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Abstract 

Parametric and non-parametric approaches are developed to test the adequacy of the polynomial model 

𝑌 = 𝛽° + ∑ 𝛽𝑗𝑋
𝑗𝑝

𝑗=1 + 𝜀 when there is no replication in the values of the independent variable. The proposed tests avoid 

partitioning of the sample space of the continuous covariate. This paper suggests three tests based on the following 

concept: if the model is appropriate for a selected application, then the error component 𝜀1, 𝜀2, … , 𝜀𝑛 is a random 

sample with zero mean and constant variance. Simulation results are provided to illustrate the power and size of the 

proposed tests. An example is used to illustrate the methodologies. These tests are also compared with the classical 

lack-of-fit test to demonstrate their advantage. 

Keywords: lack-of-fit test, regression model, replication, non parametric test 

1. Introduction 

A very important aspect in regression analysis is testing the adequacy of the proposed model. The classical lack-of-fit 

test, which was given by Fisher (1922), is appropriate for a model with replication. In most empirical and some 

experimental data, replication is unavailable. Several approaches are available for testing the adequacy of such models. 

Christensen (1989) introduced the concept of lack of fit between or within clusters, or a mixture of these two pure types, 

for near replicates. Su and Wei (1991) showed by example that such tests based on different partitions of the regression 

variable space may lead to different conclusions on the adequacy of a proposed model. Christensen (2003) noted that a 

small value of the F-statistic does not indicate a lack of fit in the proposed model, but in the combination of these two 

pure types, and this can be extremely difficult to detect. Miller et al. (1998, 1999), Miller and Neil (2007) presented a 

lack-of-fit test based on families of groupings of the observation, using the test given by Christensen (1989, 1991), and 

those given by Khuri (1985) and Levy and Neill (1990).  

Nearly all studies involve dividing the data across the predictor spaces, assumption of a grouping structure, and 

estimation of the pure error to obtain an approximated F-statistic. This study proposes a simple approach that avoids 

partitioning of the continuous variable, to test the adequacy of the model when replication is not available. Alyafi et al. 

(2017) examined the lack of fit of a polynomial model by applying the Durbin–Watson test on the residuals. 

In Section 2, three tests are presented. All these tests are based on the following concept: if the model is appropriate for 

a selected application, then the error component 𝜀𝑖 (𝑖 = 1,2, … , 𝑛) is a random sample with zero mean and variance 𝜎2. 

For the sake of simplicity, we can assume approximately that 𝑒𝑖  (𝑖 = 1, 2, … , 𝑛) is a random sample from a normal 

distribution with zero mean if the model is appropriate.  

In the case of one independent variable, we assume the model as 

𝑌𝑖 = ∑ 𝛽𝑗
𝑝
𝑗=0 𝑋𝑖

𝑗
+ 𝜀𝑖 ; 𝑖 = 1, 2, … , 𝑛                         (1) 

while the underlying true model has the form  

𝑌𝑖 = ∑ 𝛽𝑗+1
𝑝
𝑗=0 𝑋𝑖

𝑗+1
+ 𝜀𝑖 ; 𝑖 = 1, 2, … , 𝑛                      (2) 

where 𝑋𝑖 is a known constant, the value of the independent variable in the ith trial. 

Let 𝑋(1) < 𝑋(2)……< 𝑋(𝑛) be the ordered values of the independent variable. 

Let 𝑣𝑖 = 𝑒,𝑖- be the residual associated with the ordered value 𝑋(𝑖). 

Let p = 1, 2, and 3 be the degree of the independent variable. 
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We also considered standardized residuals instead of the classic residuals as standardized residuals allow the residuals to 

be compared on a standard scale. 

