
International Journal of Statistics and Probability; Vol. 8, No. 5; September 2019
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

Assessing Guaranteed Minimum Income Benefits and Rationality of

Exercising Reset Options in Variable Annuities
Riley Jones1 & Adriana Ocejo1

1 Department of Mathematics and Statistics, University of North Carolina at Charlotte, 9201 University City Blvd., Char-
lotte, NC, USA

Correspondence: Adriana Ocejo, Department of Mathematics and Statistics, University of North Carolina at Charlotte,
9201 University City Blvd., Charlotte, NC, USA.

Received: July 7, 2019 Accepted: July 30, 2019 Online Published: August 6, 2019

doi:10.5539/ijsp.v8n5p13 URL: https://doi.org/10.5539/ijsp.v8n5p13

Abstract

A variable annuity is an equity-linked financial product typically offered by insurance companies. The policyholder makes
an upfront payment to the insurance company and, in return, the insurer is required to make a series of payments starting
at an agreed upon date. For a higher premium, many insurance companies offer additional guarantees or options which
protect policyholders from various market risks. This research is centered around two of these options: the guaranteed
minimum income benefit (GMIB) and the reset option. The sensitivity of various parameters on the value of the GMIB is
explored, particularly the guaranteed payment rate set by the insurer. Additionally, a critical value for future interest rates
is calculated to determine the rationality of exercising the reset option. This will be able to provide insight to both the
policyholder and policy writer on how their future projections on the performance of the stock market and interest rates
should guide their respective actions of exercising and pricing variable annuity options. This can help provide details into
the value of adding options to a variable annuity for companies that are looking to make variable annuity policies more
attractive in a competitive market.
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1. Introduction

A variable annuity is a long-term, tax-deferred product, whose funds are equity-linked from the time of the initial payment
until the annuitization date (the accumulation period). The initial payment is invested into sub-accounts made up of
mutual funds and other investments. The growth of the investments during the accumulation phase affects the payout of
the annuity at the annuitization date (often at retirement). This product is designed to provide post-retirement income.

While this product is targeted at providing financial security throughout retirement, there is a large amount of risk inherent.
This risk stems largely from the performance of the markets from which the value of the annuity is derived. If the markets
perform poorly over the accumulation period, an individual could have a post-retirement income significantly less than
expected. With retirement being something that few people are willing to risk, it is important to be able to offer something
that reduces the risk of the variable annuity. The most common way to protect the annuity balance from poor investment
performance is the inclusion of a guaranteed minimum benefit when the contract is underwritten. For a good introduction
to different types of investment guarantees we refer the reader to Hardy (2003).

In fact, when insurance companies began to include guaranteed minimum benefits in their variable annuity products in the
late 1990s, there was a large growth in the number of polices sold (Drexler, Plestis, & Rosen, 2017). This made variable
annuities a more attractive option because it reduced the level of risk in these policies to policyholders. Today, guaranteed
minimum benefit options are very common with variable annuities. According to Drexler et al. (2017) in 2016, 76% of
policyholders chose to purchase a guarantee when the option was available with their variable annuity. With a decline in
the number of pension plans and other traditional forms of retirement plans, many people are looking into less traditional
ways to be financially secure through retirement. Since variable annuities are a long-term investment which can have a
very low risk (with a guaranteed minimum benefit), they are a great option for retirement.

Guaranteed minimum benefits can come in many forms; however, the four main types are Guaranteed Minimum With-
drawal Benefits (GMWB), Guaranteed Minimum Death Benefits (GMDB), Guaranteed Minimum Accumulation Benefits
(GMAB), and Guaranteed Minimum Income Benefits (GMIB). Some works related to the pricing of these specific guar-
antees in isolation are (Milesvsky & Salisbury, 2006), (Milevsky & Posner, 2001), (Shevchenko & Luo, 2016), and
(Marshall, Hardy, & Saunders, 2010), respectively. With a few exceptions, closed-form formulas are usually not available
and numerical methods, such as Monte Carlo, have to be used to price these guarantees. When the computational time is a
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concern, particularly when dealing with large portfolios of variable annuities, some more advanced and eficient methods
have been proposed, see for instance (Gan, 2013), (Gan & Valdez, 2018), (Doyle & Groendyke, 2019).

