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Abstract   

Earlier articles, Laverty, Miket, Kelly (2002c), Laverty and Kelly (2019) used Excel to simulate Hidden Markov models 

and calculate the probabilities of the unknown states using the forward and backward algorithms (Rabiner, 1989). In 

those articles, independence between observations in each state were assumed. In many situations, however, the 

assumption of independence within states cannot be made. A more appropriate model for the data in this case would be 

an Autoregressive Hidden Markov model which accounts for serial correlation within states. In this article, a two-state 

ARHMM will be simulated with the forward-backward algorithm used to calculate conditional state probabilities given 

the observed data.  
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1. Introduction 

Hidden Markov models (HMMs) are a collection of widely used statistical models. These models are applicable when 

studying a process that goes through a sequence of states. The states are unseen (hidden) but what is observed is data 

from each state. For example, HMMs have been used to model heart rate variability (Walker 11, 2011), to model 

financial data (Mamon & Elliott, 2007), (Genon-Catalot, Jeantheau & Laredo, 2000), and to model residuals in 

regression (Laverty, Miket & Kelly, 2002a), Laverty, Miket & Kelly (2002b). Applications of Hidden Markov Models 

are possible whenever we have data collected over time. The traditional time series models (AR, MA, ARMA etc.) 

assume that the process generating the data is constant over a single state throughout the entire time period. However, 

when the data sequence is over a long period of time it is likely that there are changes in the states that are generating 

the data. In a Hidden Markov Model, the observations could be assumed to be independent when the state is constant. 

Alternatively, when the state is constant the observations might be correlated and better modelled by an Autoregressive 

(AR) time series. This leads to the Autoregressive Hidden Markov (ARHMM) model described in Bing-hwang & 

Rabiner, (1986). Applications of the ARHMM models have been used by Stanculescu, Williams, & Freer, (2014) and 

Tang (2004). 

An important problem is to identify the hidden states that have generated the observed data. A common approach is to calculate the 

probability of the HMM (or ARHMM) being in a certain state at a certain time given either the data up to that time or the complete set 

of data using the forward-backward algorithm described in Rabiner (1989) (for HMM) or Stanculescu, Williams, & Freer, (2014) 

and Tang, (2004) (for ARHMM). This calculation assumes the parameters of the model (HMM or ARHMM) are known. If the 

parameters of the model are unknown they can be estimated using the techniques described in Bing-hwang, and Rabiner, (1986) or 

Rabiner, (1989). 

2. Autoregressive Hidden Markov Models 

An autoregressive hidden Markov model will consist of a sequence of states X1, X2,…, X together with a sequence of 

observations Y1, Y2,…, YT. We assume that the number of states (possible values of each Xi) is a finite number, m. The 

states can be represented by the integers 1, 2, ...,m. The states are not observed.  

 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 8, No. 5; 2019 

26 

The observations Y1, Y2,…, YT are observed and could be vectors of dimension k. In this paper k = 1. The distribution 

of the observation Yt at time t depends on the previous two states Xt and Xt-1 of the Markov process and the previous 

observation Yt-1. In this paper we are assuming that there are only two states and that the distribution of Yt given 

𝑋𝑡 = 𝑖, 𝑋𝑡−1 = 𝑗, 𝑌𝑡−1 = 𝑦𝑡−1 is the Normal distribution with adjusted mean, 𝜇𝑖 + 𝛽𝑖 (
𝑦𝑡−1−𝜇𝑗

𝜎𝑗
) and standard deviation i. 

The parameters of an ARHMM process are 𝜇𝑖, 𝜎𝑖 , 𝛽𝑖  (𝑖 = 1,2). 

In addition, the parameters of the Markov process model are the initial state probabilities, 

 i= Pr(X1 = i ) i  =1 ,2 ,  …, m                   (1)  

and the transition probability matrix  = (ij). This is an m x m matrix, with element ij being the probability of a 

transition into state j starting from state i.  

i.e. 

 

where t denotes time. These two choices allow us to construct a sequence of states (known also as the Markov chain) 

X1, X2, . . ., XT constituting the hidden part of a hidden Markov model. 