The tests evaluate the adequacy of the proposed model by detecting randomness of the sample 𝑣1, 𝑣2, … , 𝑣𝑛, using the 

following hypotheses:  

 𝐻0 :    𝑣1, 𝑣2, … , 𝑣𝑛  is a random sample. (The model is adequate) 

 𝐻1:   𝑣1, 𝑣2, … , 𝑣𝑛  is not a random sample. (The model is not adequate) 

Simulations are provided in the subsequent section. Moreover, conclusions and comparisons between the powers of the 

three proposed tests and the Durbin–Watson approach discussed in Alyafi et al. (2017) are illustrated in the section 

―Comparison and Conclusions.‖ 

Furthermore, in the section ―Illustrative Example,‖ an applied example by Neter, Kutner, and Wasserman (1985) is used 

to illustrate the test methodologies and compare them with the classical lack-of-fit test. 

2. Method 

Test 1 

A new non-parametric test is presented to test the lack of fit of the regression model (1) when replication is not available. 

To test the randomness of the residuals 𝑣1, 𝑣2, … , 𝑣𝑛  associated with the ordered 𝑋(𝑖), we define the random variables 

𝑈𝑖 = 𝐼(−∞,0)(𝑣𝑖 𝑣𝑖+1) =  {
1; 𝑣𝑖 𝑣𝑖+1 < 0 

 
⇔𝑠𝑖𝑔𝑛 ( 𝑣𝑖 ) ≠ 𝑠𝑖𝑔𝑛 (𝑣𝑖+1) 

0; 𝑣𝑖 𝑣𝑖+1 >  0
 
⇔ 𝑠𝑖𝑔𝑛 ( 𝑣𝑖 ) = 𝑠𝑖𝑔𝑛 (𝑣𝑖+1)

; 𝑖 =          1,2, …𝑛                                 (3) 

where 𝑈 = ∑ 𝑈𝑖
𝑛−1
𝑖=1 . 

Under the null hypothesis 𝐻0 (the model is adequate), 𝑣1, 𝑣2, … , 𝑣𝑛  are approximately 𝑖. 𝑖. 𝑑.  𝑁(0, 𝜎𝑣
2) , i.e., 

𝑽~𝑁𝑛(𝟎, 𝜎𝑣
2𝑰𝑛), where the random vector 𝑽′ is (𝑣1, 𝑣2, … , 𝑣𝑛).  

We will introduce four theorems below about the random variable 𝑈𝑖 defined above. Their proofs are in Appendix A. 

Theorem 1:  

      The random variable 𝑈𝑖  has a Bernoulli distribution with the parameter 𝑝𝑖  for                                      

each 𝑖 = 1,2, … , 𝑛 − 1. That is, 𝑈𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝𝑖). 

 Theorem 2: 

      Under 𝐻0 ,𝑈𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1,  0.5), for each 𝑖 = 1, 2, … , 𝑛 − 1.      

Theorem 3:  

      Under 𝐻0, 𝑈1, 𝑈2, … , 𝑈𝑛−1  are independent. 

 Theorem 4:  

      Under 𝐻0, 𝑈 = ∑ 𝑈𝑖
𝑛−1
𝑖=1 ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 − 1, 0.5).  

Based on the definition of the statistic U, large and small values of U indicate that the sample is not random.  

Therefore, for a given α, we reject H0 if  P(U ≤ 𝑢0) ≤ α/2 or P(U ≥ 𝑢0) ≤ α/2 , where 𝑢0 = ∑ 𝑢𝑖
𝑛−1
𝑖=1 . 

For a large sample size, we considered the binomial approximation to normal where 𝑈 ≈ 𝑁(𝑛𝑝, 𝑛𝑝𝑞) i.e.,  𝑈 ≈

𝑁(
𝑛−1

2
,
𝑛−1

4
). 

Test 2 

This test uses the Wald–Wolfowitz [13] runs test technique to test whether there is any trend with the ordered 

residuals 𝑣1, 𝑣2, … , 𝑣𝑛. Depending on the runs of the signs in the ordered residuals, the probabilities of the number of 

runs P(T ≤ r) and P(T ≥ r) are calculated, where T is the number of runs and r is the observed value of t. The test 

hypotheses are H0: The sequence is random against H1: The sequence is not random.  

H0 is rejected at level α if P(T ≤ r) ≤ α/2 or P(T ≥ r) ≤ α/2. 

