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Abstract

Identity disclosure of an individual from a released data is a matter of concern especially if it belongs to a category with
low frequency in the data-set. Nayak et al. (2016) discussed this problem vividly in a census report and suggested a
method of obfuscation, which would ensure that the probability of correctly identifying a unit from released data, would
not exceed ξ for some 1

3 < ξ < 1. However, we observe that for the above method the level of security could be extended
under certain conditions. In this paper, we discuss some conditions under which one can achieve a security for any
0 < ξ < 1.
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1. Introduction

Many agencies release data to motivate statistical research and industrial work. But often these data-sets carry some
information which may be sensitive to the individual bearing it. Erasing the name or some identity number associated
with an individual may not always be sufficient to hide the identity of the individual. For example, imagine a situation
where a data-set of p variables corresponding to n individuals are released and among these p variables there is a variable
named “pin-code”( sometimes called zip-code). Now “pin-code” is not supposed to be a sensitive variable, but it may
happen that the intruder, who is trying to identify some individual in the data-set, has an idea about where the individual
lives and thus can guess his “pin-code”. In this case, if in the data-set there is no other individual having the same “pin-
code”, he can directly guess from this information which row in the data-set corresponds to the individual and thus the
identity is revealed. Hence, suppressing identity numbers or names is not always sufficient to prevent identity disclosure.
Sometimes, some attributes, that may reveal the identity of the individual, also called the identifying attribute, may result
in identity disclosure of the individual. Moreover, if an attribute value corresponds to a very few individuals in a data-set,
it is usually easy for the intruder to identify the individual. For example, if the “pin-code” value corresponds to one or
two individuals in the data-set, then the intruder can guess which row in the data-set corresponds to the individual with
high probability. But, if the value corresponds to twenty individuals, then the intruder now has to guess from these twenty
rows which one belongs to his target individual. The identification risk is thus low for high frequency cells.

Various articles including Bethelem et al. (1990), Trabelski et al. (2009), Nayak et al. (2016) have discussed this problem
and have proposed different risk measures to evaluate the security in the released data, i.e., to check if an intruder can
identify the row of his target unit from the released data. However, here we follow the framework of Nayak et al. (2016).
The intruder here has a knowledge of the variable category X(B) corresponding to his target unit B. If the variable X has k
categories c1, c2, . . . , ck, then we assume without loss of generality X(B) = c1 and the frequencies of the categories in the
data-set are T1,T2, . . . , Tk respectively.

If T1 = 1, i.e., only X(B) has category c1, the intruder can guess the row of his target unit with certainty. If T1 is small,
the intruder knows that his target unit is definitely one of the T1 many units and then taking into consideration other
information, he may successfully identify the row of his target unit or make a correct guess. Thus, in this case, the
variable information must be suppressed before releasing the data.

One way to do that is to completely erase the variable but that is not desirable to the statistician. In case there exists some
identifying attribute in a data-set, it is perturbed before releasing publicly. Bethelem et al. (1990), Trabelski et al. (2009),
Nayak et al. (2016) have discussed different ways of perturbing such attributes. However, the most common practise of
perturbing discrete data is the post randomisation method which will be discussed in the following paragraphs. The aim
of the research problem is to find an ideal way of perturbing such attribute values that may result in least possible loss of
information, provided the data is secured, i.e., looking at the released data, the intruder cannot guess the row of his target
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individual.