While (Bauer, Kling, & Russ, 2008) and (Bacinello, Millossovich, Olivieri, & Pitacco, 2011) amongst others have created
a pricing framework for guaranteed minimum benefits in general, there is little research into GMIB. Furthermore, while
companies have advanced pricing tools and methods to price the cost of these policies, current research indicates that these
policies are typically underpriced (Marshall et al., 2010). Marshall et al. (2010) study the value of the GMIB as a function
of the fee rate c charged for the rider, whereas our paper is centered around the value of the GMIB as a function of the
guaranteed annual payment rate g, which has a large impact on the probability of exercising the benefit base and on the
value of the guarantee. A GMIB could have many additional options added to it; in this paper, it essentially provides the
policyholder with two options at the annuitization date: annuitize the accumulated value of investments at prevailing rates
or annuitize a guaranteed amount at a set rate g (determined at the onset of the contract). This research will specifically
study variable annuities with a GMIB and focus on the effect of factors such as the guaranteed payment rate g, the fee
structure, and the volatility parameter on the value of the GMIB.

The reset option, as defined within this paper, provides a third option which allows the policyholder to defer the annuitiza-
tion date to a later time. This is useful if the policyholder is not in need of a payment at the annuitization date and thinks
the policy will gain value over the next year. We do not price the reset option, instead we are interested in the rationality
of exercising the reset option upon the annuitization date based on future interest rate expectations.

The rest of the paper is organized as follows. In Section 2, the pricing framework of a GMIB is presented to determine
fair values of the guaranteed annual payment rate g given different levels of a fee rate c. In Section 3 we use Monte
Carlo methods to analyze the probability of exercising the GMIB for different levels of the fee and guaranteed rates, to
find the fair value of the guarantee rate, as well as how these quantities are affected by the fee structure and the volatility.
Additionally, the reset option is analyzed to find critical values for future interest rates which will determine the rationality
of exercising the reset option. It is important to note that the reset option is not considered in the pricing of the GMIB.
Concluding remarks appear in Section 4.

2. Pricing Framework

We consider a single premium variable annuity with a GMIB. This rider guarantees the policyholder the maximum of the
the benefit base and the investment account at the annuitization date T . The payoff of the GMIB is given by:

P(T ) = max[BB(T ), S f (T )] (1)

where BB(T ) represents the value of the benefit base and S f (T ) represents the investment account with all fees deducted.
Throughout this paper, a value of T = 20 will be used, indicating a 20-year accumulation period, and fees will be deducted
annually.

The initial premium, S (0), is invested in a fund account with market value S (t) defined on a complete probability space
(Ω,F ,P). We assume that under the risk-neutral probability measure Q, the investment account S (t) before fees are
deducted follows

dS (t) = rS (t)dt + σS (t)dW(t),

where r > 0 is the continuously compounded risk-free interest rate, σ > 0 is the market volatility, and W = (W(t))t≥0 is a
standard Brownian motion. At the annuitization date, the value of the benefit base can be expressed as:

BB(T ) = S (0)(1 + rg)T g a20(T ) (2)

where rg > 0 is the guaranteed annual rate, a20(T ) is the market value of a twenty-year annuity with payments of $1
beginning at time T , and g is the guaranteed annual payment rate specified at the beginning of the contract.

Note that if g is priced fairly, then g should be the multiplicative inverse of a20(T ); however, this relationship is affected
by the prevailing interest rate at time T . Since the interest rate at time T is not known (in practice) at any time before T ,
its value has to be approximated. It is often the case that g is set so conservatively that g a20(T ) < 1.