The probability distribution of the number of runs under H0 is  
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𝑃,𝑇 = 𝑟- =

{
 
 

 
 2(

𝐴−1
𝑟

2
−1)(

𝐵−1
𝑟

2
−1)

.
𝐴+𝐵
𝐴

/
   , 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑟

(
𝐴−1

(𝑟−1)/2
)(

𝐵−1
(𝑟−3)/2)

+(
𝐴−1

(𝑟−3)/2
)(

𝐵−1
(𝑟−1)/2)

.
𝐴+𝐵
𝐴

/
, 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑟    ,                                                            

(4) 

where A and B correspond to the number of positive and negative runs, respectively.   

For large sample sizes, where the numbers A and B are larger than ten, the normal approximation is adequate, where 

T≈ 𝑁(𝐸(𝑇), 𝑉(𝑇))  and   𝐸(𝑇) =
2𝐴𝐵

𝐴+𝐵
+ 1  , 𝑉(𝑇) =

2𝐴𝐵(2𝐴𝐵−𝐴−𝐵)

(𝐴+𝐵)2(𝐴+𝐵−1)
 . 

Test 3 

Test 3 tests the lack of fit of the regression model (1) by introducing the following regression model:   

 𝑣𝑘 = 𝛾0 +∑ 𝛾𝑗
𝑞
𝑗=1 𝑘𝑗 + 𝜀𝑘;           𝑘 = 1,2,… , 𝑛; 𝑞 = 1                  (5) 

where 𝑣𝑘’s are the residuals associated with the ordered x values from Model (1). 

The value of q in model (5) depends on the degree of the independent variable in the true model i.e., q takes the value of 

the power of the independent variable plus one, if the power of the dependent variable is even; if the power is odd, q 

equals the power plus two. Here, we wish q to be an odd number as the time k with an odd power will be more sensitive 

in detecting true and false models.  

The classical Fisher’s test statistic F is used on model (5) to test 𝐻0:  𝛾1 =  𝛾2 = … =  𝛾𝑞 = 0 

against 𝐻1:  𝛾𝑗 ≠0 for some j = 1, 2 ,…, q.  

3. Simulation Results 

Simulations were performed to compare the power and size of the proposed tests. In particular, the adequacy of model 

(1) was tested when the observations were truly generated from model (2) for different parameter values

.3,2,15,1,5.0  jforj  For each simulation, the independent variable X was generated from random real numbers 

ranging from 0 to c (where 𝑐 = 1, 5, 20 𝑎𝑛𝑑 50) . Errors were generated independently from N(𝛽0 + ∑ 𝛽𝑗
𝑝
𝑗=1 𝑋𝑖

𝑗
,  𝜎2) 

where 𝑖 = 1, 2, … , 𝑛, 𝜎2 takes the values 0.1, 0.5, 1 and 5,  the dependent variable Y was fitted to both models (1) 

and (2), and 10000 simulation datasets were generated according to the previous specifications with n = 10, 30, and 100. 

The percentage of rejection of the false model (model (1)) was used to calculate the empirical power of the test, and the 

percentage of rejection of the true model (model (2)) was used to calculate the empirical size of the test. The simulation 

was performed using the software Mathematica 8, where 𝛼, the significant level, takes the values 0.01, 0.05, and 0.1. 

As indicated in ―Introduction,‖ all the three tests depend on the randomness of the residuals 𝑣1, 𝑣2, … , 𝑣𝑛. 

These residuals are the residuals associated with the ordered Xi. The residuals 𝑣1, 𝑣2, … , 𝑣𝑛 are calculated for both 

models (1) and (2). 

Through simulation, the test statistics U0, T0, and F0 were calculated for model (1) for all the three tests. Similarly, the 

test statistics U1, T1, and F1 were calculated for model (2). Depending on the rejection rule, the approximate power and 

size of the tests were computed for specified 𝛼 levels. 

The simulated results of power and size for testing the adequacy of model (1) for different values of p are shown in 

Figure 1. In particular, this figure shows the empirical power and size of all the three tests when the observations were 

generated from model (2). The results of the Durbin–Watson approach (test 4) in Alyafi et al. (2017) are also illustrated 

in Figure 1. 