Let {X1, X2, · · · , Xn} be the original data-set which is assumed to be a collection of i.i.d. random variables and X is a
random variable from the common distribution of {X1, X2, · · · , Xn}. If it is an identifying attribute, i.e., release of it in its
raw form can reveal the identity of the individuals, then it is perturbed to {Z1,Z2, · · · ,Zn} before releasing and Z follows the
same distribution as {Z1,Z2, · · · ,Zn}. However, this change may cause a loss of information to the data-set. To minimize
this loss, the data is perturbed such that the probability of each X being perturbed to Z is given by the transition matrix P
= ((pi j)), where,

pi j = P[Z = c j|X = ci] , i, j = 1, 2, · · · k. (1)

This matrix is not released and is unknown to the statistician. The method of obfuscation is known as the post-randomization
method (PRAM). If we assume the frequencies of {X1, X2, · · · , Xn} to be T = (T1,T2, · · · ,Tk) for the categories {c1, c2, · · · , ck}
and T ∼ Multinomial(Π1,Π2, · · · ,Πk), then after transformation of X to Z, S = (S 1, S 2, · · · , S k) are the frequencies
of the corresponding class in the perturbed data. Here, S ∼ Multinomial(Λ1,Λ2, · · · ,Λk), where Λ = PΠ (Λ :=
(Λ1,Λ2, · · · ,Λk), Π := (Π1,Π2, · · · ,Πk)). If we want to treat Z as the original data, we must have Π = Λ = PΠ.
ButΠ is generally unknown to the one, who is masking the data. However, one can estimateΠ from the original data with
T/n where n is the total sample size. If we want S/n to be an unbiased estimator of Π, we must have, due to Equation (1),

E[S | T] = T/n , or equivalently, PT = T. (2)

Gouweleeuw et al. (1998) defined a post randomization method to be an invariant PRAM if P satisfies Equation (2). The
error due to estimation after post randomization was studied in the literature by various authors including Nayak et al.
(2015).

One of the common techniques to achieve an invariant PRAM is to use an Inverse Frequency Post Randomization (IFPR)
block diagonal matrix, in which the entire data-set is partitioned into few groups and within each group, categories are
interchanged. If it is not desirable to change the category of some variable, it can be made to form its own block.
Thus, if there are m groups, given by {c1, c2, · · · , ck1 }, {ck1+1, ck1+2, · · · , ck1+k2 }, . . ., {ckm−1+1, ckm−1+2, · · · , ckm−1+km }, where
k1 + k2 + · · · + km = k, then pi j > 0 if c j and ci fall into the same group and pi j = 0 if c j and ci fall into different groups.
Within each group, pi j is given by,

pi j =

1 − θ/Ti if i = j
θ

(k′−1)Ti
if i , j

, (3)

where 0 < θ < 1 and k′ > 1 is the block size of the group that i and j fall into. However, the parameter θ of the model
should be carefully chosen to ensure that the perturbed data is secured from the intruder, at least, up to a certain extent. To
measure the risk of disclosure, Nayak et al. (2016) suggested checking whether the probability of correctly identifying an
individual given any structure of T and any value of S 1 is bounded by some specified quantity 0 < ξ < 1. Moreover, they
showed that there exists a θ⋆, where 0 < θ⋆ < 1 which gives the transition matrix, P(θ⋆) = ((p⋆i j))1≤i≤k,1≤ j≤k where p⋆i j is
chosen according to Equation (3) with θ = θ⋆ for each i, j = 1, 2, · · · , k1 and k1 is the block size of the group c1 belongs
to. Without loss of generality, we assume the block c1 belongs to is the first block. This matrix P(θ⋆) when used to post
randomize X,

P[ CM | S 1 = a,T = t] ≤ ξ ∀ a ≥ 0, ∀t, (4)

for any 1
3 ≤ ξ < 1, where CM denotes “Correct Match”. Our aim in this paper is to check whether the security can be

extended from 1
3 ≤ ξ < 1 to any 0 < ξ < 1. We observed that, if we can extend the search range of θ from 0 < θ < 1

to 0 < θ < T1 and can find all categories in the first block that satisfy T j ≥ T1 for all j , 1, then the level of security
can be extended to any 0 < ξ < 1. Note that, under this definition, there is no harm in the range of the probabilities, (
given in Equation (3)) as they certainly lie between 0 and 1. However, smaller the value of ξ, larger the block size will
be required. This is due to the methodology described in Section 2. Therefore we can extend the security as far as the
frequency distribution permits.

