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Abstract

This paper discusses the Exponentiated Nadarajah-Haghighi Poisson distribution focusing on statistical properties such
as the Quantile, Moments, Moment Generating Functions, Order statistics and Entropy. To estimate the parameters of
the model, the Maximum Likelihood Estimation method is used. To demonstrate the performance of the estimators, a
simulation study is carried out. A real data set from Air conditioning system is used to highlight the potential application
of the distribution.
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1. Introduction

Probability distributions have a pivotal role in statistical modeling. Different kinds of data arise from various disciplines
including but not limited to economics, medicine, agriculture, food security, psychology. However, there is no suitable
distribution for all data set, thus, the need to extend existing distributions or develop new ones (Nasiru, 2018). Modern
trends focus on defining new families of distributions, by adding more parameters, that extend classical distributions and
at the same time give great versatility in data modeling. Most of the generalizations to do extensions are developed due
to the following reasons: a physical or statistical theoretical argument to explain the mechanism of the generated data, an
appropriate model that has previously been used successfully, and a model whose empirical fit is good to the data.

Analyzing lifetime data is very important in applied sciences. Many distributions have been used to model lifetime data.
Some of these include the exponential, Weibull, gamma and Rayleigh distributions and their generalizations (Gupta &
Kundu, 1999; Nadarajah & Kotz, 2006). The features of each distribution depends on the shapes of the hazard rate
function (hrf). The shape can be bathtub or unimodal and also either increase or decrease monotonically. The Exponential
distribution was the first lifetime model for which statistical methods were extensively developed. Nadarajah & Haghighi
(2011) introduced an extension of the Exponential distribution as an alternative to the Gamma, Weibull and Exponentiated
Exponential (EE) distributions.

In the extension, the Cumulative Distribution Function (CDF) of the Nadarajah-Haghighi (NH) distribution is given by

F(x) = 1 − e1−(1+ωx)α , x > 0, (1)

where ω > 0 and α > 0 are scale and shape parameters, respectively. The corresponding Probability Density Function
(PDF) is accordingly given by

f (x) = αω(1 + ωx)α−1e1−(1+ωx)α . (2)

Exponentiated distributions can be obtained by using a positive real number β as an index to the CDF. That is, if we have
CDF F(x) of any random variable X, then the function

G(x) = [F(x)]β , β > 0 (3)

is, without loss of Generality, called an Exponentiated distribution.
The PDF is therefore given by

g(x) =
dG(x)

dx
= β [F(x)]β−1 f (x). (4)

34



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 5; 2019

Abdul-Moniem (2015) proposed the Exponentiated NH (ENH) model, whose CDF is given by

F(x) =
[
1 − e1−(1+ωx)α

]β
, x ≥ 0, (5)

where α > 0 and β > 0 are shape parameters, and ω > 0 is the scale parameter of the distribution.
The ENH density function is given by

f (x) = αωβ(1 + ωx)α−1
[
1 − e1−(1+ωx)α

]β−1
e1−(1+ωx)α . (6)

Extensions of the NH distribution arise in different areas of research as discussed for instance, Vatto et al. (2016) proposed
the Exponentiated Generalized NH (EGNH) distribution. Dias et al. (2016) proposed a new distribution called the beta NH
(BNH) distribution. Khan et al. (2018) proposed a two-parameter weighted NH (WNH) distribution. Yousof & Korkmaz
(2017) introduced a three-parameter Topp-Leone NH (TLNH) distribution. Tahir et al. (2018) proposed the inverted NH
(INH) distribution. Finally Kumar & Kumar (2018) proposed the transmuted extended exponential distribution. In this
study, another extension of the NH distribution called the Exponentiated Nadarajah-Haghighi Poisson (ENHP) distribution
has been proposed by compounding the Poisson distribution with the ENH distribution. The motivation for proposing the
new distribution is to provide greater flexibility and improve goodness-of-fit of modified distributions when modeling
lifetime data sets.

The rest of the paper is organized as follows: In section 2, the PDF, the CDF, the Survival Function and hrf of the ENHP
distribution have been defined. In section 3, statistical properties of the developed distribution have been derived. In
section 4, the parameters of the distribution have been estimated using the method of Maximum Likelihood Estimation.
In section 5, the Monte Carlo simulation result examine the finite sample properties of the estimators. In section 6, real
data set has been used to validate the application of the model. The concluding remarks were finally given in section 7.