Note: Test 4 is not applicable when p = 0 as the Durbin–Watson test requires at least one independent variable. 

 ―Size of the test‖ ―Power of the test‖ 
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P
 =

 1
 

  

P
 =

 2
 

 
 

 

Figure 1. Comparison of the empirical size and power of the tests for the mentioned cases 
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4. Comparison and Conclusion 

Throughout the simulations, all the tests provided a very strong empirical power of almost 1 for n =30 and n =100. In 

addition, the empirical size of the test was close to the assumed α.    

The empirical size of test 1 was closer to the assumed α than that of any other test. Test 3 provided a very strong 

empirical power—almost one—for all sample sizes and a low empirical size for all sample sizes.  

For test 1, when n = 10, the empirical power of the test was almost zero. From the simulations, we observed that u0 

takes the value 2 in most cases. Hence, after calculating P(U≤u0 ) , P(U ≥ u0) H0 was always accepted for the false 

model for any given α. We investigated further and observed that, for n ≥ 16, the performance of this test improved 

significantly. For test 2, considering all the possible run values when n = 10, H0 was almost never rejected, which 

results in an empirical power equal to almost zero. As shown in Figure 1, when p = 0, test 4 is not applicable, as the 

Durbin–Watson tables are provided only when a constant term in the regression model and at least one independent 

variable exist.  

As expected, the simulated power for testing model (1) increases as n increases and decreases as σ2 increases. 

Overall, all our proposed tests showed very promising results. However, some tests are preferred over others in some 

specific cases. 

5. Illustrative Example 

A dataset will be analyzed here to illustrate the methods of our four tests. The data of interest are given by Neter, Kutner 

and Wasserman (1985) in Applied Linear Statistical Models, as shown in Table 1. The data include promotional 

expenditure X and demand for a specific firm’s product Y.  

 

Table 1. Promotional expenditure (X) and the demand for a specific firm’s product (Y) in a territory (X in thousand 

dollars, Y in thousand units) 

Perio

d 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

X 17 15 25 10 18 15 20 25 17 13 20 23 25 16 

Y 
56.1

5 

54.

5 

55.2

7 

52.5

4 

56.2

3 

55.9

7 

55.5

5 

54.3

2 

55.1

4 

54.2

8 

55.7

8 

55.6

5 

54.9

6 

55.0

6 

 

First, we will fit the linear model    

 𝑌̂ = 53.7 + .0778𝑥                      (6) 

Figures 2 and 3 suggest nonlinearity. From the figures below, we observe that the relation between the firm’s product 

and the promotional expenditure is quadratic. 

 

 

Figure 2. Scatter plot for product example illustrating 

nonlinearity function 

 

 

Figure 3. Residuals plot for product example illustrating 

nonlinearity function 
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Now, we will consider fitting the quadratic regression model.  

The fitted model is 

 𝑌̂ = 42.1 + 1.41𝑥 − 0.0358𝑥2             (7) 

For the quadratic model, Figures 4 and 5 suggest that the quadratic function is a good fit.  

 

Figure 4. Fitted quadratic-order polynomial regression 

function for product example 

 

Figure 5. Residuals plot against x for product example 

 

To show the promising performance of the four suggested tests, we test the adequacy of both the linear and quadratic 

models using all four proposed tests in the Section 2. 

a) Test 1:  

To test the linear model, we fit 𝑣1, 𝑣2, … , 𝑣14 obtained from the linear model (6). 

We defined a random variable U that depends on the sign of the residuals 𝑣1, 𝑣2, … , 𝑣14 

Using (3), we have 𝑢0 = 2 , 𝑃(𝑈 ≤ 2) = 0.0112 and  𝑃(𝑈 ≥ 2) = 0.9983 . 

For 𝛼 = 0.01 , we cannot reject the linear model, i.e., the linear model is appropriate. 

For 𝛼 = 0.05 𝑎𝑛𝑑 𝛼 = 0.1,  the linear model is not appropriate. 