When the Markov chain is in state i, at time t and state j at time t - 1 it emits an observed signal Yt, a continuous 

random variable (or random vector) with distribution conditional on the current state i. the previous state j and the 

observation at time t – 1, Yt - 1 

3. Simulation of an Autoregressive Hidden Markov Model With Normal Observations in Excel 

Uniform random variates on [0,1] can be generated in Excel with the function “RAND()”. The generation of random 

variates with a Normal distribution with mean and standard deviation, can be carried out using the inverse-transform 

method (Fishman (2)). Namely Y = F-1(U) where F(u) is the desired cumulative distribution of Y and U has a 

uniform distribution on [0,1]. In Excel this is achieved for the Normal distribution (mean, standard deviation) with 

the function “NORMINV(RAND(),,).” 

To simulate an Autoregressive Hidden Markov model with m = 2 states and normal observations with mean i, 

standard deviation I and autoregressive parameter i when the Markov process is in state i we again need to 

determine the sequence of states then generate the observations from those states.  

Initially we will store the parameters of the model in various cells of the excel spread sheet. For example the 

transition probabilities ij (i = 1,2; j = 1,2) will be stored in the cells B3:C4, the initial probabilities i (i = 1,2) will 

stored in cells B9:C9, and the parameters of ARHMM the normal distribution (i, i, i) i = 1, 2 will be stored in 

cells H3:J4. 

The next step is to generate the sequence of states. We generate the first state by determining if a uniform random 

variate U is above or below 1. This is achieved by placing the formula “IF(RAND()<B9,1,2)” in cell C13. We now 

generate the following sequence of states determining if a uniform random variate U is above or below i1. This is 

achieved by placing the formula “IF(OR(AND(C13=1,RAND()<B$3),AND(C13=2,RAND()<B$4)),1,2)” in cell 

C14. This formula can now be copied down to generate as many states as desired (In this paper we generate 200 

states and observations). The final step is to generate normal observations with mean 𝜇𝑖 + 𝛽𝑖 (
𝑦𝑡−1−𝜇𝑗

𝜎𝑗
)and standard 

deviation i at each time point, t, when the process is in state i at time t and state j at time t – 1. To obtain an 

observation with the above properties we would compute 𝑦𝑡 = 𝜇𝑖 + 𝛽𝑖 (
𝑦𝑡−1−𝜇𝑗

𝜎𝑗
) + 𝜎𝑖 𝑡where 𝑡  is a N(0,1) random 

variate. This is achieved by pasting the formula 

“=VLOOKUP(C14,G$4:H$5,2)+VLOOKUP(C14,G$4:J$5,4)*(B13-VLOOKUP(C13,G$4:H$5,2))/VLOOKUP(

C13,G$4:I$5,3)+VLOOKUP(C14,G$4:I$5,3)*NORMSINV(RAND())”into cell B13. 

Note: VLOOKUP(C14,G$4:H$5,2) obtains the value 𝜇𝑖 

 VLOOKUP(C13,G$4:H$5,2) obtains the value 𝜇𝑗 

 VLOOKUP(C14,G$4:I$5,3) obtains the value 𝜎𝑖 

 VLOOKUP(C13,G$4:I$5,3) obtains the value 𝜎𝑗, and 

VLOOKUP(C14,G$4:J$5,4) obtains the value 𝛽𝑖. 
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Again, this formula can now be copied down to generate the complete set of data. Below is a copy of the 

spreadsheet with graphs of the data sequence and the state sequence.  

 

 

4. Identification of the State Sequence From the Data Sequence for an Autoregressive Hidden Markov (ARHMM) 

Model 

The Forward and Backward algorithm described below is a special case of Kalman Filtering (Elliott, Aggoun & Moore, 

1995). 

4.1 The Forward Method for an Autoregressive Hidden Markov Model  

Let 𝐘(𝑡) = (𝑌1, 𝑌2, … , 𝑌𝑡)
′ and 𝐲(𝑡) = (𝑦1, 𝑦2, … , 𝑦𝑡)

′ 

Consider  

𝛼𝑡(𝑖𝑡) = 𝑃 [𝒀
(𝑡) = 𝒚(𝑡), 𝑋𝑡 = 𝑖𝑡, ] = 𝑃[𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑡 = 𝑦𝑡, 𝑋𝑡 = 𝑖𝑡] 

Now 

𝛼1(𝑖1) = 𝑃 [𝒀
(1) = 𝒚(1), 𝑋1 = 𝑖1] 