2. Exponentiated Nadarajah-Haghighi Poisson (ENHP) Distribution

Let M be the number of independent subsystems of a system functioning at a given time. Assume M has zero truncated
Power Series distribution with probability mass function (pmf) given by

P(M = m) =
amλ

m

C(λ)
,m = 1, 2, · · · , (7)

If am =
1

m! and C(λ) = eλ − 1, then the pmf of a zero truncated Poisson distribution is given by

P(M = m) =
λm

m!(eλ − 1)
,m = 1, 2, · · · , λ > 0. (8)

See (Noack, 1950). Let each subsystem failure time follow the ENH distribution (Abdul-Moniem, 2015) with CDF given
by

G(x) =
[
1 − e1−(1+ωx)α

]β
, x > 0, α > 0, β > 0, ω > 0. (9)

If T j is the failure time of the jth subsystem and X represents the failure time of the first out of M operating subsystems
such that X = min(T1,T2, · · · TM). Then the conditional CDF of X given M is

F(x|M = m) = 1 − P(X > x|M)
= 1 − P(T1 > x, · · · ,TM > x)
= 1 − [P(T1 > x)]m

= 1 − [1 − P(T1 < x)]m

= 1 −
[
1 −

(
1 − e1−(1+ωx)α

)β]m

F(x|M = m) = 1 −
[
1 −

(
1 − e1−(1+ωx)α

)β]m
. (10)
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Figure 1. Plots of the ENHP CDF for some parameters values

Hence, the marginal CDF of X is given by

F(x) =
1

eλ − 1

∞∑
m=1

λm

m!

{
1 −

[
1 −

(
1 − e1−(1+ωx)α

)β]m}

=
1

eλ − 1


∞∑

m=1

λm

m!
−
∞∑

m=1

[
λ − λ

(
1 − e1−(1+ωx)α

)β]m

m!


=

1
eλ − 1

{
eλ − eλ−λ

(
1−e1−(1+ωx)α

)β}
=

1 − e−λ
(
1−e1−(1+ωx)α

)β
1 − e−λ

, x > 0,

F(x) =
1 − e−λ

(
1−e1−(1+ωx)α

)β
1 − e−λ

, x > 0, (11)

where α > 0 and β > 0 are shape parameters, and ω > 0 and λ > 0 are the scale parameters of the distribution. Figure 1
shows a monotonic non-decreasing shape bounded between 0 and 1 which is typical of any CDF.

The corresponding PDF of the ENHP distribution is obtained by differentiating the marginal CDF and is given by

f (x) =
λβαω(1 + ωx)α−1

(
1 − e1−(1+ωx)α

)β−1
e1−(1+ωx)αe−λ

(
1−e1−(1+ωx)α

)β
1 − e−λ

, x > 0. (12)

where α > 0 and β > 0 are shape parameters, and ω > 0 and λ > 0 are the scale parameters of the distribution.

Lemma 2.1. The mixture form of the PDF of the ENHP distribution can be given as

f (x) =
β

1 − e−λ

∞∑
i=0

∞∑
j=0

(−1)i+ jλi+1

i!( j + 1)

(
βi+1 − 1

j

)
e j+1αω( j + 1)(1 + ωx)α−1e−( j+1)(1+ωx)α , (13)

where βi+1 = β(i + 1) > 0, α > 0, β > 0, ω > 0, λ > 0.
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Figure 2. Plots of the ENHP PDF for some parameters values

Proof. Using the Taylor series expansion,

e−λ
(
1−e1−(1+ωx)α

)β
=

∞∑
i=0

(−1)iλi

i!

(
1 − e1−(1+ωx)α

)βi
. (14)

Hence, the PDF of the ENHP distribution can be written as

f (x) =
λβαω(1 + ωx)α−1e1−(1+ωx)α

1 − e−λ

∞∑
i=0

(−1)iλi

i!

(
1 − e1−(1+ωx)α

)β(i+1)−1
. (15)

The following identity holds for a real non-integer η,

(1 − V)η−1 =

∞∑
j=0

(
η − 1

j

)
(−1) jV j, |V | < 1. (16)

Using the identity in equation (16), the fact that 0 <
(
1 − e1−(1+ωx)α

)β(i+1)−1
< 1 and βi+1 = β(i + 1), equation (15) can be

expressed as

f (x) =
β

1 − e−λ

∞∑
i=0

∞∑
j=0

(−1)i+ jλi+1

i!

(
βi+1 − 1

j

)
αω(1 + ωx)α−1(e1−(1+ωx)α ) j+1.

Thus,

f (x) =
β

1 − e−λ

∞∑
i=0

∞∑
j=0

(−1)i+ jλi+1

i!( j + 1)

(
βi+1 − 1

j

)
e j+1αω( j + 1)(1 + ωx)α−1e−( j+1)(1+ωx)α ,

where βi+1 = β(i + 1) > 0, α > 0, β > 0, ω > 0, λ > 0,.