To test the quadratic model, we fit 𝑣1, 𝑣2, … , 𝑣14 obtained from the quadratic model (7). 

We defined a random variable U that depends on the sign of the residuals 𝑣1, 𝑣2, … , 𝑣14 

Using (3), we have 𝑢0 = 7, 𝑃(𝑈 ≤ 7) = 0.7095 and  𝑃(𝑈 ≥ 7) = 0.5 . 

For 𝛼 = 0.01 , 𝛼 = 0.05, and 𝛼 = 0.1,  the quadratic model is appropriate. 

Comment: As expected, we did not reject the linear model for α=0.01 even though it is the false model. This result is 

consistent with our conclusion Section 4.  

b) Test 2: 

To test the linear model, we fit 𝑣1, 𝑣2, … , 𝑣14 obtained from the linear model (6). This test depends on the number of 

runs of the signs in the residuals 𝑣1, 𝑣2, … , 𝑣14. The number of positive signs = 8, the number of negative signs = 6, and 

the number of runs = 3. 

Using (4), we obtain 𝑃(𝑇 ≤ 3) = 0.0047 and  𝑃(𝑇 ≥ 3) = 0.9933 . 

For 𝛼 = 0.01 , 𝛼 = 0.05, and 𝛼 = 0.1,  the linear model is not appropriate. 

To test the quadratic model, we fit 𝑣1, 𝑣2, … , 𝑣14 obtained from the quadratic model (7). This test depends on the 

number of runs of the signs in the residuals 𝑣1, 𝑣2, … , 𝑣14. The number of positive signs = 6, the number of negative 

signs = 8, and the number of runs = 8. 

Using (4), we obtain 𝑃(𝑇 ≤ 8) = 0.6457 and  𝑃(𝑇 ≥ 8) = 0.5874. 

For 𝛼 = 0.01 , 𝛼 = 0.05, 𝑎𝑛𝑑 𝛼 = 0.1,  the quadratic model is appropriate. 

c) Test 3:  

To test the linear model, we fit 𝑣1, 𝑣2, … , 𝑣14 obtained from the linear model (6) to model (5) with q = 3.  

𝑣̂𝑘 = −3.0852 +  1.4901𝑘
1 +−0.1722𝑘2 +  0.0056𝑘3; where k = 1,2,3,…,14. 
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The p-value = 0.0054, suggesting that the linear model is not appropriate for all α.    

To test the quadratic model, we fit 𝑣1, 𝑣2, … , 𝑣14 obtained from the quadratic model (7) to model (5) with q = 3. 

𝑣̂𝑘 = −0.3480 + 0.2123𝑘
1 +−0.0343𝑘2 + 0.0016𝑘3; where k = 1,2,3,…,14.  

The p-value =  0.9242 , suggesting that the quadratic model is appropriate for all α. 

d) Test 4: 

To test the linear model, we fit 𝑣1, 𝑣2, … , 𝑣14 obtained from the linear model (6). 

We test the serial correlation between the residuals 𝑣1, 𝑣2, … , 𝑣14. 

Based on the Durbin–Watson test statistic, DW = 0.9461 and  4-DW = 3.0539.  

At  𝛼 =  0.05 ⟹ 𝑑𝑙 = 0.91523  𝑎𝑛𝑑  𝑑𝑢 = 1.2086. 

At  𝛼 =  0.1 ⟹ 𝑑𝑙 = 1.04495  𝑎𝑛𝑑  𝑑𝑢 = 1.3502. 

For  𝛼 = 0.05 ⟹  𝑖𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 . 

For 𝛼 = 0.1 ⟹  the linear model is not appropriate. 

To test the quadratic model, we fit 𝑣1, 𝑣2, … , 𝑣14 obtained from the quadratic model (7). 

We test the serial correlation between the residuals 𝑣1, 𝑣2, … , 𝑣14. 

Based on the Durbin–Watson test statistic, DW = 2.6353 and  4-DW = 1.3647.  

At  𝛼 =  0.05 ⟹ 𝑑𝑙 = 0.7862  𝑎𝑛𝑑  𝑑𝑢 = 1.4092.     

