., J − 1, P (JJ > J) = 0

with P (JJ = J) =
∏J−1

k=1 (1 − αk). Letting J → ∞ and J = inf
(

j ≥ 1 : B j = 1
)
, it holds

P (J > j) =
j∏

k=1

(1 − αk) = P
(
P j = 0

)
, j ≥ 0. (11)

- If
∑

k≥1 αk < ∞ : P (J = ∞) =
∏

k≥1 (1 − αk) > 0. There is a positive probability that J = ∞.

- If
∑

k≥1 αk = ∞, then J < ∞ with probability 1.

proposition 10. More generally, with p ≥ 1, define J (p) = inf
(

j ≥ 1 : P j =
∑ j

k=1 Bk = p
)
≥ p be the first index when P j

equals p. Note J (1) = J . Then,

P j =
∑
p≥1

1
(
J (p) ≤ j

)
and

P
(
J (p) > j

)
= P

(
P j ≤ p − 1

)
.

proposition 11. This probability can be generated by using the recurrence on P (PJ = p), leading to

P
(
J (p) > j

)
= α jP

(
J (p−1) > j − 1

)
+

(
1 − α j

)
P

(
J (p) > j − 1

)
, (12)

with boundary conditions: P
(
J (1) > j

)
=

∏ j
k=1 (1 − αk) for all j ≥ 0 and P

(
J (0) > j

)
= 0, j ≥ 0.

Note that J (p) − J (p−1) (J (0) = 0) is the number of sites between consecutive filled states, with

P
(
J (p) − J (p−1) = j

)
=

∑
l≥p−1

P
(
J (p−1) = l

)
P

(
J (p) − l = j | J (p−1) = l

)
and

P
(
J (p) − l > j | J (p−1) = l

)
=

j∏
k=1

(1 − αk+l) .

2.5 Number of Particles in the Most Filled Site

The number of particles in the most filled site is X∗J = maxJ
j=1 G j with probability distribution function (pdf)

P
(
X∗J ≤ i

)
=

J∏
j=1

(
1 − αi+1

j

)
, i ≥ 0. (13)

As J → ∞, consider X∗ = max j≥1 G j, so with

P (X∗ ≤ i) =
∏
j≥1

(
1 − αi+1

j

)
, i ≥ 0.

- If
∑

j≥1 α j < ∞, then
∑

j≥1 α
i+1
j < ∞ for all i ≥ 0 showing that P (X∗ ≤ i) > 0 for all i ≥ 0 : thus X∗ < ∞ with probability

1, with support {0, ...,∞}. Note in particular

P (X∗ = 0) =
∏
j≥1

(
1 − α j

)
> 0
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corresponding to the event X = 0. This occurs for example when α j = e−β( j) where β ( j) = jα logβ ( j + 1), α > 0, β ∈ R or
β ( j) = α− j, α ∈ (0, 1). In all such cases, α j → 0 as j→ ∞.

- If
∑

j≥1 α j = ∞, then P (X∗ = 0) = 0. Let then

i∗ = sup

i ≥ 0 :
∑
j≥1

αi+1
j = ∞

 ∈ {0, ...,∞} . (14)

Two cases arise:

1/ i∗ < ∞ then P (X∗ ≤ i) = 0 for all i ≤ i∗ and P (X∗ ≤ i) > 0 for all i > i∗: we conclude that X∗ < ∞ with probability 1,
with support {i∗ + 1, ...,∞} . In such a situation, necessarily, α j → 0 as j → ∞. This occurs for example when α j = e−β( j)

where β ( j) = β log j, β ∈ (0, 1], (
∑

j≥1 α j = ∞ with i∗ = ⌊1/β − 1⌋).
2/ i∗ = ∞: then X∗ = ∞ with probability 1. This occurs in the trivial iid case α j = α for all j ≥ 1 but also for all
sequences α j → 1 as j → ∞. There are examples with α j → 0 as j → ∞ and i∗ = ∞; think of α j = e−β( j) where
β ( j) = β log log ( j + 1)→ ∞.

proposition 12. The rv X∗ is also either < ∞ or it is∞ with probability 1. It is finite iff
∑

j≥1 α j < ∞ or
∑

j≥1 α j = ∞ and
i∗ < ∞.