 = 𝑃 [𝑋1 = 𝑖1]𝑃 [𝑌1 = 𝑦1|𝑋 1 = 𝑖1]𝑃 [𝑋2 = 𝑖2|𝑋 1 = 𝑖1]𝑃 [𝑌2 = 𝑦2|𝑌1 = 𝑦1, 𝑋2 = 𝑖2𝑋 1 = 𝑖1] 

 = 𝜋𝑖1𝑏𝑖1𝑦1𝑔𝑖2𝑖1𝑏𝑦2|𝑌1=𝑦1,𝑋2=𝑖2,𝑋1=𝑖1   

𝛼𝑡(𝑖𝑡) = 𝑃 [𝒀
(𝑡) = 𝒚(𝑡), 𝑋𝑡 = 𝑖𝑡] 

            = ∑𝑃 [𝒀(𝑡−1) = 𝒚(𝑡−1), 𝑌𝑡 = 𝑦𝑡, 𝑋𝑡 = 𝑖𝑡, 𝑋𝑡−1 = 𝑖𝑡−1]

𝑖𝑡−1

 

            = ∑𝑃 [𝒀(𝑡−1) = 𝒚(𝑡−1), 𝑋𝑡−1 = 𝑖𝑡−1]𝑃 [𝑋𝑡 = 𝑖𝑡|𝑋𝑡−1 = 𝑖𝑡−1]

𝑖𝑡−1

𝑃 [𝑌𝑡        

= 𝑦𝑡|𝑋𝑡 = 𝑖𝑡, 𝑋𝑡−1 = 𝑖𝑡−1, 𝑌𝑡−1 = 𝑦𝑡−1] 

            =∑     −1  −1(  −1)   |  −1=  −1,  =  ,  −1=  −1
  −1

=∑ (  −1,   )  −1(  −1)

  −1

 

where 𝐴(𝑖𝑡−1, 𝑖𝑡) = 𝑔𝑖𝑡𝑖𝑡−1𝑏𝑦𝑡|𝑌𝑡−1=𝑦𝑡−1,𝑋𝑡=𝑖𝑡,𝑋𝑡−1=𝑖𝑡−1 
 

and 𝑏𝑦𝑡|𝑌𝑡−1=𝑦𝑡−1,𝑋𝑡=𝑖 ,𝑋𝑡−1=𝑗 is the normal density Normal density with  

mean   +   (
  −1−  

  
) = a 

 
+   

 
   −1and standard deviation i. 

Also a 
 
=    (

  

  
)     and   

 
=

  

  
. 
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The forward values 𝛼𝑡(1) and 𝛼𝑡(2) can be calculated in excel as follows: 

1. Place the sequence 2,3, 4 in the cells D1:D3 and in the cells D4:D6 

2. Place the formula “=VLOOKUP(E$12,$K$4:$N$5,$D1)” in cell E1. This formula is then copied to the 

cells E1:H3. 

3. Place the formula “=VLOOKUP(E$13,$K$4:$N$5,$D1)” in cell E4. This formula is then copied to the 

cells E4:H6. 

This places the parameters of the two successive states (, , ) in the cells E1:H6 

The values of  𝑖
𝑗
= 𝜇𝑖  (

  

𝜎𝑗
) 𝜇𝑗  and 𝑏𝑖

𝑗
=

  

𝜎𝑗
 are calculated by placing the formula “=E3/E5” in 

cell E9 to compute 𝑏𝑖
𝑗
=

  

𝜎𝑗
 and the formula “=E1-E9*E4” in the cell E8 to compute  𝑖

𝑗
= 𝜇𝑖  

(
  

𝜎𝑗
) 𝜇𝑗  The formulae in cells E8:E9 are copied to the range E8:H9 to compute of  𝑖

𝑗
 and 𝑏𝑖

𝑗
 for 

other combinations of the state sequence (i,j). 