At  𝛼 =  0.1 ⟹ 𝑑𝑙 = 0.9054  𝑎𝑛𝑑  𝑑𝑢 = 1.5507. 

For  𝛼 = 0.05 𝑎𝑛𝑑 𝛼 = 0.1 ⟹  𝑖𝑛𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒 . 

Comment: As the sample size is small, i.e., n = 14, predictably, the test is said to be inconclusive.  

Classical Lack-of-fit Test 

Testing the adequacy of the linear model (6), we have the F-statistic = 2.91 and p-value = 0.128, suggesting that the 

linear model is appropriate for all α. 

Testing the adequacy of the quadratic model (7), we have the F-statistic = 0.19 and p-value = 0.967, suggesting that the 

quadratic model is appropriate for all α. 

To confirm the powerfulness and accuracy of our tests, we consider α = 0.05 in our proposed example. All the tests 

provided the correct decision regarding models (6) and (7), except for test 4, which was inconclusive. In contrast, the 

lack-of-fit test provided an incorrect decision for model (6) but a correct one for model (7).   
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Appendix A  

Theorem 1:  

The random variable 𝑈𝑖  has a Bernoulli distribution with the parameter 𝑝𝑖  for each  𝑖 = 1,2, … , 𝑛 − 1 . That 

is, 𝑈𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝𝑖). 

Proof: 

The random variable 𝑈𝑖  is a binary variable, with  𝑝𝑖= 𝑃(𝑈𝑖 = 1) = 𝑃(𝑣𝑖 𝑣𝑖+1 < 0) and 1 − 𝑝𝑖 = 𝑃(𝑈𝑖 = 0) =
𝑃(𝑣𝑖 𝑣𝑖+1 ≥ 0). Hence,  𝑈𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝𝑖).   

Theorem 2: 

Under 𝐻0 ,𝑈𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1,  0.5), for each 𝑖 = 1, 2, … , 𝑛 − 1. 

Proof: 

We define the random vector 𝑽𝑖,𝑖+1 = .
𝑣𝑖
𝑣𝑖+1

/. 

Under 𝐻0, we have 𝑽𝑖,𝑖+1~𝑁2(𝟎, 𝜎𝑣
2𝑰2). 

Now, 

 𝑝𝑖= 𝑃(𝑈𝑖 = 1) = 𝑃(𝑣𝑖 𝑣𝑖+1 < 0)  

= 𝑃(𝑣𝑖 < 0, 𝑣𝑖+1 > 0)+ 𝑃(𝑣𝑖 > 0, 𝑣𝑖+1 < 0)  

= 𝑃(𝑣𝑖 < 0) 𝑃( 𝑣𝑖+1 > 0) + 𝑃(𝑣𝑖 > 0) 𝑃( 𝑣𝑖+1 < 0) = 2 (0.5)(0.5) 

= 0.5 

Theorem 3:  

Under 𝐻0, 𝑈1, 𝑈2, … , 𝑈𝑛−1  are independent. 

Proof: 

It is sufficient to show that 𝑈𝑖 and 𝑈𝑖+1 are independent. With no loss of generality, we will show that 𝑈1 and 𝑈2 

are independent. 

First, we observe that the random vector  𝑽1,2,3 = (

𝑣1
𝑣2
𝑣3
)~𝑁3(𝟎, 𝜎𝑣

2𝑰3). 

The set of all possible values of the random vector 𝑼1,2 = (
𝑈1
𝑈2
) is 𝐴1,2 = {.

0
0
/ , .

1
0
/ , .

0
1
/ , .

1
1
/}.  

As the multivariate normal distribution 𝑁3(𝟎, 𝜎𝑣
2𝑰3) is spherically symmetric about the origin, the random vector 𝑼1,2 

has a uniform distribution over the set  𝐴1,2 , as we will show below. 

Based on Theorem 2, we have 𝑃(𝑈1 = 0) = 𝑃(𝑈2 = 0) = 0.5. 