While some companies make annuity payments monthly, payments for the annuities priced in this paper will be paid
annually for 20 years. There is flexibility for the term of the policy; however, 20 years is selected because current publicly
available Social Security data show that the average life span after retirement at age 65 is 19.3 years for males and 21.7
years for females in the United States (Social Security Administration).

For the investment account, insurance companies typically deduct an annual fee that is a percentage of the benefit base.
The amount deducted from the investment account every year can be expressed by:

f1(n) = cS (0)(1 + rg)n, n = 1, 2, . . . ,T. (3)
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With this, the fee that will be deducted every year is known at the onset of the contract. This fee structure is similar to that
in (Marshall et al., 2010). Another method for calculating the amount of the annual fee can be given by:

f2(n) = f1(n) g a20(T ), n = 1, 2, . . . , T (4)

With (4) for an annual fee, two extra terms are included: g and a20(T ). While these terms should multiply to equal one,
resulting in f2(n) = f1(n), this is often not the case. The value of a20(T ) will change as the future expectation of the
interest rate at time T changes. The use of these two fee amounts and the effects they have on the pricing of the GMIB is
discussed in Section 3. However, f1(n) is industry standard. By the risk-neutral valuation approach, the value if the GMIB
can be expressed by:

V(g) = EQ[(1 + r)−T P(T )]. (5)

In insurance, an equivalence principle is used to determine fair rates (Olivieri & Pitacco, 2015). In our setting, we define

the fair guaranteed annuity payment rate as the value of g = g∗ such that:

V(g∗) = S (0), (6)

that is, the risk-neutral value of the GMIB equals that of the total investment (in this case S (0)). If V(g) > S (0), then the
insurance company is undercharging for the GMIB. Likewise, if V(g) < S (0), then the insurance company is overcharging
for the GMIB.

For the reset option, the same modeling process is used. The only difference is that the model is extended by 1-year to
include the projections from time T to T + 1. This option can be expressed by setting the new terminal time to T ′ = T + 1.
While the interest rate is at the same level from time 0 to T , its value is changed for the year following the initial
annuitization date, but still at a constant level. This allows for results on how the change in the interest rate will affect the
values of the benefit base and the investment account. The interest rate which results in a benefit base value equal to the
investment account at time T ′ will be referred to as the critical interest rate value r∗ from T to T ′. If S f (T ) > BB(T ), then
the reset option should be exercised if the policyholder expects future interest rates to be below r∗ (and vice versa).

3. Numerical Results and Discussion

In this section, the value of the GMIB is given as a function of the guaranteed annual payment rate g to determine the fair
rate g∗ for varying fee rates c and critical values for the reset option are given. Additionally, discussion is provided into
the sensitivity to other parameters of the model such as the volatility of the market, and the fee structure implemented.
Unless otherwise stated, the fee structure follows that of f1(n) and the following parameters are used in the model:
S (0) = $100, 000, T = 20, σ = 10%, r = 5% and rg = 5%.

A Monte Carlo simulation approach is used in the pricing of the GMIB to undertake the analysis. While Bauer et al.
(2008) and Bacinello et al. (2011) also use Monte Carlo methods in a more general framework, we are interested in the
effect of parameters specific to GMIB in the value of such guarantee. Figure 1 shows 100 realizations of the investment
account path given S (0) = 100, 000, σ = 10% and r = 5%. The most robust model run in this paper considers 200,000
simulations to estimate the values of V(g) for each small increment of g.
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Figure 1. 100 Investment account paths

It is important to note that the paths are not continuous. Each path is stopped at the end of each year and the fee is
deducted. Then the motion continues but starting at the new account value. Figure 2 is a close-up chart of one realization
of the investment account. The gap represents the fee amount that was deducted from the investment account, in this case
f1(10).