Figure 2 depicts the shapes of the PDF of the ENHP distribution for some given parameter values. It can be observed that
the PDF of the ENHP can decrease or skew or symmetric, fat tail with highly flexible kurtosis, hence capable of handling
variety of data from many areas like insurance and finance, survival analysis, biomedical data, reliability analysis.
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The survival function and the hrf are given by

S (x) =
e−λ

(
1−e1−(1+ωx)α

)β
− e−λ

1 − e−λ
, x > 0. (17)

and

h(x) =
λβαω(1 + ωx)α−1

(
1 − e1−(1+ωx)α

)β−1
e1−(1+ωx)α

1 − e−λ+λ(1−e1−(1+ωx)α )β
, x > 0. (18)

respectively. The plots of the hrf of the ENHP distribution, in Figure 3, show that the shapes can be monotonically de-
creasing, monotonically increasing, symmetrical or non-symmetrical for different parameter values. These characteristics
make the ENHP distribution suitable for modeling monotonic and non-monotonic, symmetrical and non-symmetrical
failure rates that are more likely to be encountered in real life situation.

Figure 3. hrf plots for some parameters values

3. Statistical Properties of the ENHP Distribution

In this section various statistical properties of the ENHP distribution have been discussed.

3.1 Quantile Function

The quantile function is used to generate random numbers from a distribution. The quantile function of the ENHP
distribution is given by

Q(p) = xp =
1
ω

1 − log

1 − (
log

(
1 −

(
1 − e−λ

)
p
)− 1
λ

) 1
β




1
α

− 1
ω
, (α, β, ω, λ > 0), (19)

Substituting p = 0.25, 0.5 and 0.75 into equation (19) yields the first quartile, the median and the third quartile respectively.

3.2 Moments

The moments play a useful role in statistical analysis. They are used for estimating features and characteristics of a
distribution such as measures of central tendency, measures of dispersion, skewness and kurtosis.
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proposition 3.1. If X ∼ ENHP(ϑ), where ϑ = {α, β, ω, λ}, then the rth non-central moment of X is given by

µ
′

r =
β

ωr(1 − e−λ)

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+ j+kλi+1

i!( j + 1)
r+α−k
α

e j+1
(
r
k

)(
βi+1 − 1

j

)
Γ

(
r + α − k
α

, j + 1
)
, (20)

where r = 1, 2, · · · and Γ(a, y) =
∫ ∞

y za−1e−zdz denotes the complementary incomplete gamma function, which is defined
for all real numbers except the negative integers.

Proof. By definition, the rth non-central moment is given by

µ
′

r =

∫ ∞

0
xr f (x)dx

=

∫ ∞

0
xr β

1 − e−λ

∞∑
i=0

∞∑
j=0

(−1)i+ jλi+1

i!( j + 1)

(
βi+1 − 1

j

)
e j+1αω( j + 1)(1 + ωx)α−1e−( j+1)(1+ωx)αdx

=
β

1 − e−λ

∞∑
i=0

∞∑
j=0

(−1)i+ jλi+1

i!( j + 1)

(
βi+1 − 1

j

)
e j+1

∫ ∞

0
xrαω( j + 1)(1 + ωx)α−1e−( j+1)(1+ωx)αdx

Let

Ar, j =

∫ ∞

0
xrαω( j + 1)(1 + ωx)α−1e−( j+1)(1+ωx)αdx and u = ( j + 1)(1 + ωx)α.

So

dx =
du

αω( j + 1)(1 + ωx)α−1 and x =
1
ω


(

u
j + 1

) 1
α

− 1

 .
Thus

Ar, j =

∫ ∞

j+1

1
ωr


(

u
j + 1

) 1
α

− 1


r

e−udu (21)

The most general case of the binomial theorem is the power series identity

(x + y)n =

∞∑
k=0

(
n
k

)
xkyn−k, (22)

where
(

n
k

)
is a binomial coefficient and n is a real number. This power series converges when n ≥ 0 is an integer or

|x/y| < 1.

Since |
(

u
j+1

) 1
α | < 1, using (22), (21) becomes

Ar, j =
1
ωr

∞∑
k=0

(−1)k
(

r
k

)
( j + 1)

r−k
α

∫ ∞

j+1
u

r−k
α e−udu

Accordingly,

µ
′

r =
β

ωr(1 − e−λ)

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+ j+kλi+1

i!( j + 1)
r+α−k
α

e j+1
(
r
k

)(
βi+1 − 1

j

)
Γ

(
r + α − k
α

, j + 1
)
.

3.3 Moment Generating Functions

Moment Generating Functions(MGF) are special functions used to find the moments and functions of moments such as
mean and variance of a random variable in a simpler way and also help in identifying which PDF or probability mass
function (pmf) a random variable X follows.

proposition 3.2. If X ∼ ENHP(ϑ), where ϑ = {α, β, ω, λ}, then the MGF of X is given by

MX(t) =
∞∑

i=0

∞∑
j=0

∞∑
k=0

∞∑
r=0

β

ωr(1 − e−λ)
(−1)i+ j+ktrλi+1

i!r!( j + 1)
r+α−k
α

e j+1
(
r
k

)(
βi+1 − 1

j

)
Γ

(
r + α − k
α

, j + 1
)
. (23)
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Proof: By definition, the MGF is given by

MX(t) = E(etX) =
∫ ∞

0
etx f (x)dx

Using the series expansion of etx, gives

MX(t) =
∞∑

r=0

tr

r!