- In cases
∑

j≥1 α j < ∞ (formally with i∗ = −1) or
∑

j≥1 α j = ∞ and i∗ < ∞, X∗ < ∞ with probability 1.

What can be said about the shape of the distribution of X∗ which is:

P (X∗ ≤ i) =
∏
j≥1

(
1 − αi+1

j

)
, i ≥ i∗ + 1.

Using 1 −∏J
j=1

(
1 − αi+1

j

)
≤ ∑J

j=1 α
i+1
j , by letting J → ∞

E
[
X∗

]
=

∑
i≥0

1 −∏
j≥1

(
1 − αi+1

j

) ≤ i∗ + 1 +
∑
j≥1

αi∗+2
j

1 − α j
< ∞.

The mean but also the positive integral moments of X∗ are finite.

- The case
∑

j≥1 α j = ∞ and i∗ = ∞ where X∗ = ∞ with probability 1. The question here is: is there a way to scale X∗J so
as to obtain a proper weak limit as J → ∞?

There is a partial answer to this question in (Doumas & Papanicolaou 2014) where some use was made of an analogy with
a previous work on the coupon collector problem, (Doumas & Papanicolaou 2012).

proposition 13. (Doumas & Papanicolaou 2014). If α j = e−1/λ( j) where λ ( j) is such that the function (x ≥ 1)→ λ (x) > 0
is in class S of increasing functions, then, with ρ (x) = − log (λ′ (x) /λ (x)) > 0

X∗J − λ (J)
(
ρ (J) − log ρ (J)

)
λ (J)

d→ G as J → ∞, (15)

where G is a Gumbel rv obeying P (G ≤ x) = e−e−x
, x ∈ R.

The class S of functions consists of positive and strictly increasing ones in C2 (1,∞) which grow at infinity slower
than exponentials but faster than positive powers of logarithms (see (Doumas & Papanicolaou 2014)). In such cases,
λ′ (x) /λ (x)→ 0 as x→ ∞ (ρ (x)→ ∞) and with

E
(
X∗J

)
= λ (J)

(
ρ (J) − log ρ (J)

)
and σ

(
X∗J

)
= λ (J) ,

σ
(
X∗J

)
/E

(
X∗J

)
→ 0 as J → ∞. For such a class, α j → 1 as J → ∞ and the order of magnitude of X∗J is E

(
X∗J

)
, with

fluctuations of order σ
(
X∗J

)
. The functions λ (x) = xα logβ x, α > 0, β ∈ R and exα , α ∈ (0, 1) are in class S. For instance,

taking λ (x) = xα, α > 0,
E

(
X∗J

) ∼ Jα log J while σ
(
X∗J

) ∼ Jα
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while taking λ (x) = exα , α ∈ (0, 1),

E
(
X∗J

) ∼ (1 − α) eJα log J and σ
(
X∗J

) ∼ eJα .

There are cases left behind with λ not in class S: (i)Whenever α j = α ∈ (0, 1) for all j ≥ 1 (the G j’s are iid), there is no
way to scale X∗J so as to obtain a proper weak limit as J → ∞. All that can be said is that X∗J/ log J converges in L1 and
in probability to −1/ logα as J → ∞. See (Eisenberg, 2008) and (Wilf & Ewens 2010) for refinements. (ii)Whenever
α j = e−α

j
, α ∈ (0, 1)

X∗J
α−J

d→ X as J → ∞

with P (X ≤ t) =
∏

j≥0

(
1 − eα

− jt
)
, t ≥ 0, (see (Doumas & Papanicolaou 2014)). The rv X∗J grows logarithmically (expo-

nentially) with J in case (i) (respectively (ii)).