Figure 2. Deduction of annual fee

3.1 Probability of Exercising the GMIB Option

An important point of consideration when offering a guaranteed minimum benefit is understanding the probability that
the benefit will be exercised. Our simulations show that the effect on the likelihood of payoff of small changes of g is
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larger than that of c for the same percentage increase. Figure 3 shows the probability that the GMIB will be exercised for
different levels of c and g. The value of g is given between 5% and 10% because these values correspond with a realistic
range of future interest rates from 0% to 9% (c.f. Table 1 in (Marshall et al., 2010)). If interest rates were to exceed 9%,
then a value of g higher than 10% should be explored. Also, the fee rate ranges from .5% to 1% because this is current
industry standard. Figure 3 is generated from points calculated for given levels of g and c. It is connected by lines at each
level of c to show a trend. For each level of c there are 51 values of g generated on equidistant intervals from .05 to .10.

From this graph we can see that both g and c have a positive relationship with the probability of exercising the benefit
base. As both c and g increase, the probability that the benefit base is exercised increases. However, within the range of
current industry standard, we can see that g has a much larger impact on the probability of exercising the benefit base than
c does. A change from g = .05 to g = .1 results in a change of approximately 50 percentage points while the change from
c = .5% to c = 1% results in a change of approximately less than 10 percentage points.

Now that the effect g and c have on the probability of exercising the benefit base is given, we can shift focus to determining
what the fair value of g will be.

Figure 3. Probability of exercising the benefit base

3.2 V(g) and Fair Values of g

It is important for both the insurance company and the policyholder to know what the fair value of g is when signing the
policy. Using the same data that was computed in the previous section, the fair value of g is now calculated for the same six
fee rates varying from .5% to 1% on equidistant intervals. Recall that the fair value of g is the g∗ such that V(g∗) = S (0).
The V(g) values are presented in Figure 4 for each level of g and c. This is done for the same 306 combinations of g and
c calculated in the previous section. The values are then connected by lines by the fee value to show the trend of the data.
As expected, as the g value increases, so does V(g), which makes the GMIB more valuable. However, as the fee rate c
charged increases, V(g) decreases making the value of the GMIB less valuable.

The most critical point of consideration in this section is the initial value of the investment account (100,000). When V(g)
is equal to 100,000, then the GMIB option is fairly priced. This is seen by the intersection of each line with the grey dotted
line. If V(g) is greater than 100,000, then the insurance company is undercharging for the option. On the other hand, if
V(g) is less than 100,000, then the insurance company is overcharging for the GMIB.

It is important to note that none of the combinations of g and c calculated resulted in a V(g) value of exactly 100,000.
However, the strict monotonicity of V(·) apparent in the chart implies that there exists some value of g for each level of
c such that V(g) equals to 100,000. Table 1 presents an estimate of g∗ for various levels of c. These fair values of g are
best estimates given the parameters of the model. If the parameters of the model were to change, then these values would
change as well. Additionally, there is a degree of uncertainty with each fair value given. The degree of uncertainty varies
with the number of iterations run in the model. If only a few number of iterations were run, then each fair value of g
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Figure 4. V(g) to determine fair g values

would have a very large variance level associated with it. Since 200,000 iterations were run at each point, the fair g values
presented in Table 1 have a relatively smaller variance level. However, future work should be done into calculating the
exact certainty of these values.

Table 1. Fair values of g given c

c 0.005 0.006 0.007 0.008 0.009 0.01
g∗ 0.0558 0.0581 0.0601 0.0619 0.0633 0.0645

3.3 Fees Given by f1(n) vs. f2(n)

As stated at the beginning of this section, the fee structure used in sections 3.1 and 3.2 follows that of f1(n). Now, the
fee structures of f1(n) and f2(n) are compared to find the probability of exercising the benefit base and the fair level of g.
The relationship between f1(n) and f2(n) can be seen as f2(n) = f1(n) ∗ g ∗ a20(T ). Since the interest rate is assumed to be
constant at 5% from 0 to T , the value of a20(T ) will be constant as well. So the effect a20(T ) has on the total fee deducted
is the same for any level of g and c. In a model where interest rates vary, a20(T ) would vary as well. This would make its
effect on the fee structure more complex.