∫ ∞

0
xr f (x)dx =

∞∑
r=0

trµ
′
r

r!
(24)

Substituting µ
′
r into equation (24) , yields

MX(t) =
∞∑

i=0

∞∑
j=0

∞∑
k=0

∞∑
r=0

β

ωr(1 − e−λ)
(−1)i+ j+ktrλi+1

i!r!( j + 1)
r+α−k
α

e j+1
(
r
k

)(
βi+1 − 1

j

)
Γ

(
r + α − k
α

, j + 1
)
,

which is the MGF.

3.4 Incomplete Moment

The incomplete moment is used to estimate the median deviation, mean deviation and measures of inequalities such as
the Lorenz and Bonferroni curves.

proposition 3.3. The rth incomplete moment of the ENHP distribution is given by

ϕr(t) =
β

ωr(1 − e−λ)

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+ j+kλi+1

i!( j + 1)
r+α−k
α

e j+1
(
r
k

)(
βi+1 − 1

j

)

×
{
Γ

(
r + α − k
α

, j + 1
)
− Γ

(
r + α − k
α

, ( j + 1)(1 + ωt)α
)}
, t > 0, r = 1, 2, · · · .

Proof. By definition

ϕr(t) =
∫ t

0
xr f (x)dx

=

∫ t

0
xr β

1 − e−λ

∞∑
i=0

∞∑
j=0

(−1)i+ jλi+1

i!( j + 1)

(
βi+1 − 1

j

)
e j+1αω( j + 1)(1 + ωx)α−1e−( j+1)(1+ωx)αdx

=
β

1 − e−λ

∞∑
i=0

t∑
j=0

(−1)i+ jλi+1

i!( j + 1)

(
βi+1 − 1

j

)
e j+1

∫ ∞

0
xrαω( j + 1)(1 + ωx)α−1e−( j+1)(1+ωx)αdx

Let

Ar, j =

∫ t

0
xrαω( j + 1)(1 + ωx)α−1e−( j+1)(1+ωx)αdx and u = ( j + 1)(1 + ωx)α.

So

dx =
du

αω( j + 1)(1 + ωx)α−1 and x =
1
ω


(

u
j + 1

) 1
α

− 1

 .
Thus

Ar, j =

∫ ( j+1)(1+ωt)α

j+1

1
ωr


(

u
j + 1

) 1
α

− 1


r

e−udu (25)

Since |
(

u
j+1

) 1
α | < 1, using (22), we have

Ar, j =
1
ωr

∞∑
k=0

(−1)k
(

r
k

)
( j + 1)

r−k
α

∫ ( j+1)(1+ωt)α

j+1
u

r−k
α e−udu

=
1
ωr

∞∑
k=0

(−1)k
(

r
k

)
( j + 1)

r−k
α

{∫ ∞

j+1
u

r−k
α e−udu −

∫ ∞

( j+1)(1+ωt)α
u

r−k
α e−udu

}
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Accordingly,

ϕr(t) =
β

ωr(1 − e−λ)

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+ j+kλi+1

i!( j + 1)
r+α−k
α

e j+1
(
r
k

)(
βi+1 − 1

j

)

×
{
Γ

(
r + α − k
α

, j + 1
)
− Γ

(
r + α − k
α

, ( j + 1)(1 + ωt)α
)}
.

The mean deviation, δ1(x) and median deviation, δ2(x), can be calculated using the relationships δ1(x) = 2µF(µ)− 2ϕ1(µ)
and δ2(x) = µ − 2ϕ1(M). Where µ = E(X) and M is the median of the ENHP random variable. ϕ1(µ) and ϕ1(M) are
calculated using the first incomplete moment.

3.5 Inequality Measures

The Bonferroni and Lorenz curves are the most widely used measures of income inequality of a given population and
have various applications in economics, reliability, insurance and medicine.

proposition 3.4. The Bonferroni curve for the ENHP distribution is given by

BF(t) =
β

µωr
(
1 − e−λ(1−e1−(1+ωt)α )β

) ∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+ j+kλi+1

i!( j + 1)
r+α−k
α

e j+1
(
r
k

)

×
(
βi+1 − 1

j

) {
Γ

(
r + α − k
α

, j + 1
)
− Γ

(
r + α − k
α

, ( j + 1)(1 + ωt)α
)}
.