2. Our Approach

As mentioned earlier, our framework is similar to that of Nayak et al. (2016). From the intruder’s point of view, we assume
that as he gets access of the released data {Z1,Z2, · · · ,Zn}, he checks the rows for which Zi = c1 for {i = 1, 2, · · · , n}. Let
S 1 be the total number of units having class c1. If S 1 = 0, intruder stops searching for his target unit B in the data-set. If
S 1 = a for some a > 0, he selects one unit randomly among these a individuals and concludes that to be his target unit B.
Under this assumption, we discuss how to choose the parameter θ of the IFPR block diagonal matrix ( See Equation (3)),
depending on T1, so that the probability of correctly identifying unit B is less than some specified 0 < ξ < 1. Our method
is described in the following paragraph.
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Fix a 0 < ξ < 1. Note that, if T1 >
1
ξ
, then there is no need for obfuscation as the intruder can choose one unit randomly

and conclude it as his target unit B. Since, in the original data, the probability of correctly identifying B is 1/T1, if T1 >
1
ξ
,

the probability is less than ξ. This is quite intuitive since identification risk is a problem associated with low-frequency
classes. If T1 ≤ 1

ξ
, then we find k1 = K1(ξ, T1) classes ( where the function K1 is discussed in Sec. 3 ) such that for each

of these classes {c1, c2, · · · , ck1 }, T j ≥ T1 for each j ∈ {1, 2, · · · , k1}. Such an event is usually feasible for moderate values
of ξ as T1 usually has small values. If such classes are available, we can have any desired level of security, i.e., for any
fixed 0 < ξ < 1, there exists a corresponding θ⋆ such that if the data is perturbed with matrix P(θ⋆), Equation (4) holds.
The choice of θ⋆ is discussed in Section 3. If, however, such classes are not available, we can find the integer n⋆ such that
1

n⋆ ≤ ξ <
1

n⋆−1 . Since k1 classes are not available such that T j ≥ T1 for each j ∈ {1, 2, · · · , k1}, we now set ξ1 =
1

n⋆−1 and
try to find k1

1 = K1(T1, ξ1) classes such that T j ≥ T1 for each j ∈ {1, 2, · · · , k1
1}. If we fail, we next try for ξ2 =

1
n⋆−2 and so

on until we get a success for some ξl =
1

n⋆−l . Since for ξ = 1
n⋆−l , there exists kl

1 = K1(T1, ξl) classes such that T j ≥ T1 for
each j ∈ {1, 2, · · · , kl

1}, we can now find a θ⋆, such that if the data is perturbed with P(θ⋆), then Equation (4) is satisfied
for any 1

n⋆−l < ξ < 1. According to Nayak et al. (2016), there is always a solution for ξ ≥ 1
3 which implies there exists a

solution for 1
3 ≤ ξ <

1
2 , i.e., n⋆ can take a minimum value 3. However, n⋆ can take higher values in many cases.

3. Model, Assumptions and Results

As discussed earlier, the goal of the paper is to find out a method by which a data can be perturbed ensuring as much se-
curity as possible. Since security is an abstract term, we limit ourselves to ensure that the measure, given by Equation (4))
holds for low values of ξ. Smaller the value of ξ, better the security of the data.

Let us denote, by R1(a, t), the probability of correctly identifying the individual from released data given S 1 = a and the
frequency distribution of X given by t := (t1, t2, · · · , tk). In other words,

R1(a, t) = P[CM | S 1 = a,T = t], a ≥ 0, t ∈ Rk. (5)

If R1(a, t) is bounded by ξ for any t, then note that

R1(a) = P[CM | S 1 = a], (6)

is bounded by ξ for any a ≥ 0, which signifies that the probability of correctly identifying an individual is less than ξ, no
matter how small or large the frequency of category c1 is, in the released data. R1(a, t) is used instead of R1(a) because it is
hard to calculate the probability if t is not known. Note that, CM stands for “Correct Match” in the above equations (5) (6).