Figure 5 shows the probability of exercising the benefit base for each fee structure. While the results follow similar
structures, we can see that f1(n) has more variance in c at a lower level of g and converges to a level of less variance in
c at a higher level of g. Meanwhile, the variance in c for f2(n) appears to be constant for all g. Additionally, f1(n) has
less change in the probability of exercising the benefit base as g increases. For example, for c = 1%, the probability of
exercising the benefit base changes from 41% to 88% (47 percentage points) as g goes from .05 to .1 under f1(n). Under
f2(n), the probability of exercising the benefit base changes from 34% to 90% (56 percentage points) as g goes from .05
to .1.
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(a) f1(n) (b) f2(n)

Figure 5. Probability of exercising the benefit base given the fee structure

The fee structure also has a significant impact on the value of V(g). As can be seen in Figure 6, there is an upward shift
in the V(g) values from f1(n) to f2(n). Additionally, the impact that c has on V(g) is less in f2(n) than f1(n) because the
values are much closer together under f2(n). This results in fair values of g under f2(n) which are much lower than the
fair values calculated under f1(n). This makes sense because g is a factor in f2(n) but not in f1(n). If the additional g term
is lower, then the amount being deducted from the investment account annually will be less. This will make the option
more valuable, which translates into a higher V(g) value. This is seen by the upward shift between the graphs.

(a) f1(n) (b) f2(n)

Figure 6. V(g) values given the fee structure

3.4 The Effect of Volatility

Another assumption held to be true in the previous sections is that the volatility is a constant at 10%. So, how does
changing this assumption affect the overall results? In order to test this, the model was run at a volatility level of 2%, 10%
and 20%.

The probability of exercising the benefit base at each of these volatility levels is given in Figure 7. In this, we can see that
the volatility has a very significant impact on the probability of exercising the benefit base. With a low level of volatility,
the data appears to fit a logarithmic distribution and varies from 0% to 100%. As the volatility increases, the probability
of exercising the benefit base is contained in a smaller interval and the data follows more of a quadratic (almost linear)
function. Additionally, the lines are less smooth with increased volatility which indicates more variance in the individual
results.
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(a) σ = 2% (b) σ = 10%

(c) σ = 20%

Figure 7. Probability of exercising the benefit base for different volatility levels

Similarly, Figure 8 shows the value of V(g) at each volatility level. The fair value of g varies significantly based on
different volatility levels. At a low volatility level of 2%, the fair value of g is nearly the same for every value of c since
the V(g) functions appear to converge to a line. At a level of 10%, there is more variation amongst c values which results
in different and lower fair values of g. Lastly, at a volatility level of 20%, the fair rate g does not even lie between .05
and .1. This reflects the uncertainty in the market, resulting in much lower fair rates which are not competitive. This also
suggests that fair rates (and fees) should be linked to the market volatility. The variation caused by the change in volatility
shows that the volatility assumption has a very large effect on the results given in sections 3.1 and 3.2.
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(a) σ = 2% (b) σ = 10%

(c) σ = 20%

Figure 8. V(g) values for different volatility levels

3.5 Rationality of Exercising a Reset Option

3.5.1 Exercise Criteria

In order to assess the rationality of exercising a reset option as defined by the ability to delay the annuitization date, in this
case, by one year, simulations are made for both the performance of the benefit base and the investment account for the
year following the initial annuitization date. The performance of these accounts is considered under a new interest rate
value (which is the growth rate for the investment account). This value is still constant but varies from 0% to 10%. Figure
9 shows the projected values for the benefit base and the investment account at time T ′ = T + 1 at different interest rate
levels. The benefit base rolls-up to a fixed level, so iterations are not run for its value.