Proof. By definition

BF(t) =
1
µF(t)

∫ t

0
xr f (x)dx

=
β

µωr
(
1 − e−λ(1−e1−(1+ωt)α )β

) ∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+ j+kλi+1

i!( j + 1)
r+α−k
α

e j+1
(
r
k

)(
βi+1 − 1

j

)

×
{
Γ

(
r + α − k
α

, j + 1
)
− Γ

(
r + α − k
α

, ( j + 1)(1 + ωt)α
)}
.

proposition 3.5. The Lorenz curve for the ENHP distribution is given by

LF(t) =
β

µωr(1 − e−λ)

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+ j+kλi+1

i!( j + 1)
r+α−k
α

e j+1
(
r
k

)(
βi+1 − 1

j

)

×
{
Γ

(
r + α − k
α

, j + 1
)
− Γ

(
r + α − k
α

, ( j + 1)(1 + ωt)α
)}
.

Proof. By definition

LF(t) =
1
µ

∫ t

0
xr f (x)dx

=
β

µωr(1 − e−λ)

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+ j+kλi+1

i!( j + 1)
r+α−k
α

e j+1
(
r
k

)(
βi+1 − 1

j

)

×
{
Γ

(
r + α − k
α

, j + 1
)
− Γ

(
r + α − k
α

, ( j + 1)(1 + ωt)α
)}
.

3.6 Entropy

Entropies are good measures of randomness and have been extensively used in information theory. Two popular entropy
measures are Rényi entropy (Neyman, 1961) and Shannon entropy (Shannon, 1951). A large value of the entropy indicates
a greater uncertainty in the data. The Shanon entropy is a special case of the Rényi entropy when η −→ 1 and is given by
E[− log( f (x))].
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proposition 3.6. If the random variable X has a ENHP distribution, then the Rényi entropy of X is given by

ER(η) =
1

1 − η log


(
βαω

1 − e−λ

)η ∞∑
i=0

∞∑
j=0

(−1)i+ jλη+iηieη+ j

i!αω(η + j)
η(α−1)+1
α

(
β(η + i) − η

j

)
Γ

(
η(α − 1) − α + 1

α
, η + j

) , (26)

where η > 0 and η , 1.

Proof. By definition,

ER(η) =
1

1 − η log
(∫ ∞

0
f η(x)dx

)
, η > 0 and η , 1.

From equation (12),

f η(x) =
(
λβαω

1 − e−λ

)η
(1 + ωx)η(α−1)

(
1 − e1−(1+ωx)α

)η(β−1)
eη(1−(1+ωx)α)e−λη

(
1−e1−(1+ωx)α

)β

=

(
λβαω

1 − e−λ

)η
(1 + ωx)η(α−1)eη(1−(1+ωx)α)

∞∑
i=0

(−1)iλiηi

i!

(
1 − e1−(1+ωx)α

)β(η+i)−η

Since 0 <
(
1 − e1−(1+ωx)α

)β(η+i)−η
< 1, using the identity in equation (16), we have

f η(x) =
(
βαω

1 − e−λ

)η ∞∑
i=0

∞∑
j=0

(−1)i+ jλη+iηi

i!
eη+ j

(
β(η + i) − η

j

)
(1 + ωx)η(α−1)e−(η+ j)(1+ωx)α (27)

so ∫ ∞

0
f η(x)dx =

(
βαω

1 − e−λ

)η ∞∑
i=0

∞∑
j=0

(−1)i+ jλη+iηi

i!
eη+ j

(
β(η + i) − η

j

) ∫ ∞

0
(1 + ωx)η(α−1)e−(η+ j)(1+ωx)αdx.

Let

Aη =
∫ ∞

0
(1 + ωx)η(α−1)e−(η+ j)(1+ωx)αdx, and u = (η + j)(1 + ωx)α.

so

dx =
du

αω(η + j)(1 + ωx)α−1 , and (1 + ωx) =
(

u
η + j

) 1
α

.

Thus

Aη =
1

αω(η + j)
η(α−1)+1
α

∫ ∞

η+ j
u
η(α−1)−α+1

α e−udu =
Γ
(
η(α−1)−α+1

α
, η + j

)
αω(η + j)

η(α−1)+1
α

.

Therefore ∫ ∞

0
f η(x)dx =

(
βαω

1 − e−λ

)η ∞∑
i=0

∞∑
j=0

(−1)i+ jλη+iηieη+ j

i!αω(η + j)
η(α−1)+1
α

(
β(η + i) − η

j

)
Γ

(
η(α − 1) − α + 1

α
, η + j

)
.

Accordingly

ER(η) =
1

1 − η log


(
βαω

1 − e−λ

)η ∞∑
i=0

∞∑
j=0

(−1)i+ jλη+iηieη+ j

i!αω(η + j)
η(α−1)+1
α

(
β(η + i) − η

j

)
Γ

(
η(α − 1) − α + 1

α
, η + j

) .
3.7 Order Statistics

The Order statistics result from transformation that involves the ordering of an entire set of observations on a random
variable. They have wide applications in many areas of statistics.