Recall that if we use, IFPR block diagonal matrix to perturb X, the category c1 may get changed to one of {c1, c2, . . . , ck1 },
k1 ≥ 2 with positive probability. let us denote αi = p1i, βi =

αi
1−αi

for i ∈ {1, 2, . . . , k1}. Observe that, R1(a, t) can be
re-written as

R1(a, t) = P[CM | S 1 = a,Z(B) = c1,T = t]P[Z(B) = c1 | S 1 = a,T = t]
+P[CM | S 1 = a,Z(B) , c1,T = t]P[Z(B) , c1 | S 1 = a,T = t].

By our assumption, since the intruder searches his target unit B among the ones with category c1, P[CM | S 1 = a,Z(B) ,
c1,T = t] = 0. Again, since, the intruder is assumed to choose randomly one unit among a units to be B, P[CM | S 1 =

a,Z(B) = c1,T = t] = 1
a for any t. Thus,

R1(a, t) =
1
a

P[Z(B) = c1 | S 1 = a,T = t]. (7)

Again, we have,

P[Z(B) = c1, S 1 = a, | T = t] = α1

∑ k1∏
i=1

(
T⋆

i
ai

)
αai

i (1 − αi)T⋆
i −ai

= α1[
k1∏

i=1

(1 − αi)T⋆
i ]

∑ k1∏
i=1

(
T⋆

i
ai

)
βai

i (8)

where T⋆
1 = T1 − 1, T⋆

i = Ti, i ≥ 2 and the sum is over all integer-valued a1, a2, · · · ak1 such that 0 ≤ ai ≤ T⋆
i and
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ai = a − 1. We denote the sum by Σa−1

P[Z(B) , c1, S 1 = a, | T = t] = (1 − α1)[
k1∏

i=1

(1 − αi)T⋆
i ]Σa (9)

Equation (8) and (9) implies that

P[S 1 = a | T = t] =
k1∏

i=1

(1 − αi)T⋆
i (α1Σa−1 + (1 − α1)Σa)

and since

P[Z(B) = c1 | S 1 = a,T = t] =
P[Z(B) = c1, S 1 = a | T = t]

P[S 1 = a | T = t]
from Equation (7) , we finally have,

R1(a, t) = 1
a

[
α1Σa−1

α1Σa−1+(1−α1)Σa

]
= 1

a

[
1 + 1

β1

Σa
Σa−1

]−1
. (10)

Nayak et al.(2016) observed that although it seems intuitive that R1(1, t) ≥ R1(a, t) for any t, a > 1 there are certain cases
it does not hold true. However, they proved that if α1 ≥ α j, i.e., β1 ≥ β j for all j = 1, 2, · · · , k1, then R1(1, t) ≥ R1(2, t)
for any t. Intuitively, if β1 is highest, i.e., the odds that c1 goes to any category other than c1, then the risk of disclosure
should be maximum if a = 1. We checked that this is quite true which leads us to our first result, stated in the following
theorem and the proof is given in Appendix Section.

Theorem 3.1. If α1 ≥ α j, i.e., β1 ≥ β j for any j = 1, 2, · · · , k1, then R1(1, t) ≥ R1(a, t) for any t, a > 1, where R1(a, t) is
given by Equation (10).

Assuming Theorem 3.1 holds, proving Equation (4) is equivalent to prove that R1(1, t) ≤ ξ for any t. For this condition to
hold, we must carefully choose the parameter θ in (1). Due to Nayak et. al. (2016), we have,

R1(1,T ) =

T1 +
θ

T1 − θ

k1∑
i=2

θTi

(k1 − 1)Ti − θ


−1

= (T1 − θ)
T1(T1 − θ) + θ2

k1∑
i=2

Ti

(k1 − 1)Ti − θ


−1

≤ T1 − θ
T1(T1 − θ) + θ2 = ψ(T1, θ) (11)

To proceed further we also need the following lemma, proof of which is deferred in Appendix Section.