Remark: the authors of (Wilf & Ewens 2010) and (Doumas & Papanicolaou 2014) were motivated by the time to
genomic evolution dealing with X∗J = maxJ

j=1 G+j instead of X∗J = maxJ
j=1 G j. On each site j of a gene with J sites, a clock

is launched whose duration is G+j (the time till a favorable allele shows up there) and their X∗J represents the time till all
sites have switched favorable, ending up evolution.

2.6 The Index of the Site Achieving the Maximum Number of Particles

Let J∗J be any of the indices of the sites achieving G∗J∗J = maxJ
j=1 G j. Then

P
(J∗J = j

)
=

∑
l≥0

P
(
G j = l

) ∏
k∈[J]\{ j}

P (Gk ≤ l)

=
(
1 − α j

)∑
l≥0

αl
j

∏
k∈[J]\{ j}

(
1 − αl+1

k

)
=

(
1 − α j

)∑
l≥0

αl
j

1 − αl+1
j

J∏
k=1

(
1 − αl+1

k

)
Summing the latter expression over j = 1, ..., J gives 1 in principle, leading to a combinatorial identity. If α j is a strictly
decreasing sequence, one can check that P

(
J∗J = j + 1

)
< P

(
J∗J = j

)
.

For this index to be uniquely determined, the corresponding occupancy should contain at least one particle. This index is
thus unique and it is j with probability

P
(J∗J = j

)
=

∑
l≥1

P
(
G j = l

) ∏
k∈[J]\{ j}

P (Gk ≤ l − 1)

=
(
1 − α j

)∑
l≥1

αl
j

∏
k∈[J]\{ j}

(
1 − αl

k

)
=

(
1 − α j

)∑
l≥1

αl
j

1 − αl
j

J∏
k=1

(
1 − αl

k

)
.

Summing the latter expression over j = 1, ..., J gives the probability that the maximum is achieved at a single site. We
also have

P
(J∗J = j, X∗J ≤ i

)
=

i∑
l=0

P
(
G j = l

) ∏
k∈[J]\{ j}

P (Gk ≤ l)

=
(
1 − α j

) i∑
l=0

αl
j

∏
k∈[J]\{ j}

(
1 − αl+1

k

)
.

Summing also the latter expression over j = 1, ..., J gives an alternative expression of P
(
X∗J ≤ i

)
=

∏J
j=1

(
1 − αi+1

j

)
.

Clearly,

proposition 14.
(
J∗J , X∗J

)
are not independent.
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2.7 Special Examples

We give here some details for specific ‘critical’ sequences α j.

• Special cases with α j → 1 :

α j = 1 − α/ j, 0 < α < 1
α j = ( j/ ( j + 1))α , α > 0.

For both sequences, to the dominant order in J:

E (PJ) ∼ J − α log J and σ (PJ) ∼
√
α log J

E (XJ) ∼ 1
2α

J2 and σ (XJ) ∼ 1
√

3α
J3/2

For both sequences, α j ∼ e−α/ j for large j, with λ ( j) = α−1 j in class S. To the dominant order, E
(
X∗J

)
∼ α−1J log J

while σ
(
X∗J

)
∼ α−1J. On average, there are E (XJ) /E (PJ) ∼ 1

2α J particles per filled site while there are order α−1J log J
particles in the most filled state. And most states are filled.

• Special cases with α j → 0 :

α j = α/ j, 0 < α < 1
α j = 1 − ( j/ ( j + 1))α , α > 0.

For both sequences, to the dominant order in J:

E (PJ) ∼ α log J and σ (PJ) ∼
√
α log J

E (XJ) ∼ α−1 log J and σ (XJ) ∼
√
α−1 log J

For both sequences, α j ∼ α/ j for large j with i∗ = 0. Then X∗J → X∗ < ∞ almost surely as J → ∞. We have
P (X∗ = 0) = 0. And filled states are rare with O (1) particles per state on average.

3. A Variant of the Model in the Continuum

Let c > 0 stand for some cutoff value to be interpreted as a minimum detection limit of some sensor. Let E j, j = 1, ..., J
be independent exponentially distributed random variables, each with rate parameter β j > 0 (the reciprocal of the scale

parameter λ j := β−1
j ). Let also E+j = E j + c d

= E j | E j > c, j = 1, ..., J, so each with densities

f +j (ϵ) = β je−β j(ϵ−c), ϵ > c.