Suppose X1, X2, · · · , Xn is random sample from ENHP and X1:n < X2:n < · · · < Xn:n are the corresponding order statistics.
The PDF, fr:n(x), of rth order statistic Xr:n is

fr:n(x) =
1

B(r, n − r + 1)
[F(x)]r−1 [1 − F(x)]n−r f (x),

42



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 5; 2019

where F(x) and f (x) are the CDF and PDF of the ENHP distribution respectively, and B(., .) is the beta function.

Since 0 < F(x) < 1 for x > 0, using the binomial series expansion of [1 − F(x)]n−r , which is given by

[1 − F(x)]n−r =

n−r∑
k=0

(
n − r

k

)
(−1)k[F(x)]k,

we have

fr:n(x) =
1

B(r, n − r + 1)
f (x)

n−r∑
k=0

(
n − r

k

)
(−1)k[F(x)]r+k−1. (28)

Substituting the CDF and PDF of the ENHP distribution into equation (28) gives

fr:n(x) =
λβαω(1 + ωx)α−1

(
1 − e1−(1+ωx)α

)β−1
e1−(1+ωx)αe−λ

(
1−e1−(1+ωx)α

)β
B(r, n − r + 1)

×
n−r∑
k=0

(
n − r

k

)
(−1)k

(
1 − e−λ

(
1−e1−(1+ωx)α

)β)r+k−1

(
1 − e−λ

)r+k .

Using similar concept for expanding the density gives

fr:n(x) =
β

B(r, n − r + 1)

∞∑
i=0

∞∑
j=0

n−r∑
k=0

r+k−1∑
l=0

∞∑
m=0

∞∑
s=0

ξαω(1 + ωx)α−1e−( j+s+1)(1+ωx)α , (29)

where

ξ =
(−1)i+ j+k+l+m+sλi+m+1lm

i!m!
(
1 − e−λ

)r+k

(
βi+1 − 1

j

)(
n − r

k

)(
r + k − 1

l

)(
mβ
s

)
e j+s+1

3.8 Stochastic Ordering

Stochastic ordering is the commonest way to show ordering mechanism in lifetime distributions.

Suppose X1 ∼ ENHP(λ, β1, α, ω) and X2 ∼ ENHP(λ, β2, α, ω), then X1 is said to be stochastically smaller than X2 in the

1. stochastic order (X1 ≤st X2) if the associated CDFs satisfy: FX1 (x) ≥ FX2 (x).

2. hazard rate order (X1 ≤hr X2) if the associated hrfs satisfy: hX1 (x) ≥ hX2 (x).

3. likelihood ratio order (X1 ≤lr X2) if the ratio of the associated PDFs given by
fX1 (x)
fX2 (x) decreases in x.

When X1 and X2 have a common finite left end-point support, the following implications hold

X1 ≤lr X2 =⇒ X1 ≤hr X2 =⇒ X1 ≤st X2.

Suppose that the densities of X1 and X2 are

fX1 (x) =
λβ1αω(1 + ωx)α−1

(
1 − e1−(1+ωx)α

)β1−1
e1−(1+ωx)αe−λ

(
1−e1−(1+ωx)α

)β1
1 − e−λ

, x > 0.

and

fX2 (x) =
λβ2αω(1 + ωx)α−1

(
1 − e1−(1+ωx)α

)β2−1
e1−(1+ωx)αe−λ

(
1−e1−(1+ωx)α

)β2
1 − e−λ

, x > 0.

respectively. Then the ratio of the two densities is

fX1 (x)
fX2 (x)

=
β1

β2

(
1 − e1−(1+ωx)α

)β1−β2
e
λ
[(

1−e1−(1+ωx)α
)β2−(1−e1−(1+ωx)α

)β1 ]
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Differentiating the ratio of the densities, with respect to x, yields

d
dx

fX1 (x)
fX2 (x)

= A(β1 − β2)
(
1 − e1−(1+ωx)α

)β1−β2−1
+ Aλ

(
1 − e1−(1+ωx)α

)β1−β2

×
{
β2

(
1 − e1−(1+ωx)α

)β2−1 − β1

(
1 − e1−(1+ωx)α

)β1−1
}
,

where

A =
β1

β2
αω(1 + ωx)α−1e1−(1+ωx)αe

λ
[(

1−e1−(1+ωx)α
)β2−(1−e1−(1+ωx)α

)β1 ]

If β2 > β1,
d
dx

fX1 (x)
fX2 (x) < 0 which implies (X1 ≤lr X2).