Lemma 3.2. For any fixed 0 < ξ < 1, there exists a θ⋆ ∈ (0,T1) such that ψ(θ, T1) ≤ ξ.

For Theorem 3.1 to hold, in an IFPR block diagonal matrix, we must have T1−θ
θ
≥ θ

(k1−θ)T1−θ which leads to the condition,
θ ≤ T1

1+ T1
T j (k1−1)

, i.e., k1 − 1 ≥ θ
T1−θ

T1
T j

. Note that, if k1 − 1 ≥ θ
T1−θ , and T1

T j
≤ 1, k1 − 1 ≥ θ

T1−θ
T1
T j

. Hence, it is enough to find

K(θ,T1) = 1 + θ
T1−θ =

T1
T1−θ for Theorem 3.1 to hold. Again, θ is chosen by solving ψ(θ,T1) = ξ. Thus, for fixed ξ and T1

we have a θ and a corresponding K1(ξ, T1) which is the largest integer contained in K(θ, T1). K1(ξ, T1) is the minimum
number of categories required to form the block containing c1. For some possible choices of ξ and some possible values
of T1, the value of K1(ξ,T1) is calculated and given in Table 1. While choosing the block size, one must note that the
block size k1 must be larger than or at least equal to K1(ξ, T1) to ensure Equation (4).

4. Simulation Results

To illustrate the process, we simulate a sample of size n = 2000 from k = 8 categories such that the probability of falling
into a category is given by the vector Π = (0.001, 0.1, 0.2, 0.05, 0.12, 0.13, 0.301, 0.098). The sample has frequency
distribution given by Table 2.
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Table 1. Showing minimum block size required for some possible choices of security level ξ and some possible values of
class frequency T1

HHHHHT1

ξ
0.1 0.125 0.15 0.175 0.2 0.25 0.3

1 11 9 8 7 6 5 5
2 6 5 5 4 4 3 3
3 5 4 3 3 3 2 2
4 4 3 3 2 2 2 2
5 3 3 2 2 2 2 2
6 3 2 2 2 2 2 2
7 2 2 2 2 2 2 2
8 2 2 2 2 2 2 2
9 2 2 2 2 2 2 2
10 2 2 2 2 2 2 2

Table 2. Table showing frequencies of Categories for True Data from Simulated data-set

Category T
1 2
2 205
3 431
4 106
5 230
6 221
7 611
8 194

Two units in the data-set have Category 1, one of which is unit B = 780. Since T1 = 2, the probability of Correct Match
from true data is 0.5 which is very high. We want this probability to be lower, say below ξ = 0.1. So, we transform the
data to Z using the IPRAM method with a transition matrix P. To choose an ideal P we apply the procedure of this paper.
From Table 1, we get the required block size is 6. So, we would apply transition to the first k1 = 6 categories with the
lowest probability of occurrence and do not alter the categories for the rest 2 categories. To solve for h(θ) = ξ, we have
θ⋆ = 1.656854 which gives the transition matrix,

P =



0.172 0.166 0 0.166 0.166 0.166 0 0.166
0.002 0.992 0 0.002 0.002 0.002 0 0.002

0 0 1 0 0 0 0 0
0.003 0.003 0 0.984 0.003 0.003 0 0.003
0.001 0.001 0 0.001 0.993 0.001 0 0.001
0.001 0.001 0 0.001 0.001 0.993 0 0.001

0 0 0 0 0 0 1 0
0.002 0.002 0 0.002 0.002 0.002 0 0.991


Using this transition matrix we ran 1000 simulations to get 1000 different Zs. The mean squared estimation error for each
category is given by E = (4.9350·10−07, 7.6125·10−07, 0.0000, 7.4300·10−07, 8.8550·10−07, 7.8375·10−07, 0.0000, 8.5550·
10−07) which is quite low and the average probability of correct match in 1000 simulations is 0.07639286 < 0.1.