4. Place the formula “=E$10*NORMDIST($B15,E$8+E$9*$B14,E$2,FALSE)” in cell E15 to 

compute 𝐴(𝑖𝑡−1, 𝑖𝑡) = 𝑔𝑖𝑡𝑖𝑡−1𝑏𝑦𝑡|𝑌𝑡−1=𝑦𝑡−1,𝑋𝑡=𝑖𝑡,𝑋𝑡−1=𝑖𝑡−1for (𝑖𝑡−1, 𝑖𝑡) = (1,1). Copy the formula in cell 

E15 to the Cells E15:H214 to compute 𝐴(𝑖𝑡−1, 𝑖𝑡) for (𝑖𝑡−1, 𝑖𝑡) = (1,1), (2,1), (1,2) and (2,2) from t 

= 1, … ,200. 

5. Place the formula “=B9*NORMDIST(B15,E1,E2,FALSE)” in the cell I15 and the formula 

“=C9*NORMDIST(B15,H4,H5,FALSE)” in cell J15, to compute  
𝛼1(1) and 𝛼1(2). 

6. Place the formulae “=SUMPRODUCT(E16:F16,I15:J15)” and “=SUMPRODUCT(G16:H16,I15:J15)” 

in the cells I16 and J16. This is the iterative step of the forward algorithm. 

The formulae in cells I16:J16 are copied to cells I16:J214. This computes the calculation of 𝛼𝑡(1) and 

𝛼𝑡(2) for t = 1, 2, … , 200 

4.2 The Backward Method for a Autoregressive Hidden Markov Model  

𝐋𝐞𝐭 𝐘∗(𝒕) = (𝑌𝒕+𝟏, 𝑌𝑡+2, … , 𝑌𝑇)
′ 𝐚𝐧𝐝 𝐲∗(𝒕) = (𝑦𝑡+1, 𝑦𝑡+2, … , 𝑦𝑇)

′ 

Cons der 𝛼𝑡
∗(𝑖𝑡) = 𝑃 [𝐘

∗(𝒕) = 𝐲∗(𝑡)|𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡] 

= 𝑃[𝑌𝑡+1 = 𝑦𝑡+1, 𝑌𝑡+2 = 𝑦𝑡+2, … , 𝑌𝑇 = 𝑦𝑇|𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡] 

Note 𝛼𝑇−1
∗ (𝑖𝑇−1) = 𝑃 [𝐘

∗(𝑻−𝟏) = 𝑦∗(𝑇−1)|𝑋𝑇−1 = 𝑖𝑇−1, 𝑌𝑇−1 = 𝑦𝑇−1] 

= 𝑃[𝑌𝑇 = 𝑦𝑇|𝑋𝑇−1 = 𝑖𝑇−1, 𝑌𝑇−1 = 𝑦𝑇−1] 

=∑𝑃[𝑌𝑇 = 𝑦𝑇 , 𝑋𝑇 = 𝑖𝑇|𝑋𝑇−1 = 𝑖𝑇−1, 𝑌𝑇−1 = 𝑦𝑇−1]

𝑖 

 

=∑  𝑻−𝟏 𝑻
 𝑻

 
𝑏𝑦 |𝑌 −1=𝑦 −1,𝑋 −1= 𝑖 −1,𝑋 =𝑖 

 

Now 𝛼𝑡
∗(𝑖𝑡) = 𝑃 [𝐘

∗(𝒕) = 𝐲∗(𝑡)|𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡] 

= 𝑃 [𝑌𝑡+1 = 𝑦𝑡+1, 𝐘
∗(𝒕+𝟏) = 𝐲∗(𝒕+𝟏) |𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡] 

=∑𝑃 [𝑌𝑡+1 = 𝑦𝑡+1, 𝑌
∗(𝑡+1) = 𝑦∗(𝑡+1), 𝑋𝑡+1 = 𝑖𝑡+1 |𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡]

𝑖𝑡 1

 

=∑𝑃 [𝑌𝑡+1 = 𝑦𝑡+1, 𝑋𝑡+1 = 𝑖𝑡+1 |𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡]  

𝑖𝑡 1

 

𝑃 [𝐘∗(𝒕+𝟏) = 𝐲∗(𝒕+𝟏) |𝑌𝑡+1 = 𝑦𝑡+1, 𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡, 𝑋𝑡+1 = 𝑖𝑡+1] 
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=∑𝑃 [𝑌𝑡+1 = 𝑦𝑡+1, 𝑋𝑡+1 = 𝑖𝑡+1 |𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡]