4. Parameter Estimation

In this section, the estimates of the parameters of the model is presented via method of Maximum Likelihood Estimation.
Let X1, X2, · · · , Xn be a random sample of size n from ENHP distribution with unknown parameter vector θ = (λ, β, α, ω)′,
then the likelihood function is defined as

L(θ|x1, x2, · · · , xn) =
n∏

i=1

f (xi; θ). (30)

Substituting from equation (12), we obtain

L(θ|x1, x2, · · · , xn) =
n∏

i=1


λβαω(1 + ωxi)α−1

(
1 − e1−(1+ωxi)α

)β−1
e1−(1+ωxi)αe−λ

(
1−e1−(1+ωxi )α

)β
1 − e−λ

 .
The log-likelihood function for θ is

ℓ(θ|x1, x2, · · · , xn) =
n∑

i=1

log{λβαω(1 + ωxi)α−1
(
1 − e1−(1+ωxi)α

)β−1

× e1−(1+ωxi)αe−λ
(
1−e1−(1+ωxi)α

)β
1 − e−λ

}

= n log(λβαω) − n log(1 − e−λ) + (α − 1)
n∑

i=1

log(1 + ωxi)

+

n∑
i=1

(1 − (1 + ωxi)α) + (β − 1)
n∑

i=1

log
(
1 − e1−(1+ωxi)α

)
− λ

n∑
i=1

(
1 − e1−(1+ωxi)α

)β
. (31)

The score functions are obtained by finding the partial derivatives of the log-likelihood function with respect to the
parameters λ, β, α and ω. they are defined as

∂ℓ

∂λ
=

n
λ
− ne−λ

1 − e−λ
−

n∑
i=1

(
1 − e1−(1+ωxi)α

)β
, (32)

∂ℓ

∂β
=

n
β
+

n∑
i=1

log
(
1 − e1−(1+ωxi)α

)
− λ

n∑
i=1

(
1 − e1−(1+ωxi)α

)β
log

(
1 − e1−(1+ωxi)α

)
, (33)

∂ℓ

∂α
=

n
α
+

n∑
i=1

log(1 + ωxi) −
n∑

i=1

(1 + ωxi)α log(1 + ωxi)

+ (β − 1)
n∑

i=1

(1 + ωxi)α log(1 + ωxi)e1−(1+ωxi)α

1 − e1−(1+ωxi)α

− λβ
n∑

i=1

(1 + ωxi)α log(1 + ωxi)e1−(1+ωxi)α
(
1 − e1−(1+ωxi)α

)β−1
, (34)
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∂ℓ

∂ω
=

n
ω
+ (α − 1)

n∑
i=1

xi

1 + wxi
− α

n∑
i=1

xi(1 + wxi)α−1

− α(β − 1)
n∑

i=1

xi(1 + wxi)α−1e1−(1+ωxi)α

1 − e1−(1+ωxi)α

− λβα
n∑

i=1

xi(1 + wxi)α−1e1−(1+ωxi)α
(
1 − e1−(1+ωxi)α

)β−1
. (35)

Equating the score functions to zero and the system of non-linear equations solved numerically, we can get the MLE of
θ = (λ, β, α, ω)′ . Thus yielding the MLE: θ̂ = (λ̂, β̂, α̂, ω̂)′.

5. Monte Carlo Simulation Study

In this section, a simulation study was carried out to investigate the Average Bias (AB) and Root Mean Square Error
(RMSE) of the Maximum Likelihood Estimators for the parameters of the ENHP distribution. Various simulations are
conducted for different sample sizes and different parameter values. The simulation study is repeated for N = 1000
iterations each with sample sizes n = 50, 100, 200, 400, 600 and parameter values in set I : λ = 1.5, β = 0.4, α = 0.6, ω =
0.3 and set II : λ = 2.5, β = 1.5, α = 0.8, ω = 0.5.

The Average Bias and RMSE values of the parameters λ, β, α and ω for different sample sizes are presented in Table 1.
From the results, it is clear that as the sample size n increases, the Average Bias, on average, decrease. It is also observed
that for the parametric values, the RMSEs decrease with increasing sample size n .

Table 1. Monte Carlo simulation study results

I II
Parameters n Average Bias RMSE Average Bias RMSE

50 0.6226539 1.664614 -0.01643394 1.648036
100 0.7427476 1.849442 0.1191938 1.743309

λ 200 0.4189384 1.611065 0.1447134 1.801449
400 0.2047677 1.371155 0.2444762 1.814645
600 0.1821987 1.278496 0.198225 1.84063

50 0.06140861 0.1698807 0.4964533 2.108908
100 0.02422554 0.0707455 0.2334832 1.244403

β 200 0.005726971 0.04594976 0.08050179 0.3670992
400 -0.001385699 0.0328041 0.04057207 0.2222429
600 -0.002266186 0.02674262 0.03090847 0.1716109

50 0.1998506 1.011527 0.4143147 1.523161
100 0.2137594 0.6977247 0.241312 0.9864716