The three-dimensional Euclidean space  𝓡3 consists of eight octagonal regions, which are given by 

 𝑅−−− = *𝑣1 > 0, 𝑣2 > 0, 𝑣3 > 0+ 

 𝑅−−+ = *𝑣1 > 0, 𝑣2 > 0, 𝑣3 ≤ 0+ 

 ⋮ 
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 𝑅+++ = *𝑣1 ≤ 0, 𝑣2 ≤ 0, 𝑣3 ≤ 0+ 

As the multivariate normal distribution 𝑁3(𝟎, 𝜎𝑣
2𝑰3) is spherically symmetric about the origin, the vector 𝑽1,2,3 =

(

𝑣1
𝑣2
𝑣3
) has equal probabilities over these eight octagonal regions, i.e., 𝑃(𝑽1,2,3 ∈ 𝑅∓∓∓) = 1/8.  

This result can also be shown, for example for 𝑃(𝑽1,2,3 ∈ 𝑅−−−),  by verifying that 

𝑃(𝑽1,2,3 ∈ 𝑅−−−) = 𝑃(𝑣1 > 0, 𝑣2 > 0, 𝑣3 > 0) 

= 𝑃(𝑣1 > 0) 𝑃( 𝑣2 > 0) 𝑃( 𝑣3 > 0) 

= (0.5)(0.5)(0.5) = 1/8 

Now, 

𝑃(𝑈1 = 0, 𝑈2 = 0 ) = 𝑃(𝑣1 𝑣2 > 0  , 𝑣2 𝑣3 > 0)  

=𝑃*,(𝑣1 > 0 , 𝑣2 > 0) 𝑜𝑟  (𝑣1 < 0 , 𝑣2 < 0)-,   ,(𝑣2 > 0 , 𝑣3 > 0) 𝑜𝑟  (𝑣2 < 0 , 𝑣3 < 0)-+                           

= 𝑃*(𝑣2 > 0 , 𝑣1 > 0 , 𝑣3 > 0) 𝑜𝑟 (𝑣2 < 0 , 𝑣1 < 0 , 𝑣3 < 0)} 

= 𝑃(𝑣2 > 0 , 𝑣1 > 0 , 𝑣3 > 0) +  𝑃(𝑣2 < 0 , 𝑣1 < 0 , 𝑣3 < 0) 

= 𝑃(𝑽1,2,3 ∈ 𝑅−−−) + 𝑃(𝑽1,2,3 ∈ 𝑅+++) 

= 1/8 + 1/8 

= 0.25 

= 𝑃(𝑈1 = 0)𝑃(𝑈2 = 0) 

Similarly, we can show that 

𝑃(𝑈1 = 0, 𝑈2 = 1 ) = 𝑃(𝑈1 = 0)𝑃(𝑈2 = 1) = 0.25 

𝑃(𝑈1 = 1, 𝑈2 = 0 ) = 𝑃(𝑈1 = 1)𝑃(𝑈2 = 0) = 0.25 

𝑃(𝑈1 = 1, 𝑈2 = 1 ) = 𝑃(𝑈1 = 1)𝑃(𝑈2 = 1) = 0.25 

Therefore, 𝑈1 and 𝑈2 are independent. 

Theorem 4:  

Under 𝐻0, 𝑈 = ∑ 𝑈𝑖
𝑛−1
𝑖=1 ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 − 1, 0.5). 

Proof: 

Based on Theorems 1, 2, and 3, we conclude that  𝑈1, 𝑈2, … , 𝑈𝑛−1  are i.i.d. Binomial (1, 0.5). Therefore, 𝑈 =
∑ 𝑈𝑖
𝑛−1
𝑖=1 ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 − 1, 0.5). 

Method: 

To test the randomness of the ordered residuals we have   

H0: The sample 𝑣1, 𝑣2, … , 𝑣𝑛  is random. 

H1: The sample 𝑣1, 𝑣2, … , 𝑣𝑛 is not random. 

We assume that the value of U that corresponds to a certain sample is 𝑢0, where 𝑢0 = ∑ 𝑢𝑖
𝑛−1
𝑖=1  
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