Let B j = 1
(
E j > c

)
, so that B j = 1 with probability e−β jc, = 0 with complementary probability. These rv’s indicate

whether item j has or not ‘energy’ E j exceeding c.

In the spirit of the previous discrete random allocation study, we wish to consider the rv’s XJ =
∑J

j=1 B jE j and PJ =∑J
j=1 B j, together with the joint distribution of

(
B jE j, j = 1, .., J; PJ

)
, taking into account only those E j exceeding the

cutoff in a random allocation of energy process.

Note that (unless c = 0), XJ <
∑J

j=1 E j =
∑J

j=1

(
1 − B j

)
E j +

∑J
j=1 B jE j because whenever B j = 0, the associated energy

E j is ≤ c, but not zero. We have E
(∑J

j=1 E j

)
=

∑J
j=1 β

−1
j and σ2

(∑J
j=1 E j

)
=

∑J
j=1 β

−2
j showing that (see (Anderson, 1991)

p. 18 − 19) ∑
j≥1

E j < ∞ with probability 1, iff
∑
j≥1

β−1
j < ∞. (16)

Suppose for instance that J stars emit light the intensity of which are the E j’s. In this context, the β j’s may be related
to the inverse temperatures of the stars 1. Suppose that due to lack of perfect resolution, only those stars whose intensity
exceed the cutoff c are being detected. The rv XJ is the cumulated energy detected, while PJ ≤ J is the number of detected
stars. The rv’s

XJ/

J∑
j=1

E j and PJ/J

1Other physical images are of course at stake.
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are the fraction of the total intensity emitted which is being detected and the proportion of the detected stars.

We have

E
(
zB j

0 e−ωB jE j
)
= 1 − e−β jc + e−β jcz0E

(
e−ωE+j

)
= 1 − e−β jc + z0

β je−c(ω+β j)

ω + β j

so that with ω j ≥ 0

E

zPJ
0

J∏
j=1

e−ω jB jE j

 = J∏
j=1

1 − e−β jc + z0
β je−c(ω j+β j)

ω j + β j

 .
The joint pgf and Laplace-Stieltjes transform of (PJ , XJ) is (plugging ω j = ω)

E
(
zPJ

0 e−ωXJ
)
=

J∏
j=1

E
(
zB j

0 e−ωB jE j
)
=

J∏
j=1

1 − e−β jc + z0
β je−c(ω+β j)

ω + β j


As a consequence,

E (PJ) =
J∑

j=1

e−β jc and σ2 (PJ) =
J∑

j=1

e−β jc
(
1 − e−β jc

)
= E (PJ) −

J∑
j=1

e−2β jc.

while

E (XJ) =
J∑

j=1

e−β jc

β j

(
cβ j + 1

)
and σ2 (XJ) =

J∑
j=1

e−β jc

β2
j

(
1 +

(
cβ j + 1

)2 (
1 − e−β jc

))
.

In view of e−β jc
(
cβ j + 1

)
< 1, we have as expected E (XJ) < E

(∑J
j=1 E j

)
=

∑J
j=1 β

−1
j .

Note σ2 (XJ) <
∑J

j=1 β
−2
j

(
2 cosh

(
cβ j

)
− 1

)
and σ2

(∑J
j=1 E j

)
=

∑J
j=1 β

−2
j .

3.1 The rv P

As J → ∞, consider now P =
∑∞

j=1 B j. This rv is either∞ with probability 1 or it is < ∞ with probability 1. We have

φ (z0) := E
(
zP

0

)
=

J∏
j=1

(
1 − e−β jc + z0e−β jc

)
,

with
P (P = 0) =

∏
j≥1

(
1 − e−β jc

)
.

Two cases can arise:

• The case
∑

j≥1 e−β jc < ∞, where P (P = 0) > 0, together with P (P = p) for all p ≥ 1. If so, P < ∞ with probability 1.