𝑖𝑡 1

 𝑃 [𝐘∗(𝒕+𝟏) = 𝐲∗(𝒕+𝟏) |𝑌𝑡+1 = 𝑦𝑡+1, 𝑋𝑡+1 = 𝑖𝑡+1] 

=∑𝑃 [𝑋𝑡+1 = 𝑖𝑡+1 |𝑋𝑡 = 𝑖𝑡]

𝑖𝑡 1

𝑃 [𝑌𝑡+1 = 𝑦𝑡+1 |𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡]

 𝑃 [𝐘∗(𝒕+𝟏) = 𝐲∗(𝒕+𝟏) |𝑌𝑡+1 = 𝑦𝑡+1, 𝑋𝑡+1 = 𝑖𝑡+1] 

=∑𝛼𝑡+1
∗ (𝑖𝑡+1)𝛾𝑖𝑡𝑖𝑡 1

 
𝑏𝑦𝑡 1|𝑌𝑡=𝑦𝑡,𝑋𝑡 1= 𝑖𝑡 1,𝑋𝑡=𝑖𝑡

=∑𝛼𝑡+1
∗ (𝑖𝑡+1)𝐴(𝑖𝑡, 𝑖𝑡+1)

𝑖𝑡 1𝑖𝑡 1

 

where 𝐴(𝑖𝑡, 𝑖𝑡+1) = 𝑔𝑖𝑡𝑖𝑡 1𝑏𝑦𝑡 1|𝑌𝑡=𝑦𝑡,𝑋𝑡 1=𝑖𝑡 1,𝑋𝑡=𝑖𝑡 

 
  so 𝑏𝑦𝑡 1|𝑌𝑡=𝑦𝑡 ,𝑋𝑡 1=𝑗,𝑋𝑡=𝑖

 is the normal density Normal density  

with mean 𝜇𝑗 + 𝛽𝑗 (
𝑦𝑡−𝜇 

𝜎 
) =  𝑖

𝑗
+ 𝑏𝑖

𝑗
 𝑦𝑡 and standard deviation i.. 

Also  𝑖
𝑗
= 𝜇𝑗  (

 𝑗

𝜎 
)𝜇𝑖  and 𝑏𝑖

𝑗
=

 𝑗

𝜎 
 

The backward values 𝛼𝑡
∗(1) and 𝛼𝑡

∗(2) can be calculated in excel as follows: 

1. Place the formula “=SUM(E214:F214)” in the cell K214 and the formula “=SUM(G214:H214)” in cell 

L214, to compute  
𝛼1  
∗ (1) and . 𝛼1  

∗ (2) 

2. Place the formulae “=SUMPRODUCT(E213:F213,K214:L214)” and 

“=SUMPRODUCT(G213:H213,K214:L214)” in the cells K213 and L213. This is the iterative step of 

the backward algorithm. 

The formulae in cells K213:L213 are copied to cells K16:L213. This computes the calculation of 𝛼𝑡
∗(1) 

and . 𝛼𝑡
∗(2) 𝛼𝑡(1) and 𝛼𝑡(2) for t = 1, 2, … , 200 

5. Calculation of ARHMM State Probabilities Given the Data Sequence Y 

Now recall that 

 𝛼𝑡(𝑖𝑡) = 𝑃 [𝒀
(𝑡) = 𝒚(𝑡), 𝑋𝑡 = 𝑖𝑡] = 𝑃[𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑡 = 𝑦𝑡, 𝑋𝑡 = 𝑖𝑡] 

and 𝛼𝑡
∗(𝑖𝑡) = 𝑃 [𝐘

∗(𝒕) = 𝐲∗(𝑡)|𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡] 

=  𝑃[𝑌𝑡+1 = 𝑦𝑡+1, 𝑌𝑡+2 = 𝑦𝑡+2, … , 𝑌𝑇 = 𝑦𝑇|𝑋𝑡 = 𝑖𝑡, 𝑌𝑡 = 𝑦𝑡] 

Thus 𝛼𝑡(𝑖𝑡)𝛼𝑡
∗(𝑖𝑡)= 𝑃 [𝒀 =  𝒚, 𝑋𝑡 = 𝑖𝑡, ] 