α 200 0.1947008 0.6203456 0.07631328 0.5811534
400 0.146849 0.4493043 0.0156983 0.2536766
600 0.151142 0.4700457 -0.005642115 0.1702314

50 1.743883 22.12355 2.909462 16.12927
100 0.1859374 0.8742861 1.398351 16.32425

ω 200 0.1140472 0.4876875 0.3537758 3.311303
400 0.09717328 0.3751603 0.1680198 0.5855228
600 0.083301 0.3346662 0.1328344 0.4441839

6. Application on Real Dataset

In this section, a real data set is used to illustrate the flexibility of the model in the modelling of survival data as well as
compare it with competing models namely ENH (Abdul-Moniem, 2015) and TNH (Kumar & Kumar, 2018) distributions.
We fit the density functions of the ENHP, ENH and TNH distributions. The pdfs of ENH and TNH distributions are given
by

fENH(x) = βαω(1 + ωx)α−1
[
1 − e1−(1+ωx)α

]β−1
e1−(1+ωx)α , x > 0, α > 0, ω > 0, β > 0, (36)
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and
fT NH(x) = αω(1 + ωx)α−1e1−(1+ωx)α

[
1 − β + 2βe1−(1+ωx)α

]
, x > 0, α > 0, ω > 0, | β |≤ 1 (37)

respectively.

The data set consists of the number of successive failures for the air conditioning system of each member in a fleet of 13
Boeing 720 jet airplanes as reported in Proschan (1963), and can be found in Kumar & Kumar (2018). Table 2 displays
the data set.

Table 2. Air conditioning system data

194 413 90 74 55 23 97 50 359 50 130 487 57 102 15 14 10 57 320
261 51 44 9 254 493 33 18 209 41 58 60 48 56 87 11 102 12 5
14 14 29 37 186 29 104 7 4 72 270 283 7 61 100 61 502 220 120
141 22 603 35 98 54 100 11 181 65 49 12 239 14 18 39 3 12 5
32 9 438 43 134 184 20 386 182 71 80 188 230 152 5 36 79 59 33
246 1 79 3 27 201 84 27 156 21 16 88 130 14 118 44 15 42 106
46 230 26 59 153 104 20 206 5 66 34 29 26 35 5 82 31 118 326
12 54 36 34 18 25 120 31 22 18 216 139 67 310 3 46 210 57 76
14 111 97 62 39 30 7 44 11 63 23 22 23 14 18 13 34 16 18
130 90 163 208 1 24 70 16 101 52 208 95 62 11 191 14 71

The maximum likelihood estimates of the parameters of ENHP, ENH and TNH distributions are given in Table 3 along
with the corresponding standard errors, p-values, -2log-likelihood statistics, Akaike Information Criterion (AIC), cor-
rected Akaike Information Criterion (AICc) and Bayesian Information Criterion (BIC).

The results based on the smaller values of the statistics:-2log likelihood, AIC, AICc, and BIC show that the ENHP
distribution provides a significantly better fit than the ENH and TNH models.

Table 3. Table for MLEs of ENHP, ENH and TNH Models

MLEs of the parameters Statistics
Distributions λ β α ω -2log L AIC AICc BIC

ENHP 0.162542 1.4582876 0.525399 0.047458 2066.284 2074.284 2074.502 2087.23
Std. Errors 1.586890 0.414505 0.179805 0.067029 -

p-values 0.9184169 0.0004346 0.0034774 0.4789303
ENH

-
0.66109706 3.63465741 0.00137937 2100.137 2106.137 2106.267 2115.846

Std. Errors 0.05468001 0.00133344 0.00009654 -
p-values 0.000000 0.000000 0.000000

TNH
-

0.3280604 0.7892031 0.0134406 2069.668 2075.668 2075.799 2089.378
Std. Errors 0.4644553 0.1642773 0.0080188 -

p-values 0.47998 0.000000 0.09371

Figure 4 depicts the empirical density and the fitted densities of the distributions. The plots further indicate that the ENHP
distribution is superior to ENH and TNH distributions in terms of empirical model fitting to survival data.
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Figure 4. Empirical and fitted densities plot for Air conditioning system Data

7. Conclusion

In this paper, a proposal has been made on the Exponentiated Nadarajah-Haghighi Poisson distribution and studied its
statistical properties. The method of Maximum Likelihood Estimation method was used to estimate the parameters of
the developed distribution. Simulation studies were performed to assess the finite sample properties for the estimators of
the parameters and the results showed that the estimators of parameters were stable. The application of the distribution
was demonstrated using real data set and the empirical results obtained revealed the ENHP distribution is a better model
compared with competing models in terms of goodness-of-fit. We recommend that further studies should be carried out
by comparing the Maximum Likelihood Estimation method with the Bayesian method to compare their performance in
estimating the parameters of the ENHP distribution.
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