This occurs when c > ϵ∗ where

ϵ∗ = sup

ϵ ≥ 0 :
∑
j≥1

e−β jϵ = ∞
 ∈ [0,∞] , (17)

and this requires ϵ∗ < ∞, itself requiring β j → ∞.
If ϵ∗ = 0, the condition c > ϵ∗ = 0 is always fulfilled. This occurs when β j → ∞ like β j = β j, β > 0 or faster.

A case with 0 < ϵ∗ < ∞ occurs typically when β j → ∞ like β j = β log j, β > 0, with ϵ∗ = 1/β.

Under the condition P < ∞, what can be said about the shape of the distribution of P? The pgf φ (z0) has convergence
radius sup (z0 > 0 : φ (z0) < ∞) = +∞ (φ (z0) is an entire function). The rv P has all its moments finite. The mean and
variance are E (P) =

∑
j≥1 e−β jc and σ2 (P) =

∑
j≥1 e−β jc

(
1 − e−β jc

)
, both finite. The third central moment is

E
[
(P − EP)3

]
=

∑
j≥1

e−β jc
(
1 − e−β jc

)2 −
∑
j≥1

e−2β jc
(
1 − e−β jc

)
< ∞.
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Having only real zeros located at z j = 1 − eβ jc < 0, φ (z0) is not the pgf of an infinitely divisible rv P.

• In case
∑

j≥1 e−β jc = ∞, then P = ∞ with probability 1. This will happen either because ϵ∗ < ∞ and c ≤ ϵ∗ or because
ϵ∗ = ∞. An estimate of the way PJ → ∞ as J → ∞ can be obtained from a large J estimate of E (PJ) and σ2 (PJ) .

To summarize, we observe that a sharp transition phenomenon is possible:

proposition 15. For those sequences β j such that 0 < ϵ∗ < ∞, depending on the threshold c > ϵ∗ or c ≤ ϵ∗ the number P
of detected stars can switch from finite to infinite with probability 1.

3.2 The rv X

As J → ∞, consider now X =
∑∞

j=1 B jE j <
∑∞

j=1 E j, with

E
(
e−ωX

)
=

∏
j≥1

1 − e−β jc +
β je−c(ω+β j)

ω + β j

 .
Clearly if P < ∞ with probability 1, so is X. Can X be finite if P = ∞? We have

proposition 16. X < ∞ with probability 1iff P < ∞. Otherwise, X = ∞ with probability 1.

Proof: Suppose P = ∞ with probability 1, equivalently
∑

j≥1 e−β jc = E (P) = ∞. Then X =
∑∞

j=1 B jE j, with
(
B jE j; j ≥ 1

)
a sequence of independent rv’s each with mean E

(
B jE j

)
= e−β jc

β j

(
cβ j + 1

)
≥ ce−β jc. So X has at least infinite mean.

If P (X = ∞) > 0, then E (X) = ∞. Suppose P = ∞ and consider now

E
(
e−X

)
=

∏
j≥1

(
1 − e−β jc

(
1 −
β je−c

1 + β j

))
.

We have X = ∞ with probability 1 iff E
(
e−X

)
= 0.

This occurs iff
∑

j≥1 e−β jc
(
1 − β je−c

1+β j

)
= ∞. Owing to 1− β je−c

1+β j
≥ 1−e−c,we have

∑
j≥1 e−β jc

(
1 − β je−c

1+β j

)
≥ (1 − e−c)

∑
j≥1 e−β jc =

∞. So iff P = ∞ with probability 1, does concomitantly X = ∞ with probability 1. 2

We obtained a sharp transition phenomenon for X as well:

proposition 17. For those sequences β j such that 0 < ϵ∗ < ∞, depending on the threshold c > ϵ∗ or c ≤ ϵ∗, the energy X
of the detected stars can be either finite or infinite with probability 1.

3.3 The rv X∗

The energy of the star emitting the most is X∗J = maxJ
j=1 E j with pdf

P
(
X∗J ≤ ϵ

)
=

J∏
j=1

(
1 − e−β jϵ

)
= 1 +

J∑
k=1

(−1)k
∑

1≤ j1<...< jk≤J

e−(
∑k

l=1 jl)ϵ , ϵ > 0.