And 𝑃 [𝒀 =  𝒚] = ∑ 𝑃 [𝒀 =  𝒚, 𝑋𝑡 = 𝑖𝑡]𝑖𝑡 = ∑ 𝛼𝑡(𝑖𝑡)𝛼𝑡
∗(𝑖𝑡) 𝑖𝑡  

Thus 𝑃 [𝑋𝑡 = 𝑖𝑡⌊𝒀 =  𝒚] =
  [𝒀= 𝒚,𝑋𝑡=𝑖𝑡]

  [𝒀= 𝒚]
=

 𝑡(𝑖𝑡) 𝑡
∗(𝑖𝑡)

∑  𝑡(𝑖𝑡) 𝑡
∗(𝑖𝑡)  𝑡

 

and 𝑃 [𝑋𝑡 = 2⌊𝒀 =  𝒚] =
 𝑡(2) 𝑡

∗(2)

∑  𝑡(𝑖𝑡) 𝑡
∗(𝑖𝑡)  𝑡

 

The conditional probabilities are calculated as follows 

Place the formula “=J15*L15/(J15*L15+I15*K15)” in cell D15. 

Copy the formula in C15 to cells C15:C214  

Graphs that now can be plotted are t vs yt (observation), t vs xt (state) and 𝑃 [𝑋𝑡 = 2⌊𝒀 =  𝒚] 
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6. Exercises That Can be Performed to Illustrate the Performance of the Backward and Forward Algorithm for 

ARHMM Series 

In these exercises we generate realizations using different sets of parameters to examine the performance of 

Forward and Backward algorithms in identifying the hidden states of an Auto regressive Hidden Markov model. 

1. 1 = 10, 1 = 1, 1 =.95, 2 =5, 2 = 1, 2=-.95  

 

 
Comment: Differing means, equal and small standard deviations, auto correlations large in absolute value and 

differing in sign, resulting in accurate prediction of states from data. 

2. 1 = 5, 1 = 1, 1 =.95, 2 =5, 2 = 1, 2=-.95  
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Comment: Equal means, equal and small standard deviations, auto correlations large in absolute value and 

differing in sign, also resulting in accurate prediction of states from data. 

3. 1 = 5, 1 = 1, 1 =.45, 2 =5, 2 = 1, 2=-.45) 

 

Comment: Equal means, equal and small standard deviations, auto correlations medium in absolute value and 

differing in sign, also resulting in less accurate prediction of states from data. 

4. 1 = 5, 1 = 1, 1 =.25, 2 =5, 2 = 1, 2=-.25) 
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Comment: Accuracy of state identification decreases as absolute value of autocorrelations decrease in value. 

5. 1 = 5, 1 = 1, 1 =.95, 2 =5, 2 = 1, 2= .95) 

 
Comment: When the parameters are the same for both states the data provides no distinguishing information. The 

Forward and Backward algorithm gives the long run state distribution for the unseen Markov chain. 

7. Conclusion 

Auto-Regressive Hidden Markov models (ARHMM) are increasingly being used by researchers in a variety of 

disciplines to identify underlying states with correlated observations contributing to patterns in observed data. For 

example, Tang (2004) used Auto-Regressive Hidden Markov models on temperature data in the Pacific Ocean to 

study the mechanism of El Nino. Stanculescu, Williams, and Freer (2014) used Auto-Regressive Models for the 

early detection of neo-natal sepsis, one of the major clinical concerns when premature babies receive intensive 

care. This approach gives earlier detection of sepsis than the slower laboratory tests that are currently used for this 

condition. More recently, Dang, Chaudhuty, Lall and Roy (2017) used an autoregressive model to provide 

effective connectivity estimates among brain states using fMRI signals. These hidden states can provide new 

information about a process over time that may be missed by traditional statistical approaches. To this end, 

DeGeorgia, Kaffashi, Jacono and Loparo (2015) point out that the medical field has not yet incorporated new 

advances in computer science, mathematics, and allied fields regarding the recent increased capability in data 

collection for patient monitoring. We would also add that Auto-Regressive Hidden Markov models have potential 

in intensive care monitoring and the analysis of medical data.  

The purpose of this article was to demonstrate how the Forward and Backward algorithm performs in ARHMM 

state identification using Excel. By using this article and the included exercises one can develop an applied 

understanding of underlying state identification in the Auto-Regressive Hidden Markov Model. While only 

two-state ARHMM was considered in this article, more can be considered with minor modifications to the 

EXCEL file.  
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