It can be seen that there is a certain interest rate value for the year following the initial annuitization date such that the
value of the benefit base equals that of the investment account. This value is defined earlier as the critical interest rate
value r∗. It is with this value that the rationality of exercising the reset option (at time T ) is determined. For example, in
Figure 9 the values of the future benefit base and investment account at time T ′ are given for an assumed level of g = .065
and c = .007. If the policyholder was in a situation where they had more money in their investment account than their
benefit base at time T , then they should rationally exercise the reset option if they expect future interest rates to drop
below r∗ = 4.35%. This is because if interest rates drop below this level for the following year, the benefit base is now
expected to have more value than the investment account. Likewise, if at time T the benefit base has more value than the
investment account, the reset option should be rationally exercised if the policyholder expects interest rates to be above
4.35%.
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Figure 9. Values of BB(T ′) and S f (T ′)

This can be more generally stated as if S f (T ) > BB(T ), then the reset option should be exercised if the policyholder
expects future interest rates to be below r∗. Likewise, if S f (T ) < BB(T ), then the reset option should be exercised if
the policyholder expects future interest rates to be above r∗. The critical interest rate value stated above of 4.35% was
specifically for c = .007 and g = .065. What value this critical interest rate has for different levels of c and g is given in
the next section.

3.5.2 Critical Interest Rate Values

To plot the critical interest rate value for different levels of c and g, the data for the chart shown in the previous section
is replicated for 306 different combinations of c and g. The critical interest rate value r∗ is taken from each of these
calculations and placed onto a graph as seen in Figure 10.

Figure 10. Critical values for the interest rate from T to T ′ (r∗)

The number of iterations that went into calculating the future investment account value at each interest rate level within the
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individual 306 combinations is again 200,000. This method was computationally heavy and required a lot of computing
power and time. A regression function can be run so that the critical interest rate value can be calculated for any value
of g. While a linear function could be fit to the data, a second degree polynomial function is a better fit for each level
of c between 0.5% and 1%. A statistically significant p-value from an ANOVA test verifies this. Additionally, a very
high adjusted R2 value tells us that it is not necessary to explore fits for functions with higher degree polynomials. The
regression functions are given in Table 2.

Table 2. Estimated Value of Critical Interest Rate

c Regression Function Adjusted R2

0.5% −5.50g2 + 2.46g − .0953 0.9996
0.6% −5.58g2 + 2.49g − .0943 0.9997
0.7% −5.96g2 + 2.56g − .0944 0.9997
0.8% −5.64g2 + 2.54g − .0916 0.9997
0.9% −5.51g2 + 2.55g − .0898 0.9997
1% −5.65g2 + 2.59g − .0889 0.9997

4. Conclusion

In this paper, we studied the value of a GMIB as a function of the guaranteed annual payment rate g for different levels
of the fee rate c and the rationality of exercising a reset option based on future expectations of the interest rate. Results
have been given to determine the probability of exercising the benefit base, the fair value of g, as well as how these
quantities are affected by the fee structure and the volatility. Our results show that g has a larger impact on the probability
of exercising the benefit base than c does. Assuming financial market parameters set to σ = 10% and r = 5%, critical g
values for fee levels of .5%, .6%, .7%, .8%, .9% and 1% were given to be .0558, .0581, .0601, .0619, .0633, and .0645,
respectively. Discussion was provided into how the fee structure and the volatility affect the results of the model. As
compared to the alternative fee structure f2(n), fair levels of g are larger under f1(n). This is due to an upward shift of the
guarantee value from f1(n) to f2(n). We also found that the volatility significantly impacts the fair rates. As expected, the
lower the volatility the larger the fair rate. In fact, we found that for σ = 0.2, the fair rate falls below the range typically
offered in the industry, which suggests that the model parameters c and g are strongly linked to the market volatility.
Lastly, regression functions were produced to determine the critical interest rate value for any value of g. These critical
interest rate values were used to determine the rationality of exercising the reset option. Future work involves relaxing the
assumption of constant interest rates and incorporating the reset option into the pricing framework.
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