It is detectable with probability P
(
X∗J > c

)
= 1 −∏J

j=1

(
1 − e−β jc

)
. The q−moments of X∗J are given by

E
((

X∗J
)q)
= q

∫ ∞

0
ϵq−1

1 − J∏
j=1

(
1 − e−β jϵ

) dϵ, q > 0.

As J → ∞, consider X∗ = max j≥1 E j, so with

P (X∗ ≤ ϵ) =
∏
j≥1

(
1 − e−β jϵ

)
, ϵ > 0.

As before, consider ϵ∗ as from (17). Two cases arise:
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1/ 0 ≤ ϵ∗ < ∞ : then P (X∗ ≤ ϵ) = 0 for all ϵ ≤ ϵ∗ and P (X∗ ≤ ϵ) > 0 for all ϵ > ϵ∗: we conclude that X∗ < ∞ with
probability 1, with support (ϵ∗,∞) . A case with 0 < ϵ∗ < ∞ occurs when β j = β log j, β > 0, (with ϵ∗ = 1/β). A case with
ϵ∗ = 0 occurs when β j = β j, β > 0.

2/ ϵ∗ = ∞: then X∗ = ∞ with probability 1. This occurs in the trivial iid case β j = β for all j ≥ 1 but also for all sequences
β j tending to 0 as j→ ∞.

proposition 18. The rv X∗ is also either < ∞ or it is∞ with probability 1. It is < ∞ with support (ϵ∗,∞) iff 0 ≤ ϵ∗ < ∞.

Whenever X∗ < ∞,
P (X∗ ≤ ϵ) =

∏
j≥1

(
1 − e−β jϵ

)
, ϵ > ϵ∗

and X∗ has all its moments finite. Whenever X∗ = ∞ and β j = 1/λ j where λ j = λ ( j) and λ (x) is in class S, X∗J can be
scaled as in the discrete setup, with a Gumbel weak limit.

3.4 The Joint Distribution of
(
J∗J , X∗J

)
With J∗J be the unique index j achieving maxJ

j=1 E j, it holds

P
(J∗J = j, X∗J ≤ ϵ

)
=

∫ ϵ

0
P

(
E j ∈ dϵ′

) ∏
k∈[J]\{ j}

P
(
Ek ≤ ϵ′

)
= β j

∫ ϵ

0
dϵ′e−β jϵ

′ ∏
k∈[J]\{ j}

(
1 − e−βkϵ

′)

= 1 − e−β jϵ +

J−1∑
k=1

(−1)k
∑

1≤ j1<...< jk≤J
jl∈[J]\{ j}

β j

(
1 − e−(β j+

∑k
l=1 β jl )ϵ

)
β j +

∑k
l=1 β jl

,

resulting in ( j = 1, ..., J)

P
(J∗J = j

)
= β j

∫ ∞

0
dϵ′e−β jϵ

′ ∏
k∈[J]\{ j}

(
1 − e−βkϵ

′)
= 1 +

J−1∑
k=1

(−1)k
∑

1≤ j1<...< jk≤J
jl∈[J]\{ j}

β j

β j +
∑k

l=1 β jl

.

Unless β j = β for all j = 1, ..., J, the rv’s
(
J∗, X∗J

)
are not independent. If β j = β for all j = 1, ..., J, P

(
J∗J = j

)
= 1/J and

P
(J∗J = j, X∗J ≤ ϵ

)
= β

∫ ϵ

0
dϵ′e−βϵ

′ (
1 − e−βϵ

′)J−1

=
1
J

(
1 − e−βϵ

)J
= P

(J∗J = j
)

P
(
X∗J ≤ ϵ

)
.

In contrast, it can be easily be checked, proceeding similarly, that the unique index achieving minJ
j=1 E j has probability

mass at site j : β j/
∑J

k=1 βk and it is independent of the latter rv, which is exponentially distributed with rate
∑J

k=1 βk.
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