The process thus seems to work well for simulated data.

5. Conclusion

The method works fine in most practical cases, because, in general, since we want to obfuscate categories with low
frequency, there will be sufficient number of categories with higher frequency values than them. Accordingly, the security
level can be increased.

However, the greatest drawback of this method of obfuscation is that we have assumed the game of the intruder, i.e., it
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selects one of the units with the desired categorical value randomly looking at the obfuscated data. But this is not expected
to happen since in most cases there will be many regressive variables associated and the selection will not be, in general,
random. This problem was also discussed in Trabelski et al. (2009).

However, if the model assumptions hold true, the discussed method is successful in giving a better security.
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Appendix

Proof to Theorem 3.1

To prove the result, we need to show R1(a + 1,T ) ≤ R1(1,T ), i.e., 1
a+1 (1 + Σa+1

Σaβ1
)−1 ≤ (1 + Σ

β1
)−1 which leads us to check an

equivalent statement,
Σ̃a+1 − ΣΣ̃a + β1Σ̃a ≥ 0 (12)

where Σ̃a = a!Σa (Σa as defined in Equation (8) and (9)). Thus, we will need to check if 12 holds for all a and all k1 to
prove Theorem 3.1.

We will prove this result by a two dimensional induction procedure. First, we show that the statement is true for k1 = 2
for all a ∈ N, then we show that if the statement is true for k1 = k10 , then it is true for k1 = k10 + 1 for all a.

Case: k1 = 2: Since, Σ1 =
∑

T⋆
i βi and

Σ̃a =

a∑
s=0

(
a
s

) ∑
i1,i2

T⋆
i1 (T⋆

i1 − 1) · · · (T⋆
i1 − s + 1)T⋆

i2 (T⋆
i2 − 1) · · · (T⋆

i2 − a − s)βs
i1β

a−s
i2

We have,

Σ̃aΣ1 =
∑a

s=0

(
a
s

)∑
i1,i2 T⋆

i1
2(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a − s)βs+1

i1
βa−s

i2
+

∑a
s=0

(
a
s

)∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)T⋆

i2
2(T⋆

i2
− 1) · · · (T⋆

i2
− a − s)βs

i1
βa−s+1

i2

Writing Σa+1 similarly, we note that there are a + 2 terms in the expansion of Σ̃a+1 − ΣΣ̃a + β1Σ̃a.

First term =
(

a+1
0

)∑k1
i2=1 T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a)βa+1

i2
−

(
a
0

)∑k1
i2=1 T⋆

i2
2(T⋆

i2
− 1) · · · (T⋆

i2
− a + 1)βa+1

i2
+a

(
a
0

)∑k1
i2=1 T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a + 1)βa

i2
β1

= a
∑k1

i2=1 T⋆
i2

(T⋆
i2
− 1) · · · (T⋆

i2
− a + 1)βa

i2
(β1 − βi2 )

For s = 1, 2, · · · a,
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(s + 1)th term =
(
a+1

s

)∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a + 1 − s + 1)βs

i1
βa+1−s

i2
−
(
a
s

)∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)T⋆

i2
2(T⋆

i2
− 1) · · · (T⋆

i2
− a − s + 1)βs

i1
βa+1−s

i2
−
(

a
s−1

)∑
i1,i2 T⋆

i1
2(T⋆

i1
− 1) · · · (T⋆

i1
− s + 2)T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a − s)βs

i1
βa+1−s

i2
+aβ1

(
a
s

)∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a − s + 1)βs

i1
βa−s

i2

=
(
a
s

)∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a − s + 1)(−a − s)βs

i1
βa+1−s

i2
−
(

a
s−1

)
(s − 1)

∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 2)T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a − s)βs

i1
βa+1−s

i2
+aβ1

(
a
s

)∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a − s + 1)βs

i1
βa−s

i2

[Using Pascal’s rule
(
a+1

s

)
=
(
a
s

)
+

(
a

s−1

)
]

= a
(
a
s

)∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a − s + 1)βs

i1
βa−s

i2
(β1 − βi2 )

+
(
a
s

)
sβ1

∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a − s + 1)βs

i1
βa−s

i2
−
(

a
s−1

)
(s − 1)

∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 2)T⋆

i2
2(T⋆

i2
− 1) · · · (T⋆

i2
− a − s)βs

i1
βa+1−s

i2

≥
(
a
s

)
sβ1

∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)T⋆

i2
(T⋆

i2
− 1) · · · (T⋆

i2
− a − s + 1)βs

i1
βa−s

i2
−
(

a
s−1

)
(s − 1)

∑
i1,i2 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s − 1 + 1)T⋆

i2
2(T⋆

i2
− 1) · · · (T⋆

i2
− a − (s − 1) + 1)βs

i1
βa−(s−1)

i2
[Since, β1 ≥ βi∀i]

In the last expression, let us denote the first term by Term(s, β1) and the second term by Term(s − 1, β). Note that since
β1 ≥ βi∀i Term(s, β1) − Term(s, β) ≥ 0.

(a + 2)th term =
(
a + 1
a + 1

) k1∑
i1=1

T⋆
i1 (T⋆

i1 − 1) · · · (T⋆
i1 − a)βa+1

i1 −
(
a
a

) k1∑
i1=1

T⋆
i1

2(T⋆
i1 − 1) · · · (T⋆

i1 − a + 1)βa+1
i1

Thus, it can be clearly seen that,

Σ̃a+1 − Σ1Σ̃a + β1Σ̃a

≥ Term(1, β1) + Term(2, β1) − Term(1, β) + Term(3, β1) − Term(2, β)
+ · · · + Term(a, β1) − Term(a − 1, β) + (

(
a+1
a+1

)∑k1
i1=1 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− a)βa+1

i1
) − Term(a, β)

≥ 0

Hence, (12) is true for k1 = 2 for any a. Now, let it be true for some k1 = k10 , k10 ∈ {2, 3, . . . }. We will show then that
(12) is true for k1 = k10 + 1.

Case: k1 = k10 + 1: The general expression for Σ̃a can be given by the following expression.

Σ̃a =
∑

a1+a2+···+ak1=a

a!
a1! · · · ak1 !

∑
i1,i2···,ik1

T⋆
i1 . . . (T

⋆
i1 − a1 + 1) . . . T⋆

ik1
. . . (T⋆

ik1
− ak1 + 1)βa1

i1
βa2

i2
. . . β

ak1
ik1

Since for any {a1, a2, · · · , ak1 ≥ 0,
∑k1

i=1 ai = a : a!
a1!a2!···ak1 ! =

a!
a!!(a−a1)!

(a−a1)!
a2!a3!···ak1 ! }, we can write,

Σ̃a =

a∑
s=0

a!
s!(a − s)!

k1∑
i1=1

T⋆
i1 (T⋆

i1 − 1) · · · (T⋆
i1 − s + 1)βs

i1 Σ̃(a−s,k10 )

where Σ̃(s,k10 ) = s!Σs for k10 categories instead of k1 = k10 + 1 categories. Like before, we write down the terms of
Σ̃a+1 − ΣΣ̃a + β1Σ̃a.

First term = Σ̃(a+1,k10 ) −
∑k1

i1=1 T⋆
i1
βi1 Σ̃(a,k10 ) − Σ̃(a,k10 )Σ̃(1,k10 ) + aβ1Σ̃(a,k10 )

= (Σ̃(a+1,k10 ) − Σ̃(a,k10 )Σ̃(1,k10 ) + aβ1Σ̃(a,k10 )) −
∑k1

i1=1 T⋆
i1
βi1 Σ̃(a,k10 )

≥ −∑k1
i1=1 T⋆

i1
βi1 Σ̃(a,k10 ) [by Assumption over size k10 ]

For s = 1, 2, · · · a,

30



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 8, No. 3; 2019

(s + 1)th term =
(a+1)!

s!(a−s+1)!
∑k1

i1=1 T⋆
i1

(T⋆
i1
− 1) · · · (T⋆

i1
− s + 1)βs

i1
Σ̃(a−s+1,k10 )

− a!
s!(a−s)!

∑k1
i1=1 T⋆

i1
2(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)βs+1

i1
Σ̃(a−s,k10 )

−( a!
s!(a−s)!

∑k1
i1=1 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)βs

i1
Σ̃(a−s,k10 ))(Σ̃(1,k10 ))

+aβ1
a!

s!(a−s)!
∑k1

i1=1 T⋆
i1

(T⋆
i1
− 1) · · · (T⋆

i1
− s + 1)βs

i1
Σ̃(a−s,k10 )

=
(
a
s

)∑k1
i1=1 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)βs

i1
(Σ̃(a+1−s,k10 ) − Σ̃(a−s,k10 )Σ̃(1,k10 ) + (a − s)β1Σ̃(a−s,k10 ))

+
(

a
s−1

)∑k1
i1=1 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)βs

i1
(Σ̃(a−s−1,k10 )

−
(
a
s

)∑k1
i1=1 T⋆

i1
2(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)βs+1

i1
(Σ̃(a−s,k10 )

+sβ1
(
a
s

)∑k1
i1=1 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)βs

i1
(Σ̃(a−s,k10 ) [ Using Pascal’s rule]

≥ +
(

a
s−1

)∑k1
i1=1 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)βs

i1
(Σ̃(a−s−1,k10 )

−
(
a
s

)∑k1
i1=1 T⋆

i1
2(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)βs+1

i1
(Σ̃(a−s,k10 )

+sβ1
(
a
s

)∑k1
i1=1 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− s + 1)βs

i1
(Σ̃(a−s,k10 ) [ Using Assumption on size k10 ]

(a + 2)th term =
k1∑

i1=1

T⋆
i1 (T⋆

i1 − 1) · · · (T⋆
i1 − a)βa+1

i1

Summing all the elements we get,

Σ̃a+1 − ΣΣ̃a + β1Σ̃a

=
(

a
1

)∑k1
i1=1 T⋆

i1
βi1 Σ̃(a−1,k10 )(β1 − βi1 ) +

(
a
2

)∑k1
i1=1 T⋆

i1
(T⋆

i1
− 1)β2

i1
Σ̃(a−2,k10 )(β1 − βi1 )

+ · · · +
(

a
a

)∑k1
i1=1 T⋆

i1
(T⋆

i1
− 1) · · · (T⋆

i1
− a + 1)βa

i1
(β1 − βi1 ) ≥ 0 [ Since β1 ≥ βi∀i]

Thus the statement is true for k1 = k10 + 1 if true for k10 for any a ≥ 1. Thus, we see (12) always holds and hence the
proof.

Proof to Lemma 3.2

For T1 ≥ 2, ψ(1, θ) = ψ(T1, θ) iff 1−θ
1−θ+θ2 =

T1−θ
T1(T1−θ)+θ2 , i.e., θ = T1

T1+1 . Consider,

h(θ) =

ψ(1, θ) , if θ < T1
T1+1

ψ(T1, θ) , if θ ≥ T1
T1+1

Note that, h(θ) is continuous and strictly decreasing in θ ∈ (0, 1) with h(0) = 1, h(T1) = 0. By Mean Value Theorem, there
must exist a θ⋆ ∈ (0,T1) such that h(θ⋆) = ξ for 0 < ξ < 1.
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